Files
phd-thesis-beamer/thesis.tex
2020-11-10 17:32:30 +01:00

1190 lines
33 KiB
TeX

\documentclass[10pt, aspectratio=169]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[british]{babel}
\usepackage{csquotes}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{dsfont}
\usepackage{upgreek}
\usepackage{physics}
\usepackage{tensor}
\usepackage{graphicx}
\usepackage{transparent}
\usepackage{tikz}
\usepackage{import}
\usepackage{booktabs}
\usepackage{multicol}
\usepackage{multirow}
\usepackage{bookmark}
\usepackage{xspace}
\usetheme{Singapore}
\usecolortheme{crane}
\usefonttheme{structurebold}
\setbeamertemplate{navigation symbols}{}
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
\author[Finotello]{Riccardo Finotello}
\title[D-branes and Deep Learning]{D-branes and Deep Learning}
\subtitle{Theoretical and Computational Aspects in String Theory}
\institute[UniTO]{%
Scuola di Dottorato in Fisica e Astrofisica
\\[0.5em]
Università degli Studi di Torino
\\
and
\\
I.N.F.N.\ -- sezione di Torino
}
\date{15th December 2020}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{arrows}
\usetikzlibrary{patterns}
\newenvironment{equationblock}[1]{%
\begin{block}{#1}
\vspace*{-0.75\baselineskip}\setlength\belowdisplayshortskip{0.25\baselineskip}
}{%
\end{block}
}
\newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}}
\newcommand{\firstlogo}{img/unito}
\newcommand{\thefirstlogo}{%
\begin{figure}
\centering
\includegraphics[width=7em]{\firstlogo}
\end{figure}
}
\newcommand{\secondlogo}{img/infn}
\newcommand{\thesecondlogo}{%
\begin{figure}
\centering
\includegraphics[width=7em]{\secondlogo}
\end{figure}
}
\setbeamertemplate{title page}{%
\begin{center}
{%
\usebeamercolor{title}
\usebeamerfont{title}
\colorbox{bg}{%
{\Huge \inserttitle}\xspace
}
\vspace{0.5em}
}\par
{%
\usebeamercolor{subtitle}
\usebeamerfont{subtitle}
{\large \it \insertsubtitle}\xspace
\vspace{2em}
}\par
{%
\usebeamercolor{author}
\usebeamerfont{author}
{\Large \insertauthor}\xspace
\vspace{1em}
}\par
{%
\begin{columns}
\centering
\begin{column}{0.3\linewidth}
\centering
\thefirstlogo
\end{column}
\begin{column}{0.4\linewidth}
\centering
\usebeamercolor{institute}
\usebeamerfont{institute}
\insertinstitute{}
\\[1em]
\insertdate{}
\end{column}
\begin{column}{0.3\linewidth}
\centering
\thesecondlogo
\end{column}
\end{columns}
}\par
\end{center}
}
% \setbeamertemplate{footline}{%
% \usebeamerfont{footnote}
% \usebeamercolor{footnote}
% \hfill
% \insertframenumber{}~/~\inserttotalframenumber{}
% \hspace{1em}
% \vspace{1em}
% \par
% }
% \AtBeginSection[]
% {%
% {%
% \setbeamertemplate{footline}{}
% \usebackgroundtemplate{%
% \transparent{0.1}
% \includegraphics[width=\paperwidth]{img/torino.png}
% }
% \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
% \begin{frame}[noframenumbering]{\contentsname}
% \tableofcontents[currentsection]
% \end{frame}
% }
% }
\begin{document}
{%
\usebackgroundtemplate{%
\transparent{0.1}
\includegraphics[width=\paperwidth]{img/torino.png}
}
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
\begin{frame}[noframenumbering, plain]
\titlepage{}
\end{frame}
}
{%
% \setbeamertemplate{footline}{}
\usebackgroundtemplate{%
\transparent{0.1}
\includegraphics[width=\paperwidth]{img/torino.png}
}
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
\begin{frame}[noframenumbering]{\contentsname}
\tableofcontents{}
\end{frame}
}
\section[CFT]{Conformal Symmetry and Geometry of the Worldsheet}
\subsection[Preliminary]{Preliminary Concepts and Tools}
\begin{frame}{Action Principle and Conformal Symmetry}
\begin{equationblock}{Polyakov's Action}
\begin{equation*}
S_P\qty[ \upgamma,\, X,\, \uppsi ]
=
-\frac{1}{4\uppi}
\int\limits_{-\infty}^{+\infty} \dd{\uptau}
\int\limits_0^{\ell} \dd{\upsigma}
\sqrt{-\det \upgamma}\,
\upgamma^{\upalpha \upbeta}\,
\qty(%
\frac{2}{\upalpha'}\,
\partial_{\upalpha} X^{\upmu}\,
