Begin part with fermions and defect CFT
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
25
img/brane3d.pgf
Normal file
25
img/brane3d.pgf
Normal file
@@ -0,0 +1,25 @@
|
||||
\usetikzlibrary{decorations.pathmorphing}
|
||||
|
||||
\begin{tikzpicture}
|
||||
|
||||
% draw branes
|
||||
\draw[thick] (-0.35cm, 0cm) -- (-3cm, -2cm) -- (-3cm, 3cm) -- (1cm, 5cm) -- (1cm, 4cm);
|
||||
\draw[dashed] (1cm, 4cm) -- (1cm, 1cm) -- (-0.35cm, 0cm);
|
||||
|
||||
\draw[thick] (-3cm, 2cm) -- (-4cm, 4cm) -- (1.5cm, 4cm) -- (3.5cm, 0cm) -- (-0.35cm, 0cm);
|
||||
\draw[dashed] (-3cm, 2cm) -- (-2cm, 0cm) -- (-0.35cm, 0cm);
|
||||
|
||||
\draw[dotted] (-0.35cm, 0cm) -- (-1cm, 4.01cm);
|
||||
|
||||
% draw names
|
||||
\node[anchor=base] at (0.15cm, 5cm) {$D_{(t)}$};
|
||||
\node[anchor=base] at (2.5cm, -0.5cm) {$D_{(t+1)}$};
|
||||
|
||||
% draw string
|
||||
\draw[thick, decorate, decoration={snake, segment length=1cm}] (1.5cm, 2cm) .. controls (1.1cm, 1.1cm) and (-1cm, 0.1cm) .. (-1.8cm, 0.3cm);
|
||||
\filldraw[fill=black, draw=black] (1.5cm, 2cm) circle (2pt);
|
||||
\filldraw[fill=black, draw=black] (-1.8cm, 0.3cm) circle (2pt);
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
% vim: ft=tex
|
||||
27
img/defects.pgf
Normal file
27
img/defects.pgf
Normal file
@@ -0,0 +1,27 @@
|
||||
\begin{tikzpicture}
|
||||
|
||||
% draw axis
|
||||
\draw[thick, ->] (-3cm, 0cm) -- (3cm, 0cm) node[anchor=south] {$\uptau$};
|
||||
\draw[thick, ->] (-0.75cm, -1cm) -- (-0.75cm, 3cm) node[anchor=east] {$\upsigma$};
|
||||
|
||||
% draw defects
|
||||
\filldraw[fill=white, draw=black] (-2cm, 0cm) circle (2pt) node[anchor=north] {$\hat{\uptau}_{(t+1)}$};
|
||||
\filldraw[fill=white, draw=black] (0.25cm, 0cm) circle (2pt) node[anchor=north] {$\hat{\uptau}_{(t)}$};
|
||||
\filldraw[fill=white, draw=black] (2.25cm, 0cm) circle (2pt) node[anchor=north] {$\hat{\uptau}_{(t-1)}$};
|
||||
|
||||
% draw the endlines
|
||||
\draw[dotted] (-2cm, 2pt) -- (-2cm, 2cm);
|
||||
\draw[dotted] (0.25cm, 2pt) -- (0.25cm, 2cm);
|
||||
\draw[dotted] (2.25cm, 2pt) -- (2.25cm, 2cm);
|
||||
|
||||
% draw the second D-brane
|
||||
\draw[dashed] (-3cm, 2cm) -- (3cm, 2cm);
|
||||
\node[anchor=south west] at (-0.75cm, 2cm) {$\uppi$};
|
||||
|
||||
% draw the string
|
||||
\draw[decorate, decoration={snake, segment length=0.75cm}] (1cm, 0cm) -- (1cm, 2cm);
|
||||
\draw[->] (1.1cm, 1cm) -- (1.6cm, 1cm);
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
% vim: ft=tex
|
||||
@@ -1,11 +1,8 @@
|
||||
\usetikzlibrary{decorations.pathreplacing}
|
||||
\usetikzlibrary{decorations.pathmorphing}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\begin{tikzpicture}
|
||||
|
||||
% draw axis
