Begin NBO part

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-10 17:32:30 +01:00
parent 3d1d20debb
commit 3aef870c4d
3 changed files with 418 additions and 49 deletions

BIN
img/cone.pdf Normal file

Binary file not shown.

View File

@@ -0,0 +1,27 @@
\begin{tikzpicture}
% fill the overlap area
\draw[black!0, pattern=north east lines, pattern color=black!15] (0cm, 0cm) rectangle (2cm, 2cm);
\node[anchor=base, text width=2cm, align=center] at (1cm, 1.4cm) {overlap region};
\node[anchor=base, text width=3cm, align=center, scale=0.5] at (1cm, 0.5cm) {inconsistent theories};
% draw the horizontal axis
\draw[thick, ->] (-3cm, 0cm) -- (4cm, 0cm) node[anchor=south west] {$n$};
% draw points
\node[anchor=north] at (-3cm, 0cm) {$\cdots$};
\filldraw[fill=white, draw=black] (-2cm,0cm) circle (2pt) node[anchor=north] {$-1$};
\filldraw[fill=white, draw=black] (-1cm,0cm) circle (2pt) node[anchor=north] {$0$};
\filldraw[fill=white, draw=black] (0cm,0cm) circle (2pt) node[anchor=north] {$1$};
\node[anchor=north] at (1cm, 0cm) {$\cdots$};
\filldraw[fill=white, draw=black] (2cm,0cm) circle (2pt) node[anchor=north] {$\mathrm{L}$};
\filldraw[fill=white, draw=black] (3cm,0cm) circle (2pt) node[anchor=north] {$\mathrm{L}+1$};
\node[anchor=north] at (4cm, 0cm) {$\cdots$};
% draw limits
\draw[->] (0cm, 2pt) -- (0cm, 2cm) -- (4cm, 2cm) node[midway, anchor=south west] {in-annihilators} node[anchor=north east] {$b_{n}$};
\draw[->] (2cm, 2pt) -- (2cm, 1.8cm) -- (-3cm, 1.8cm) node[midway, anchor=south east] {out-annihilators} node[anchor=north west] {$b^*_{\mathrm{L} + 1 - n}$};
\end{tikzpicture}
% vim: ft=tex