\partial_{\upbeta} X^{\upnu}
+
\uppsi^{\upmu}\,
\uprho_{\upalpha}
\partial_{\upbeta}
\uppsi^{\upnu}
)\,
\upeta_{\upmu\upnu}
\end{equation*}
\end{equationblock}
\pause
\begin{columns}
\begin{column}[t]{0.5\linewidth}
\highlight{Symmetries:}
\begin{itemize}
\item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
\item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$
\item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$
\end{itemize}
\end{column}
\pause
\begin{column}[t]{0.5\linewidth}
\highlight{Conformal symmetry:}
\begin{itemize}
\item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$
\item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$
\item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
% \begin{frame}{Action Principle and Conformal Symmetry}
% \begin{columns}
% \begin{column}{0.6\linewidth}
% \highlight{%
% Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
% }
% \begin{equation*}
% \mathcal{T}( z )\, \Upphi_h( w )
% \stackrel{z \to w}{\sim}
% \frac{h}{(z - w)^2} \Upphi_h( w )
% +
% \frac{1}{z - w} \partial_w \Upphi_h( w )
% \end{equation*}
% \begin{equation*}
% \mathcal{T}( z )\, \mathcal{T}( w )
% \stackrel{z \to w}{\sim}
% \frac{\frac{c}{2}}{(z - w)^4}
% +
% \order{(z - w)^{-2}}
% \end{equation*}
% \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
% \begin{eqnarray*}
% \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ]
% & = &
% (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
% \\
% \qty[ L_n,\, \overline{L}_m ]
% & = &
% 0
% \end{eqnarray*}
% \end{equationblock}
% \end{column}
% \begin{column}{0.4\linewidth}
% \begin{figure}[h]
% \centering
% \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
\begin{frame}{Action Principle and Conformal Symmetry}
\highlight{Superstrings in $D$ dimensions:}
\begin{equation*}
\mathcal{T}( z )
=
-\frac{1}{\upalpha'}
\partial X( z ) \cdot \partial X( z )
-\frac{1}{2}
\uppsi( z ) \cdot \partial \uppsi( z )
\quad
\Rightarrow
\quad
c = \frac{3}{2} D
\end{equation*}
\pause
\begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System}
Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields:
\begin{equation*}
S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ]
=
\frac{1}{2\uppi}
\iint \dd{z} \dd{\overline{z}}
\qty(%
b( z )\, \overline{\partial} c( z )
+
\upbeta( z )\, \overline{\partial} \upgamma( z )
)
\end{equation*}
where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$.
\end{block}
\pause
\highlight{Consequence:}
\begin{equation*}
c_{\text{full}} = c + c_{\text{ghost}} = 0
\quad
\Leftrightarrow
\quad
D = 10.
\end{equation*}
\end{frame}
\begin{frame}{Extra Dimensions and Compactification}
\begin{block}{Compactification}
\begin{columns}
\begin{column}{0.7\linewidth}
\begin{equation*}
\mathscr{M}^{1,\, 9}
=
\mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6
\end{equation*}
\begin{itemize}
\item $\mathscr{X}_6$ is a \textbf{compact} manifold
\item $N = 1$ \textbf{supersymmetry} is preserved in 4D
\item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ in arising \textbf{gauge group}
\end{itemize}
\end{column}
\begin{tikzpicture}[remember picture, overlay]
\node[anchor=base] at (3em,-3.75em) {\includegraphics[width=0.3\linewidth]{img/cy}};
\end{tikzpicture}
\begin{column}{0.3\linewidth}
% \centering
% \includegraphics[width=0.9\columnwidth]{img/cy}
\end{column}
\end{columns}
\end{block}
\pause
\begin{columns}
\begin{column}[t]{0.5\linewidth}
\highlight{Kähler manifolds} $\qty( M,\, g )$ such that
\begin{itemize}
\item $\dim\limits_{\mathds{C}} M = m$
\item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$
\item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes)
\end{itemize}
\end{column}
\pause
\begin{column}[t]{0.5\linewidth}
Characterised by \highlight{Hodge numbers}
\begin{equation*}
h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} )
\end{equation*}
counting the no.\ of harmonic $(r,\,s)$-forms.