|
||||
\draw[thick, ->] (-0.5cm, 0cm) -- (5cm, 0cm) node[anchor=south] {$\Re \omega$};
|
||||
\draw[thick, ->] (0cm, -1cm) -- (0cm, 3cm) node[anchor=east] {$\Im \omega$};
|
||||
\draw[thick, ->] (-0.5cm, 0cm) -- (5cm, 0cm) node[anchor=south] {$\Re \upomega$};
|
||||
\draw[thick, ->] (0cm, -1cm) -- (0cm, 3cm) node[anchor=east] {$\Im \upomega$};
|
||||
|
||||
% draw branching cuts
|
||||
\filldraw[fill=black!30, draw=black, dashed] (0cm, 2pt) rectangle (4.8cm, -2pt);
|
||||
@@ -18,4 +15,4 @@
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
% vim: ft=tex
|
||||
% vim: ft=tex
|
||||
|
||||
165
thesis.tex
165
thesis.tex
@@ -663,13 +663,174 @@
|
||||
|
||||
\begin{frame}{Hypergeometric Basis}
|
||||
\begin{columns}
|
||||
\begin{column}{0.5\linewidth}
|
||||
\begin{column}{0.3\linewidth}
|
||||
\centering
|
||||
\resizebox{0.8\columnwidth}
|
||||
\resizebox{0.9\columnwidth}{!}{\import{img}{threebranes_plane.pgf}}
|
||||
\end{column}
|
||||
\hfill
|
||||
\begin{column}{0.7\linewidth}
|
||||
Sum over \highlight{all contributions:}
|
||||
\begin{equation*}
|
||||
\begin{split}
|
||||
\partial_z \mathcal{X}( z )
|
||||
& =
|
||||
\sum\limits_{l,\, r} c_{lr}\,
|
||||
\qty( - \upomega_z )^{A_{lr}}\,
|
||||
\qty( 1 - \upomega_z )^{B_{lr}}\,
|
||||
B_{0,\, l}^{(L)}( \omega_z )\,
|
||||
\qty( B_{0,\, r}^{(R)}( \omega_z ) )^T
|
||||
\end{split}
|
||||
\end{equation*}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
|
||||
\pause
|
||||
|
||||
\begin{equationblock}{Basis of Solutions}
|
||||
\begin{equation*}
|
||||
B_{0,\, n}( \upomega_z )
|
||||
=
|
||||
\mqty(%
|
||||
1 & 0
|
||||
\\
|
||||
0 & K_n
|
||||
)
|
||||
\mqty(%
|
||||
\frac{1}{\Upgamma( c_n )}\,
|
||||
\tensor[_2]{F}{_1}( a_n,\, b_n;\, c_n;\, \upomega_z )
|
||||
\\
|
||||
\qty( -\upomega_z )^{1 - c_n}\,
|
||||
\frac{1}{\Upgamma( 2 - c_n )}\,
|
||||
\tensor[_2]{F}{_1}( a_n + 1 - c_n,\, b_n + 1 - c_n;\, 2 - c_n;\, \upomega_z )
|
||||
)
|
||||
\end{equation*}
|
||||
\end{equationblock}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{The Solution}
|
||||
\highlight{Operations sequence:}
|
||||
\begin{enumerate}
|
||||
\item rotation matrix $=$ monodromy matrix
|
||||
|
||||
\pause
|
||||
|
||||
\item contiguity relations $\Rightarrow$ independent hypergeometrics
|
||||
|
||||
\pause
|
||||
|
||||
\item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated)
|
||||
|
||||
\pause
|
||||
|
||||
\item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$
|
||||
\end{enumerate}
|
||||
|
||||
\pause
|
||||
|
||||
\begin{block}{Physical Interpretation}
|
||||
\only<5>{%
|
||||
\begin{columns}
|
||||
\begin{column}{0.4\linewidth}
|
||||
\centering
|
||||