View File

@@ -46,6 +46,7 @@
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{arrows}
\usetikzlibrary{patterns}
\newenvironment{equationblock}[1]{%
\begin{block}{#1}
@@ -180,7 +181,7 @@
\begin{equation*}
S_P\qty[ \upgamma,\, X,\, \uppsi ]
=
-\frac{1}{4\pi}
-\frac{1}{4\uppi}
\int\limits_{-\infty}^{+\infty} \dd{\uptau}
\int\limits_0^{\ell} \dd{\upsigma}
\sqrt{-\det \upgamma}\,
@@ -207,9 +208,9 @@
\begin{itemize}
\item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
\item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$
\item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$
\item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$
\item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$
\end{itemize}
\end{column}
@@ -229,48 +230,48 @@
\end{frame}
\begin{frame}{Action Principle and Conformal Symmetry}
\begin{columns}
\begin{column}{0.6\linewidth}
\highlight{%
Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
}
\begin{equation*}
\mathcal{T}( z )\, \Upphi_h( w )
\stackrel{z \to w}{\sim}
\frac{h}{(z - w)^2} \Upphi_h( w )
+
\frac{1}{z - w} \partial_w \Upphi_h( w )
\end{equation*}
\begin{equation*}
\mathcal{T}( z )\, \mathcal{T}( w )
\stackrel{z \to w}{\sim}
\frac{\frac{c}{2}}{(z - w)^4}
+
\order{(z - w)^{-2}}
\end{equation*}
% \begin{frame}{Action Principle and Conformal Symmetry}
% \begin{columns}
% \begin{column}{0.6\linewidth}
% \highlight{%
% Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
% }
% \begin{equation*}
% \mathcal{T}( z )\, \Upphi_h( w )
% \stackrel{z \to w}{\sim}
% \frac{h}{(z - w)^2} \Upphi_h( w )
% +
% \frac{1}{z - w} \partial_w \Upphi_h( w )
% \end{equation*}
% \begin{equation*}
% \mathcal{T}( z )\, \mathcal{T}( w )
% \stackrel{z \to w}{\sim}
% \frac{\frac{c}{2}}{(z - w)^4}
% +
% \order{(z - w)^{-2}}
% \end{equation*}
\begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
\begin{eqnarray*}
\qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ]
& = &
(n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
\\
\qty[ L_n,\, \overline{L}_m ]
& = &
0
\end{eqnarray*}
\end{equationblock}
\end{column}
% \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
% \begin{eqnarray*}
% \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ]
% & = &
% (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
% \\
% \qty[ L_n,\, \overline{L}_m ]
% & = &
% 0
% \end{eqnarray*}
% \end{equationblock}
% \end{column}
\begin{column}{0.4\linewidth}
\begin{figure}[h]
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}}
\end{figure}
\end{column}
\end{columns}
\end{frame}
% \begin{column}{0.4\linewidth}
% \begin{figure}[h]
% \centering
% \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
\begin{frame}{Action Principle and Conformal Symmetry}
\highlight{Superstrings in $D$ dimensions:}
@@ -421,7 +422,7 @@
\begin{equation*}
\mathcal{A}^{\upmu}
\quad \leftrightarrow \quad
\alpha_{-1}^{\upmu} \ket{0}
\upalpha_{-1}^{\upmu} \ket{0}
\qquad
\longrightarrow
\qquad
@@ -430,7 +431,7 @@
&
$\leftrightarrow$
&
$\alpha_{-1}^A \ket{0},$
$\upalpha_{-1}^A \ket{0},$
&
$A = 0,\, 1,\, \dots,\, p$
\\
@@ -438,7 +439,7 @@
&
$\leftrightarrow$
&
$\alpha_{-1}^a \ket{0},$
$\upalpha_{-1}^a \ket{0},$
&
$a = 1,\, 2,\, \dots,\, D - p - 1$
\end{tabular}
@@ -740,7 +741,7 @@
\begin{split}
\eval{S_{\mathds{R}^4}}_{\text{on-shell}}
& =
\frac{1}{2\pi \alpha'}
\frac{1}{2\uppi \upalpha'}
\sum\limits_{t = 1}^3
\qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} )
\\
@@ -830,11 +831,352 @@
\end{block}
\end{frame}
\begin{frame}{Conserved Product and Operators}
Expand on a \highlight{basis of solutions}
\begin{equation*}