\end{column}
\end{columns}
\end{frame}
\begin{frame}{D-branes and Open Strings}
Polyakov's action naturally introduces \highlight{Neumann b.c.:}
\begin{equation*}
\eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\end{equation*}
satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$.
\pause
\begin{equationblock}{T-duality}
\begin{equation*}
X( z, \overline{z} )
=
X( z ) + \overline{X}( \overline{z} )
\quad
\stackrel{T}{\Rightarrow}
\quad
X( z ) - \overline{X}( \overline{z} )
=
Y( z, \overline{z} )
=
Y( z ) + \overline{Y}( \overline{z} )
\end{equation*}
\end{equationblock}
\pause
Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:}
\begin{equation*}
\eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\quad
\stackrel{T}{\Rightarrow}
\quad
\eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\quad
\forall i = 1, 2,\, \dots,\, p
\end{equation*}
thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.}
\end{frame}
\begin{frame}{D-branes and Open Strings}
Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.}
\pause
\begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$}
\begin{equation*}
\mathcal{A}^{\upmu}
\quad \leftrightarrow \quad
\upalpha_{-1}^{\upmu} \ket{0}
\qquad
\longrightarrow
\qquad
\begin{tabular}{@{}llll@{}}
$\mathcal{A}^A$
&
$\leftrightarrow$
&
$\upalpha_{-1}^A \ket{0},$
&
$A = 0,\, 1,\, \dots,\, p$
\\
$\mathcal{A}^a$
&
$\leftrightarrow$
&
$\upalpha_{-1}^a \ket{0},$
&
$a = 1,\, 2,\, \dots,\, D - p - 1$
\end{tabular}
\end{equation*}
\end{equationblock}
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}}
\end{column}
\begin{column}{0.5\linewidth}
Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}:
\begin{equation*}
\bigoplus\limits_{r = 1}^N \mathrm{U}_r(1)
\quad
\longrightarrow
\quad
\mathrm{U}( N )
\end{equation*}
\pause
\highlight{Build gauge bosons, fermions and scalars.}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Standard Model-like Scenarios}
\centering
\resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}}
\end{frame}
\subsection[D-branes at Angles]{D-branes Intersecting at Angles}
\begin{frame}{Intersecting D-branes}
Consider \highlight{$N$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$
\begin{equationblock}{Twist Fields Correlators}
\begin{equation*}
\left\langle \prod\limits_{t = 1}^{N_B} \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle
=
\mathcal{N}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )
e^{- S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )}
\end{equation*}
\end{equationblock}
\pause
\begin{tikzpicture}[remember picture, overlay]
\draw[line width=4pt, red] (29.5em,3.5em) ellipse (2cm and 1cm);
\end{tikzpicture}
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\resizebox{0.5\columnwidth}{!}{\import{img}{branesangles.pgf}}
\end{column}
\begin{column}{0.5\linewidth}
D-branes in \textbf{factorised} internal space:
\begin{itemize}
\item \textbf{embedded as lines} in $\mathds{R}^2 \times \mathds{R}^2 \times \mathds{R}^2$
\item \textbf{relative rotations} are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements
\item $S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{$\mathrm{SO}(4)$ Rotations}
Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$):
\pause
\begin{columns}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}}
\end{column}
\begin{column}{0.6\linewidth}
\begin{equation*}
\qty( X_{(t)} )^I
=
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
\end{equation*}
\pause
where
\begin{equation*}
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
\end{equation*}
\pause
that is
\begin{equation*}
