End of NBO
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										230
									
								
								sciencestuff.sty
									
									
									
									
									
								
							
							
						
						
									
										230
									
								
								sciencestuff.sty
									
									
									
									
									
								
							| @@ -47,6 +47,7 @@ | |||||||
| \numberwithin{table}{section} | \numberwithin{table}{section} | ||||||
|  |  | ||||||
| %---- abbreviations | %---- abbreviations | ||||||
|  |  | ||||||
| \providecommand{\sm}{\textsc{sm}\xspace} | \providecommand{\sm}{\textsc{sm}\xspace} | ||||||
| \providecommand{\eom}{\textsc{e.o.m.}\xspace} | \providecommand{\eom}{\textsc{e.o.m.}\xspace} | ||||||
| \providecommand{\cft}{\textsc{CFT}\xspace} | \providecommand{\cft}{\textsc{CFT}\xspace} | ||||||
| @@ -54,10 +55,12 @@ | |||||||
| \providecommand{\qed}{\textsc{QED}\xspace} | \providecommand{\qed}{\textsc{QED}\xspace} | ||||||
| \providecommand{\qcd}{\textsc{QCD}\xspace} | \providecommand{\qcd}{\textsc{QCD}\xspace} | ||||||
| \providecommand{\ope}{\textsc{o.p.e.}\xspace} | \providecommand{\ope}{\textsc{o.p.e.}\xspace} | ||||||
|  | \providecommand{\dof}{\textsc{d.o.f.}\xspace} | ||||||
| \providecommand{\cy}{\textsc{CY}\xspace} | \providecommand{\cy}{\textsc{CY}\xspace} | ||||||
| \providecommand{\lhs}{\textsc{lhs}\xspace} | \providecommand{\lhs}{\textsc{lhs}\xspace} | ||||||
| \providecommand{\rhs}{\textsc{rhs}\xspace} | \providecommand{\rhs}{\textsc{rhs}\xspace} | ||||||
| \providecommand{\ap}{\ensuremath{\alpha'}\xspace} | \providecommand{\ap}{\ensuremath{\alpha'}\xspace} | ||||||
|  | \providecommand{\sgn}{\ensuremath{\mathrm{sign}}} | ||||||
|  |  | ||||||
| %---- remap greek letters | %---- remap greek letters | ||||||
|  |  | ||||||
| @@ -256,6 +259,45 @@ | |||||||
| \providecommand{\hPsi}{\ensuremath{\widehat{\Uppsi}}\xspace} | \providecommand{\hPsi}{\ensuremath{\widehat{\Uppsi}}\xspace} | ||||||
| \providecommand{\hOmega}{\ensuremath{\widehat{\Upomega}}\xspace} | \providecommand{\hOmega}{\ensuremath{\widehat{\Upomega}}\xspace} | ||||||
|  |  | ||||||
|  | \providecommand{\ualpha}{\ensuremath{\underline{\upalpha}}\xspace} | ||||||
|  | \providecommand{\ubeta}{\ensuremath{\underline{\upbeta}}\xspace} | ||||||
|  | \providecommand{\ugamma}{\ensuremath{\underline{\upgamma}}\xspace} | ||||||
|  | \providecommand{\udelta}{\ensuremath{\underline{\updelta}}\xspace} | ||||||
|  | \providecommand{\uepsilon}{\ensuremath{\underline{\upepsilon}}\xspace} | ||||||
|  | \providecommand{\uzeta}{\ensuremath{\underline{\upzeta}}\xspace} | ||||||
|  | \providecommand{\ueta}{\ensuremath{\underline{\upeta}}\xspace} | ||||||
|  | \providecommand{\utheta}{\ensuremath{\underline{\uptheta}}\xspace} | ||||||
|  | \providecommand{\uiota}{\ensuremath{\underline{\upiota}}\xspace} | ||||||
|  | \providecommand{\ukappa}{\ensuremath{\underline{\upkappa}}\xspace} | ||||||
|  | \providecommand{\ulambda}{\ensuremath{\underline{\uplambda}}\xspace} | ||||||
|  | \providecommand{\umu}{\ensuremath{\underline{\upmu}}\xspace} | ||||||
|  | \providecommand{\unu}{\ensuremath{\underline{\upnu}}\xspace} | ||||||
