293 lines
3.8 KiB
TeX
293 lines
3.8 KiB
TeX
For the sake of completeness we report the expression of the full \nbo tensor wave function.
|
|
In what follows $L = \frac{l}{k_+}$.
|
|
We have
|
|
\begin{equation}
|
|
\begin{split}
|
|
\mqty(
|
|
S_{u\, u}
|
|
\\
|
|
S_{u\, v}
|
|
\\
|
|
S_{u\, z}
|
|
\\
|
|
S_{u\, i}
|
|
\\
|
|
S_{v\, v}
|
|
\\
|
|
S_{v\, z}
|
|
\\
|
|
S_{v\, i}
|
|
\\
|
|
S_{z\, z}
|
|
\\
|
|
S_{z\, i}
|
|
\\
|
|
S_{i\, i}
|
|
)
|
|
& =
|
|
\Biggl\lbrace
|
|
\cS_{u\, u}
|
|
\mqty(
|
|
1
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
+
|
|
\cS_{u\, v}
|
|
\mqty(
|
|
\frac{i}{k_+\, u} + \frac{L^2}{\Delta^2\, u^2}
|
|
\\
|
|
1
|
|
\\
|
|
L
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
+
|
|
\cS_{u\, z}
|
|
\mqty(
|
|
\frac{2\, L}{\Delta\, u}
|
|
\\
|
|
0
|
|
\\
|
|
\Delta\, u
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
+
|
|
\cS_{u\, i}
|
|
\mqty(
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
1
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
\\
|
|
& +
|
|
\cS_{v\, v}
|
|
\mqty(
|
|
-\frac{3}{4\, k_+^2\, u^2}
|
|
+
|
|
\frac{3\, i\, L^2}{2\, \Delta^2\, k_+\, u^3}
|
|
+
|
|
\frac{L^4}{4\, \Delta^4\, u^4}
|
|
\\
|
|
\frac{i}{2\, k_+\, u}
|
|
+
|
|
\frac{L^2}{2\, \Delta^2\, u^2}
|
|
\\
|
|
\frac{3\, i\, L}{2\, k_+\, u}
|
|
+
|
|
\frac{L^3}{2\, \Delta^2\, u^2}
|
|
\\
|
|
0
|
|
\\
|
|
1
|
|
\\
|
|
L
|
|
\\
|
|
0
|
|
\\
|
|
\frac{i\, \Delta^2\, u}{k_+}
|
|
+
|
|
L^2
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
+
|
|
\cS_{v\, z}
|
|
\mqty(
|
|
\frac{3\, i\, L}{\Delta\, k_+\, u^2}
|
|
+
|
|
\frac{L^3}{\Delta^3\, u^3}
|
|
\\
|
|
\frac{L}{\Delta\, u}
|
|
\\
|
|
\frac{3\, L^2}{2\, \Delta\, u}
|
|
+
|
|
\frac{3\, i\, \Delta}{2\, k_+}
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
\Delta\, u
|
|
\\
|
|
0
|
|
\\
|
|
2\, \Delta\, L\, u
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
\\
|
|
& +
|
|
\cS_{v\, i}
|
|
\mqty(
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
\frac{i}{2\, k_+\, u}
|
|
+
|
|
\frac{L^2}{2\, \Delta^2\, u^2}
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
1
|
|
\\
|
|
0
|
|
\\
|
|
L
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
+
|
|
\cS_{z\, z}
|
|
\mqty(
|
|
\frac{i}{k_+\, u}
|
|
+
|
|
\frac{L^2}{\Delta^2\, u^2}
|
|
\\
|
|
0
|
|
\\
|
|
L
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
\Delta^2\, u^2
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
+
|
|
\cS_{z\, i}
|
|
\mqty(
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
\frac{L}{\Delta\, u}
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
\Delta\, u
|
|
\\
|
|
0
|
|
\\
|
|
)\,
|
|
\\
|
|
& +
|
|
\cS_{i\, j}
|
|
\mqty(
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
0
|
|
\\
|
|
\delta_{i j}
|
|
\\
|
|
)\,
|
|
\Biggr\rbrace
|
|
\phi_{\kmkr}.
|
|
\end{split}
|
|
\end{equation}
|