\resizebox{0.607\columnwidth}{!}{\import{img}{branesangles.pgf}}
|
||||
\end{column}
|
||||
\hfill
|
||||
\begin{column}{0.6\linewidth}
|
||||
\begin{equation*}
|
||||
\begin{split}
|
||||
\eval{S_{\mathds{R}^4}}_{\text{on-shell}}
|
||||
& =
|
||||
\frac{1}{2\pi \alpha'}
|
||||
\sum\limits_{t = 1}^3
|
||||
\qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} )
|
||||
\\
|
||||
& =
|
||||
\text{Area}\qty( \qty{ f_{(t)} } )
|
||||
\end{split}
|
||||
\end{equation*}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\vfill
|
||||
}
|
||||
\only<6->{%
|
||||
\centering
|
||||
\resizebox{0.25\columnwidth}{!}{\import{img}{brane3d.pgf}}
|
||||
}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection[Fermions]{Fermions and Point-like Defect CFT}
|
||||
|
||||
\begin{frame}{Fermions on the Strip}
|
||||
\begin{columns}
|
||||
\begin{column}{0.4\linewidth}
|
||||
\centering
|
||||
\resizebox{0.9\columnwidth}{!}{\import{img}{defects.pgf}}
|
||||
\end{column}
|
||||
\hfill
|
||||
\begin{column}{0.6\linewidth}
|
||||
\begin{equationblock}{Action of Boundary Changing Operators}
|
||||
\begin{equation*}
|
||||
\begin{cases}
|
||||
\uppsi_-^i( \uptau, 0 )
|
||||
& =
|
||||
\tensor{\qty( R_{(t)} )}{^I_J}\,
|
||||
\uppsi_+^J( \uptau, 0 )
|
||||
\quad \text{for}~
|
||||
\uptau \in \qty( \hat{\uptau}_{(t)},\, \hat{\uptau}_{(t-1)} )
|
||||
\\
|
||||
\uppsi_-^I( \uptau, \uppi )
|
||||
& =
|
||||
- \uppsi_+^I( \uptau, \uppi )
|
||||
\quad \text{for}~
|
||||
\uptau \in \mathds{R}
|
||||
\end{cases}
|
||||
\end{equation*}
|
||||
\end{equationblock}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
|
||||
\pause
|
||||
|
||||
\begin{block}{Stress-energy Tensor}
|
||||
\begin{equation*}
|
||||
\mathcal{T}_{\pm\pm}( \upxi_{\pm} )
|
||||
=
|
||||
-i\, \frac{T}{4}\,
|
||||
\uppsi^*_{\pm,\, I}( \upxi_{\pm} )\,
|
||||
\overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} )
|
||||
\quad
|
||||
\Rightarrow
|
||||
\quad
|
||||
\begin{cases}
|
||||
\dot{\mathrm{H}}( \uptau )
|
||||
&
|
||||
% =
|
||||
% \partial_{\uptau}
|
||||
% \qty(%
|
||||
% \int\limits_0^{\uppi} \dd{\upsigma}
|
||||
% \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma )
|
||||
% )
|
||||
=
|
||||
0 \Leftrightarrow \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} )
|
||||
\\
|
||||
\dot{\mathrm{P}}( \uptau )
|
||||
&
|
||||
% =
|
||||
% \partial_{\uptau}
|
||||
% \qty(%
|
||||
% \int\limits_0^{\uppi} \dd{\upsigma}
|
||||
% \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma )
|
||||
% )
|
||||
\neq
|
||||
0
|
||||
\end{cases}
|
||||
\end{equation*}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
|
||||
|
||||
\begin{frame}{BBB}
|
||||
|
||||
Reference in New Issue
Block a user