\uppsi_{\pm}( \upxi_{\pm} )
=
\sum\limits_{n = -\infty}^{+\infty} b_n\, \uppsi_n( \upxi_{\pm} )
\qquad
\Rightarrow
\qquad
\Uppsi( z )
=
\begin{cases}
\uppsi_{E,\, +}( u ) \quad \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})}
\\
\uppsi_{E,\, -}( u ) \quad \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})}
\end{cases}
\end{equation*}
\pause
\begin{equationblock}{Conserved Product and Dual Basis}
\begin{equation*}
\left\langle\!\left\langle
\tensor[^*]{\uppsi}{_n},\,
\uppsi_m
\right. \right\rangle
=
2\uppi \mathcal{N}\,
\oint
\frac{\dd{z}}{2\uppi i}\,
\tensor[^*]{\Uppsi}{_n^*}\,
\tensor{\Uppsi}{_m}
=
\updelta_{n,\, m}
\quad
\Rightarrow
\quad
\left\langle\!\left\langle
\tensor[^*]{\Uppsi}{_n^{(*)}},\,
\Uppsi^{(*)}
\right. \right\rangle
=
b_n^{(\dagger)}
\end{equation*}
\end{equationblock}
\pause
Derive the \highlight{algebra of operators:}
\begin{equation*}
\qty[ b_n,\, b_m^{\dagger} ]_+
=
\frac{2 \mathcal{N}}{T}\,
\left\langle\!\left\langle
\tensor[^*]{\Uppsi}{_n^*},\,
\Uppsi_m^*
\right. \right\rangle
\end{equation*}
\end{frame}
\begin{frame}{Twisted Complex Fermions}
Consider the case $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$:
\begin{equation*}
\Uppsi( x_{(t)} + e^{2\uppi i} \updelta )
=
e^{i \uppi \upepsilon_{(t)}}\,
\Uppsi( x_{(t)} + \updelta )
\end{equation*}
where
\begin{equation*}
\upepsilon_{(t)}
=
\upalpha_{(t+1)} - \upalpha_{(t)}
+
\uptheta\qty( \upalpha_{(t)} - \upalpha_{(t+1)} - 1 )
-
\uptheta\qty( \upalpha_{(t+1)} - \upalpha_{(t)} - 1 )
\end{equation*}
\pause
\begin{equationblock}{Basis of Solutions}
\begin{equation*}
\begin{split}
\Uppsi_n\qty( z;\, \qty{ x_{(t)} } )
& =
\mathcal{N}_{\Uppsi}\,
z^{-n}\,
\prod\limits_{t = 1}^N
\qty( 1 - \frac{z}{x_{(t)}} )^{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}
\\
\tensor[^*]{\Uppsi}{_n}\qty( z;\, \qty{ x_{(t)} } )
& =
\frac{1}{2\uppi \mathcal{N} \mathcal{N}_{\Uppsi}}\,
z^{n - 1}\,
\prod\limits_{t = 1}^N
\qty( 1 - \frac{z}{x_{(t)}} )^{-\widetilde{n}_{(t)} + \frac{\upepsilon_{(t)}}{2}}
\end{split}
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{Vacua}
Define the \textbf{vacuum} with respect to $b_n$:
\begin{equation*}
\begin{split}
b_n \ket{\qty{ x_{(t)} }} = 0 &\quad \text{for} \quad n \ge 1
\\
b_n \ket{\widetilde{0}} = 0 &\quad \text{for} \quad n \ge n_{(t)} + \frac{\upepsilon_{(t)}}{2} + \frac{1}{2}
\end{split}
\end{equation*}
\pause
Theories are subject to \highlight{consistency conditions:}
\begin{columns}
\begin{column}{0.6\linewidth}
\begin{equation*}
\mathrm{L}
=
n_{(t)} + \widetilde{n}_{(t)}
\uncover<3->{%
\alert{= 0}
}
\end{equation*}
\end{column}
\hfill
\begin{column}{0.4\linewidth}
\centering
\resizebox{\columnwidth}{!}{\import{img}{inconsistent_theories.pgf}}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Stress-energy Tensor and CFT Approach}
Compute the OPEs leading to the \highlight{stress-energy tensor:}
\begin{equation*}
\mathcal{T}( z )
=
\frac{\uppi T}{2} \mathcal{N}_{\Uppsi}^2
\sum\limits_{n,\, m = -\infty}^{+\infty}
\colon b_n\, b_m^* \colon\,
z^{-n -m}\,
\qty[%
\frac{m - n}{2}
+
2 \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}}
]
+
\frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2
\end{equation*}
\pause
\begin{equationblock}{Invariant Vacuum and Spin Fields}
\begin{equation*}
\ket{\qty{ x_{(t)} }}
=
\mathcal{N}\qty( \qty{ x_{(t)} } )\,
\mathrm{R}\qty[ \prod\limits_{t = 1}^M S_{(t)}( x_{(t)} ) ]\,
\ket{0}_{\mathrm{SL}_2( \mathds{R} )}
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{Spin Fields Amplitudes}
\begin{equationblock}{Equivalence with Bosonization}
\begin{equation*}
\begin{split}