|  | \providecommand{\uxi}{\ensuremath{\underline{\upxi}}\xspace} | ||||||
|  | \providecommand{\upi}{\ensuremath{\underline{\uppi}}\xspace} | ||||||
|  | \providecommand{\urho}{\ensuremath{\underline{\uprho}}\xspace} | ||||||
|  | \providecommand{\usigma}{\ensuremath{\underline{\upsigma}}\xspace} | ||||||
|  | \providecommand{\utau}{\ensuremath{\underline{\uptau}}\xspace} | ||||||
|  | \providecommand{\uupsilon}{\ensuremath{\underline{\upupsilon}}\xspace} | ||||||
|  | \providecommand{\uphi}{\ensuremath{\underline{\upphi}}\xspace} | ||||||
|  | \providecommand{\uchi}{\ensuremath{\underline{\upchi}}\xspace} | ||||||
|  | \providecommand{\upsi}{\ensuremath{\underline{\uppsi}}\xspace} | ||||||
|  | \providecommand{\uomega}{\ensuremath{\underline{\upomega}}\xspace} | ||||||
|  | \providecommand{\uvarepsilon}{\ensuremath{\underline{\upvarepsilon}}\xspace} | ||||||
|  | \providecommand{\uvartheta}{\ensuremath{\underline{\upvartheta}}\xspace} | ||||||
|  | \providecommand{\uvarpi}{\ensuremath{\underline{\upvarpi}}\xspace} | ||||||
|  | \providecommand{\uvarphi}{\ensuremath{\underline{\upvarphi}}\xspace} | ||||||
|  | \providecommand{\uGamma}{\ensuremath{\underline{\Upgamma}}\xspace} | ||||||
|  | \providecommand{\uDelta}{\ensuremath{\underline{\Updelta}}\xspace} | ||||||
|  | \providecommand{\uTheta}{\ensuremath{\underline{\Uptheta}}\xspace} | ||||||
|  | \providecommand{\uLambda}{\ensuremath{\underline{\Uplambda}}\xspace} | ||||||
|  | \providecommand{\uXi}{\ensuremath{\underline{\Upxi}}\xspace} | ||||||
|  | \providecommand{\uPi}{\ensuremath{\underline{\Uppi}}\xspace} | ||||||
|  | \providecommand{\uSigma}{\ensuremath{\underline{\Upsigma}}\xspace} | ||||||
|  | \providecommand{\uUpsilon}{\ensuremath{\underline{\Upupsilon}}\xspace} | ||||||
|  | \providecommand{\uPhi}{\ensuremath{\underline{\Upphi}}\xspace} | ||||||
|  | \providecommand{\uPsi}{\ensuremath{\underline{\Uppsi}}\xspace} | ||||||
|  | \providecommand{\uOmega}{\ensuremath{\underline{\Upomega}}\xspace} | ||||||
|  |  | ||||||
| %---- numerical sets | %---- numerical sets | ||||||
|  |  | ||||||
| \providecommand{\1}{\ensuremath{\mathds{1}}\xspace} | \providecommand{\1}{\ensuremath{\mathds{1}}\xspace} | ||||||
| @@ -479,6 +521,59 @@ | |||||||
| \providecommand{\hatY}{\ensuremath{\widehat{Y}}\xspace} | \providecommand{\hatY}{\ensuremath{\widehat{Y}}\xspace} | ||||||
| \providecommand{\hatZ}{\ensuremath{\widehat{Z}}\xspace} | \providecommand{\hatZ}{\ensuremath{\widehat{Z}}\xspace} | ||||||
|  |  | ||||||
|  | \providecommand{\undera}{\ensuremath{\underline{a}}\xspace} | ||||||
|  | \providecommand{\underb}{\ensuremath{\underline{b}}\xspace} | ||||||
|  | \providecommand{\underc}{\ensuremath{\underline{c}}\xspace} | ||||||
|  | \providecommand{\underd}{\ensuremath{\underline{d}}\xspace} | ||||||
|  | \providecommand{\undere}{\ensuremath{\underline{e}}\xspace} | ||||||
|  | \providecommand{\underf}{\ensuremath{\underline{f}}\xspace} | ||||||
|  | \providecommand{\underg}{\ensuremath{\underline{g}}\xspace} | ||||||
|  | \providecommand{\underh}{\ensuremath{\underline{h}}\xspace} | ||||||
|  | \providecommand{\underi}{\ensuremath{\underline{i}}\xspace} | ||||||