\qty[ R_{(t)} ]
=
\qty{ R_{(t)} \sim \mathcal{O}_{(t)} R_{(t)} }
\end{equation*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Boundary Conditions}
What are the consequences for \highlight{open strings?}
\pause
\begin{columns}
\begin{column}{0.6\linewidth}
\begin{itemize}
\item consider $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$
\item let $x_{(t)} < x_{(t-1)}$ be the \textbf{worldsheet intersection points} on \textbf{real axis}
\item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet}
\end{itemize}
\end{column}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{branchcuts.pgf}}
\end{column}
\end{columns}
\pause
\begin{equationblock}{Branch Cuts and Discontinuities for $x \in D_{(t)}$}
\begin{equation*}
\begin{cases}
\partial_u X( x + i 0^+ )
& =
U_{(t)}
\cdot
\partial_{\overline{u}} \overline{X}( x - i 0^+ )
=
\qty[%
R_{(t)}^{-1}
\cdot
\qty( \upsigma_3 \otimes \mathds{1}_2 )
\cdot
R_{(t)}
]
\cdot
\partial_{\overline{u}} \overline{X}( x - i 0^+ )
\\
X( x_{(t)},\, x_{(t)} )
& =
f_{(t)}
\end{cases}
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{Doubling Trick and Spinor Representation}
\begin{block}{Doubling Trick}
\begin{equation*}
\partial_z \mathcal{X}( z )
=
\begin{cases}
\partial_u X( u )
& \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})}
\\
U_{(\overline{t})}\, \partial_{\overline{u}} \overline{X}( \overline{u} )
& \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})}
\end{cases}
\quad
\Rightarrow
\quad
\mqty{%
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_+ )
=
\mathcal{U}_{(t,\, t+1)}\,
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_+ ),
\\
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_- )
=
\widetilde{\mathcal{U}}_{(t,\, t+1)}\,
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_- ),
}
\end{equation*}
where $\mathscr{H}_{\gtrless}^{(t)} = \qty{z \in \mathds{C} \mid \Im z \gtrless 0~\text{or}~z \in D_{(t)} }$ and $\updelta_{\pm} = \upeta \pm i 0^+$.
\end{block}
\pause
\begin{tikzpicture}[remember picture, overlay]
\draw[line width=4pt, red] (31em,6em) ellipse (0.8cm and 1.2cm);
\end{tikzpicture}
\pause
Use \highlight{Pauli matrices} $\uptau = \qty( i\, \mathds{1}_2, \vec{\upsigma} )$:
\begin{equation*}
\partial_z \mathcal{X}_{(s)}( z )
=
\partial_z \mathcal{X}^I( z )\, \uptau_I
\quad
\Rightarrow
\quad
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i}\, \updelta_{\pm} )
=
\overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)}\,
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_{\pm} )\,
\overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)}\,
\end{equation*}
where
\begin{equation*}
\overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)} \in \mathrm{SU}(2)_L
\quad
\text{and}
\quad
\overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)} \in \mathrm{SU}(2)_R
\end{equation*}
\end{frame}
\begin{frame}{Hypergeometric Basis}
\begin{columns}
\begin{column}{0.3\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{threebranes_plane.pgf}}
\end{column}
\hfill
\begin{column}{0.7\linewidth}
Sum over \highlight{all contributions:}
\begin{equation*}
\begin{split}
\partial_z \mathcal{X}( z )
& =
\sum\limits_{l,\, r} c_{lr}\,
\qty( - \upomega_z )^{A_{lr}}\,
\qty( 1 - \upomega_z )^{B_{lr}}\,
B_{0,\, l}^{(L)}( \omega_z )\,
\qty( B_{0,\, r}^{(R)}( \omega_z ) )^T
\end{split}
\end{equation*}
\end{column}
\end{columns}
\pause
\begin{equationblock}{Basis of Solutions}
\begin{equation*}
B_{0,\, n}( \upomega_z )
=
\mqty(%
1 & 0
\\
0 & K_n
)
\mqty(%
\frac{1}{\Upgamma( c_n )}\,
\tensor[_2]{F}{_1}( a_n,\, b_n;\, c_n;\, \upomega_z )
\\