\partial_{x_{(t)}} \braket{\qty{x_{(t)}}}
& =
\oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i}
\frac{%
\bra{\qty{x_{(t)}}} \mathcal{T}( z ) \ket{\qty{x_{(t)}}}
}{%
\braket{\qty{x_{(t)}}}
}
\\
\Rightarrow
\quad
\braket{\qty{x_{(t)}}}
& =
\mathcal{N}\qty( \qty{ \upepsilon_{(t)} } )
\prod\limits_{\substack{t = 1 \\ t > u}}^N
\qty( x_{(u)} - x_{(t)} )^{\qty( n_{(u)} + \frac{\upepsilon_{(u)}}{2} )\qty( n_{(t)} + \frac{\upepsilon_{(t)}}{2} )}
\end{split}
\end{equation*}
\end{equationblock}
\pause
\begin{itemize}
\item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings}
\pause
\item general framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes}
\pause
\item leading contribution for \textbf{twist fields}
\pause
\item \textbf{spin fields} as \textbf{boundary changing operators} on \textbf{defects}
\pause
\item alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?)
\end{itemize}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
\begin{frame}{BBB}
b
\subsection[Orbifold]{Orbifolds and Cosmological Toy Models}
\begin{frame}{A Few Words on a Theory of Everything}
\begin{center}
string theory = theory of everything = nuclear forces + gravity
\end{center}
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\includegraphics[width=0.9\columnwidth]{img/cone}
\end{column}
\hfill
\begin{column}{0.5\linewidth}
From the phenomenological point of view:
\begin{itemize}
\item cosmological implications
\pause
\item Big Bang(-like) singularities
\pause
\item toy models of \textbf{space-like singularities}
\end{itemize}
\pause
\begin{center}
$\Downarrow$
\highlight{time-dependent orbifold models}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Orbifolds}
\begin{columns}[c]
\begin{column}{0.475\linewidth}
\begin{center}
\textbf{Mathematics}
\begin{itemize}
\item manifold $M$
\item (Lie) group $G$
\item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$
\item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$
\item charts $\upphi = \uppi \circ \mathscr{P}$ where:
\begin{itemize}
\item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$
\item $\uppi\colon U / G \to M$
\end{itemize}
\end{itemize}
\end{center}
\end{column}
\begin{column}{0.05\linewidth}
\centering
$\Rightarrow$
\end{column}
\begin{column}{0.475\linewidth}
\begin{center}
\textbf{Physics}
\begin{itemize}
\item global orbit space $M / G$
\item $G$ group of isometries
\item fixed points
\item additional d.o.f.\ (\emph{twisted states})
\item singular limits of CY manifolds
\end{itemize}
\end{center}
\end{column}
\end{columns}
\pause
\begin{center}
time-dependent orbifolds
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\draw[line width=4pt, red] (13em,3.5em) rectangle (27em, 1em);
\end{tikzpicture}
\end{frame}
\begin{frame}{Cosmological Singularities}
Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}:
\begin{center}
divergent \highlight{closed string} aplitudes
$\Rightarrow$
gravitational backreaction?
\end{center}
\pause
\begin{block}{Divergences}
Even in simple models (e.g.\ NBO, more on this later) the $4$ tachyons amplitude is divergent \textbf{at tree level}:
\begin{equation*}
A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \mathscr{A}( q )
\end{equation*}
where
\begin{equation*}
\mathscr{A}_{\text{closed}}( q ) \sim q^{4 - \upalpha' \norm{\vec{p}_{\perp}}^2}
\qquad
\text{and}
\qquad
\mathscr{A}_{\text{open}}( q ) \sim q^{1 - \upalpha' \norm{\vec{p}_{\perp}}^2} \trace(\qty[T_1,\, T_2]_+\, \qty[T_3,\, T_4]_+)
\end{equation*}
\end{block}
\end{frame}
\subsection[NBO]{Null Boost Orbifold}
\begin{frame}{Null Boost Orbifold}
\end{frame}