|  | \providecommand{\underj}{\ensuremath{\underline{j}}\xspace} | ||||||
|  | \providecommand{\underk}{\ensuremath{\underline{k}}\xspace} | ||||||
|  | \providecommand{\underl}{\ensuremath{\underline{l}}\xspace} | ||||||
|  | \providecommand{\underm}{\ensuremath{\underline{m}}\xspace} | ||||||
|  | \providecommand{\undern}{\ensuremath{\underline{n}}\xspace} | ||||||
|  | \providecommand{\undero}{\ensuremath{\underline{o}}\xspace} | ||||||
|  | \providecommand{\underp}{\ensuremath{\underline{p}}\xspace} | ||||||
|  | \providecommand{\underq}{\ensuremath{\underline{q}}\xspace} | ||||||
|  | \providecommand{\underr}{\ensuremath{\underline{r}}\xspace} | ||||||
|  | \providecommand{\unders}{\ensuremath{\underline{s}}\xspace} | ||||||
|  | \providecommand{\undert}{\ensuremath{\underline{t}}\xspace} | ||||||
|  | \providecommand{\underu}{\ensuremath{\underline{u}}\xspace} | ||||||
|  | \providecommand{\underv}{\ensuremath{\underline{v}}\xspace} | ||||||
|  | \providecommand{\underw}{\ensuremath{\underline{w}}\xspace} | ||||||
|  | \providecommand{\underx}{\ensuremath{\underline{x}}\xspace} | ||||||
|  | \providecommand{\undery}{\ensuremath{\underline{y}}\xspace} | ||||||
|  | \providecommand{\underz}{\ensuremath{\underline{z}}\xspace} | ||||||
|  | \providecommand{\underA}{\ensuremath{\underline{A}}\xspace} | ||||||
|  | \providecommand{\underB}{\ensuremath{\underline{B}}\xspace} | ||||||
|  | \providecommand{\underC}{\ensuremath{\underline{C}}\xspace} | ||||||
|  | \providecommand{\underD}{\ensuremath{\underline{D}}\xspace} | ||||||
|  | \providecommand{\underE}{\ensuremath{\underline{E}}\xspace} | ||||||
|  | \providecommand{\underF}{\ensuremath{\underline{F}}\xspace} | ||||||
|  | \providecommand{\underG}{\ensuremath{\underline{G}}\xspace} | ||||||
|  | \providecommand{\underH}{\ensuremath{\underline{H}}\xspace} | ||||||
|  | \providecommand{\underI}{\ensuremath{\underline{I}}\xspace} | ||||||
|  | \providecommand{\underJ}{\ensuremath{\underline{J}}\xspace} | ||||||
|  | \providecommand{\underK}{\ensuremath{\underline{K}}\xspace} | ||||||
|  | \providecommand{\underL}{\ensuremath{\underline{L}}\xspace} | ||||||
|  | \providecommand{\underM}{\ensuremath{\underline{M}}\xspace} | ||||||
|  | \providecommand{\underN}{\ensuremath{\underline{N}}\xspace} | ||||||
|  | \providecommand{\underO}{\ensuremath{\underline{O}}\xspace} | ||||||
|  | \providecommand{\underP}{\ensuremath{\underline{P}}\xspace} | ||||||
|  | \providecommand{\underQ}{\ensuremath{\underline{Q}}\xspace} | ||||||
|  | \providecommand{\underR}{\ensuremath{\underline{R}}\xspace} | ||||||
|  | \providecommand{\underS}{\ensuremath{\underline{S}}\xspace} | ||||||
|  | \providecommand{\underT}{\ensuremath{\underline{T}}\xspace} | ||||||
|  | \providecommand{\underU}{\ensuremath{\underline{U}}\xspace} | ||||||
|  | \providecommand{\underV}{\ensuremath{\underline{V}}\xspace} | ||||||
|  | \providecommand{\underW}{\ensuremath{\underline{W}}\xspace} | ||||||
|  | \providecommand{\underX}{\ensuremath{\underline{X}}\xspace} | ||||||
|  | \providecommand{\underY}{\ensuremath{\underline{Y}}\xspace} | ||||||
|  | \providecommand{\underZ}{\ensuremath{\underline{Z}}\xspace} | ||||||