\qty( -\upomega_z )^{1 - c_n}\,
\frac{1}{\Upgamma( 2 - c_n )}\,
\tensor[_2]{F}{_1}( a_n + 1 - c_n,\, b_n + 1 - c_n;\, 2 - c_n;\, \upomega_z )
)
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{The Solution}
\highlight{Operations sequence:}
\begin{enumerate}
\item rotation matrix $=$ monodromy matrix
\pause
\item contiguity relations $\Rightarrow$ independent hypergeometrics
\pause
\item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated)
\pause
\item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$
\end{enumerate}
\pause
\begin{block}{Physical Interpretation}
\only<5>{%
\begin{columns}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.607\columnwidth}{!}{\import{img}{branesangles.pgf}}
\end{column}
\hfill
\begin{column}{0.6\linewidth}
\begin{equation*}
\begin{split}
\eval{S_{\mathds{R}^4}}_{\text{on-shell}}
& =
\frac{1}{2\uppi \upalpha'}
\sum\limits_{t = 1}^3
\qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} )
\\
& =
\text{Area}\qty( \qty{ f_{(t)} } )
\end{split}
\end{equation*}
\end{column}
\end{columns}
\vfill
}
\only<6->{%
\centering
\resizebox{0.25\columnwidth}{!}{\import{img}{brane3d.pgf}}
}
\end{block}
\end{frame}
\subsection[Fermions]{Fermions and Point-like Defect CFT}
\begin{frame}{Fermions on the Strip}
\begin{columns}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{defects.pgf}}
\end{column}
\hfill
\begin{column}{0.6\linewidth}
\begin{equationblock}{Action of Boundary Changing Operators}
\begin{equation*}
\begin{cases}
\uppsi_-^i( \uptau, 0 )
& =
\tensor{\qty( R_{(t)} )}{^I_J}\,
\uppsi_+^J( \uptau, 0 )
\quad \text{for}~
\uptau \in \qty( \hat{\uptau}_{(t)},\, \hat{\uptau}_{(t-1)} )
\\
\uppsi_-^I( \uptau, \uppi )
& =
- \uppsi_+^I( \uptau, \uppi )
\quad \text{for}~
\uptau \in \mathds{R}
\end{cases}
\end{equation*}
\end{equationblock}
\end{column}
\end{columns}
\pause
\begin{block}{Stress-energy Tensor}
\begin{equation*}
\mathcal{T}_{\pm\pm}( \upxi_{\pm} )
=
-i\, \frac{T}{4}\,
\uppsi^*_{\pm,\, I}( \upxi_{\pm} )\,
\overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} )
\quad
\Rightarrow
\quad
\begin{cases}
\dot{\mathrm{H}}( \uptau )
&
% =
% \partial_{\uptau}
% \qty(%
% \int\limits_0^{\uppi} \dd{\upsigma}
% \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma )
% )
=
0 \Leftrightarrow \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} )
\\
\dot{\mathrm{P}}( \uptau )
&
% =
% \partial_{\uptau}
% \qty(%
% \int\limits_0^{\uppi} \dd{\upsigma}
% \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma )
% )
\neq
0
\end{cases}
\end{equation*}
\end{block}
\end{frame}
\begin{frame}{Conserved Product and Operators}
Expand on a \highlight{basis of solutions}
\begin{equation*}
\uppsi_{\pm}( \upxi_{\pm} )
=
\sum\limits_{n = -\infty}^{+\infty} b_n\, \uppsi_n( \upxi_{\pm} )
\qquad
\Rightarrow
\qquad
\Uppsi( z )
=
\begin{cases}
\uppsi_{E,\, +}( u ) \quad \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})}
\\
\uppsi_{E,\, -}( u ) \quad \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})}
\end{cases}
\end{equation*}
\pause
\begin{equationblock}{Conserved Product and Dual Basis}
\begin{equation*}
\left\langle\!\left\langle
\tensor[^*]{\uppsi}{_n},\,
\uppsi_m
\right. \right\rangle
=
2\uppi \mathcal{N}\,
\oint
\frac{\dd{z}}{2\uppi i}\,
\tensor[^*]{\Uppsi}{_n^*}\,
\tensor{\Uppsi}{_m}
=
\updelta_{n,\, m}
\quad
\Rightarrow
\quad
\left\langle\!\left\langle
\tensor[^*]{\Uppsi}{_n^{(*)}},\,
\Uppsi^{(*)}
\right. \right\rangle
=
b_n^{(\dagger)}
\end{equation*}
\end{equationblock}
\pause
Derive the \highlight{algebra of operators:}
\begin{equation*}
\qty[ b_n,\, b_m^{\dagger} ]_+
=
\frac{2 \mathcal{N}}{T}\,
\left\langle\!\left\langle
\tensor[^*]{\Uppsi}{_n^*},\,
\Uppsi_m^*
\right. \right\rangle
\end{equation*}
\end{frame}
\begin{frame}{Twisted Complex Fermions}
Consider the case $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$:
\begin{equation*}
\Uppsi( x_{(t)} + e^{2\uppi i} \updelta )
=
e^{i \uppi \upepsilon_{(t)}}\,
\Uppsi( x_{(t)} + \updelta )
\end{equation*}
where
\begin{equation*}
\upepsilon_{(t)}
=
\upalpha_{(t+1)} - \upalpha_{(t)}
+
\uptheta\qty( \upalpha_{(t)} - \upalpha_{(t+1)} - 1 )
-
\uptheta\qty( \upalpha_{(t+1)} - \upalpha_{(t)} - 1 )
\end{equation*}
\pause
\begin{equationblock}{Basis of Solutions}
\begin{equation*}
\begin{split}
\Uppsi_n\qty( z;\, \qty{ x_{(t)} } )
& =
\mathcal{N}_{\Uppsi}\,
z^{-n}\,
\prod\limits_{t = 1}^N
\qty( 1 - \frac{z}{x_{(t)}} )^{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}
\\
\tensor[^*]{\Uppsi}{_n}\qty( z;\, \qty{ x_{(t)} } )
& =
\frac{1}{2\uppi \mathcal{N} \mathcal{N}_{\Uppsi}}\,
z^{n - 1}\,
\prod\limits_{t = 1}^N
\qty( 1 - \frac{z}{x_{(t)}} )^{-\widetilde{n}_{(t)} + \frac{\upepsilon_{(t)}}{2}}
\end{split}
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{Vacua}
Define the \textbf{vacuum} with respect to $b_n$:
\begin{equation*}
\begin{split}
b_n \ket{\qty{ x_{(t)} }} = 0 &\quad \text{for} \quad n \ge 1
\\
b_n \ket{\widetilde{0}} = 0 &\quad \text{for} \quad n \ge n_{(t)} + \frac{\upepsilon_{(t)}}{2} + \frac{1}{2}
\end{split}
\end{equation*}
\pause
Theories are subject to \highlight{consistency conditions:}
\begin{columns}
\begin{column}{0.6\linewidth}
\begin{equation*}
\mathrm{L}
=
n_{(t)} + \widetilde{n}_{(t)}
\uncover<3->{%
\alert{= 0}
}
\end{equation*}
\end{column}
\hfill
\begin{column}{0.4\linewidth}
\centering
\resizebox{\columnwidth}{!}{\import{img}{inconsistent_theories.pgf}}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Stress-energy Tensor and CFT Approach}
Compute the OPEs leading to the \highlight{stress-energy tensor:}
\begin{equation*}
\mathcal{T}( z )
=
\frac{\uppi T}{2} \mathcal{N}_{\Uppsi}^2
\sum\limits_{n,\, m = -\infty}^{+\infty}
\colon b_n\, b_m^* \colon\,
z^{-n -m}\,
\qty[%
\frac{m - n}{2}
+
2 \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}}
]
+
\frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2
\end{equation*}
\pause
\begin{equationblock}{Invariant Vacuum and Spin Fields}
\begin{equation*}
\ket{\qty{ x_{(t)} }}
=
\mathcal{N}\qty( \qty{ x_{(t)} } )\,
\mathrm{R}\qty[ \prod\limits_{t = 1}^M S_{(t)}( x_{(t)} ) ]\,
\ket{0}_{\mathrm{SL}_2( \mathds{R} )}
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{Spin Fields Amplitudes}
\begin{equationblock}{Equivalence with Bosonization}
\begin{equation*}
\begin{split}
\partial_{x_{(t)}} \braket{\qty{x_{(t)}}}
& =
\oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i}
\frac{%
\bra{\qty{x_{(t)}}} \mathcal{T}( z ) \ket{\qty{x_{(t)}}}
}{%
\braket{\qty{x_{(t)}}}
}
\\
\Rightarrow
\quad
\braket{\qty{x_{(t)}}}
& =
\mathcal{N}\qty( \qty{ \upepsilon_{(t)} } )
\prod\limits_{\substack{t = 1 \\ t > u}}^N
\qty( x_{(u)} - x_{(t)} )^{\qty( n_{(u)} + \frac{\upepsilon_{(u)}}{2} )\qty( n_{(t)} + \frac{\upepsilon_{(t)}}{2} )}
\end{split}
\end{equation*}
\end{equationblock}
\pause
\begin{itemize}
\item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings}
\pause
\item general framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes}
\pause
\item leading contribution for \textbf{twist fields}
\pause
\item \textbf{spin fields} as \textbf{boundary changing operators} on \textbf{defects}
\pause
\item alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?)
\end{itemize}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
\subsection[Orbifold]{Orbifolds and Cosmological Toy Models}
\begin{frame}{A Few Words on a Theory of Everything}
\begin{center}
string theory = theory of everything = nuclear forces + gravity
\end{center}
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\includegraphics[width=0.9\columnwidth]{img/cone}
\end{column}
\hfill
\begin{column}{0.5\linewidth}
From the phenomenological point of view:
\begin{itemize}
\item cosmological implications
\pause
\item Big Bang(-like) singularities
\pause
\item toy models of \textbf{space-like singularities}
\end{itemize}
\pause
\begin{center}
$\Downarrow$
\highlight{time-dependent orbifold models}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Orbifolds}
\begin{columns}[c]
\begin{column}{0.475\linewidth}
\begin{center}
\textbf{Mathematics}
\begin{itemize}
\item manifold $M$
\item (Lie) group $G$
\item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$
\item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$
\item charts $\upphi = \uppi \circ \mathscr{P}$ where:
\begin{itemize}
\item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$
\item $\uppi\colon U / G \to M$
\end{itemize}
\end{itemize}
\end{center}
\end{column}
\begin{column}{0.05\linewidth}
\centering
$\Rightarrow$
\end{column}
\begin{column}{0.475\linewidth}
\begin{center}
\textbf{Physics}
\begin{itemize}
\item global orbit space $M / G$
\item $G$ group of isometries
\item fixed points
\item additional d.o.f.\ (\emph{twisted states})
\item singular limits of CY manifolds
\end{itemize}
\end{center}
\end{column}
\end{columns}
\pause
\begin{center}
time-dependent orbifolds
\end{center}
\begin{tikzpicture}[remember picture, overlay]
\draw[line width=4pt, red] (13em,3.5em) rectangle (27em, 1em);
\end{tikzpicture}
\end{frame}
\begin{frame}{Cosmological Singularities}
Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}:
\begin{center}
divergent \highlight{closed string} aplitudes
$\Rightarrow$
gravitational backreaction?
\end{center}
\pause
\begin{block}{Divergences}
Even in simple models (e.g.\ NBO, more on this later) the $4$ tachyons amplitude is divergent \textbf{at tree level}:
\begin{equation*}
A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \mathscr{A}( q )
\end{equation*}
where
\begin{equation*}
\mathscr{A}_{\text{closed}}( q ) \sim q^{4 - \upalpha' \norm{\vec{p}_{\perp}}^2}
\qquad
\text{and}
\qquad
\mathscr{A}_{\text{open}}( q ) \sim q^{1 - \upalpha' \norm{\vec{p}_{\perp}}^2} \trace(\qty[T_1,\, T_2]_+\, \qty[T_3,\, T_4]_+)
\end{equation*}
\end{block}
\end{frame}
\subsection[NBO]{Null Boost Orbifold}
\begin{frame}{Null Boost Orbifold}
\end{frame}
\section[Deep Learning]{Deep Learning the Geometry of String Theory}
\begin{frame}{CCC}
c
\end{frame}
\end{document}