|  |  | ||||||
| %---- calligraphic letters | %---- calligraphic letters | ||||||
|  |  | ||||||
| \providecommand{\cA}{\ensuremath{\mathcal{A}}\xspace} | \providecommand{\cA}{\ensuremath{\mathcal{A}}\xspace} | ||||||
| @@ -751,6 +846,60 @@ | |||||||
| \providecommand{\bccY}{\ensuremath{\overline{\mathscr{Y}}}\xspace} | \providecommand{\bccY}{\ensuremath{\overline{\mathscr{Y}}}\xspace} | ||||||
| \providecommand{\bccZ}{\ensuremath{\overline{\mathscr{Z}}}\xspace} | \providecommand{\bccZ}{\ensuremath{\overline{\mathscr{Z}}}\xspace} | ||||||
|  |  | ||||||
|  | \providecommand{\ucA}{\ensuremath{\underline{\mathcal{A}}}\xspace} | ||||||
|  | \providecommand{\ucB}{\ensuremath{\underline{\mathcal{B}}}\xspace} | ||||||
|  | \providecommand{\ucC}{\ensuremath{\underline{\mathcal{C}}}\xspace} | ||||||
|  | \providecommand{\ucD}{\ensuremath{\underline{\mathcal{D}}}\xspace} | ||||||
|  | \providecommand{\ucE}{\ensuremath{\underline{\mathcal{E}}}\xspace} | ||||||
|  | \providecommand{\ucF}{\ensuremath{\underline{\mathcal{F}}}\xspace} | ||||||
|  | \providecommand{\ucG}{\ensuremath{\underline{\mathcal{G}}}\xspace} | ||||||
|  | \providecommand{\ucH}{\ensuremath{\underline{\mathcal{H}}}\xspace} | ||||||
|  | \providecommand{\ucI}{\ensuremath{\underline{\mathcal{I}}}\xspace} | ||||||
|  | \providecommand{\ucJ}{\ensuremath{\underline{\mathcal{J}}}\xspace} | ||||||
|  | \providecommand{\ucK}{\ensuremath{\underline{\mathcal{K}}}\xspace} | ||||||
|  | \providecommand{\ucL}{\ensuremath{\underline{\mathcal{L}}}\xspace} | ||||||
|  | \providecommand{\ucM}{\ensuremath{\underline{\mathcal{M}}}\xspace} | ||||||
|  | \providecommand{\ucN}{\ensuremath{\underline{\mathcal{N}}}\xspace} | ||||||
|  | \providecommand{\ucO}{\ensuremath{\underline{\mathcal{O}}}\xspace} | ||||||
|  | \providecommand{\ucP}{\ensuremath{\underline{\mathcal{P}}}\xspace} | ||||||
|  | \providecommand{\ucQ}{\ensuremath{\underline{\mathcal{Q}}}\xspace} | ||||||
|  | \providecommand{\ucR}{\ensuremath{\underline{\mathcal{R}}}\xspace} | ||||||
|  | \providecommand{\ucS}{\ensuremath{\underline{\mathcal{S}}}\xspace} | ||||||
|  | \providecommand{\ucT}{\ensuremath{\underline{\mathcal{T}}}\xspace} | ||||||
|  | \providecommand{\ucU}{\ensuremath{\underline{\mathcal{U}}}\xspace} | ||||||
|  | \providecommand{\ucV}{\ensuremath{\underline{\mathcal{V}}}\xspace} | ||||||
|  | \providecommand{\ucW}{\ensuremath{\underline{\mathcal{W}}}\xspace} | ||||||
|  | \providecommand{\ucX}{\ensuremath{\underline{\mathcal{X}}}\xspace} | ||||||
|  | \providecommand{\ucY}{\ensuremath{\underline{\mathcal{Y}}}\xspace} | ||||||
|  | \providecommand{\ucZ}{\ensuremath{\underline{\mathcal{Z}}}\xspace} | ||||||
|  |  | ||||||
|  | \providecommand{\uccA}{\ensuremath{\underline{\mathscr{A}}}\xspace} | ||||||
|  | \providecommand{\uccB}{\ensuremath{\underline{\mathscr{B}}}\xspace} | ||||||
|  | \providecommand{\uccC}{\ensuremath{\underline{\mathscr{C}}}\xspace} | ||||||
|  | \providecommand{\uccD}{\ensuremath{\underline{\mathscr{D}}}\xspace} | ||||||
|  | \providecommand{\uccE}{\ensuremath{\underline{\mathscr{E}}}\xspace} | ||||||
|  | \providecommand{\uccF}{\ensuremath{\underline{\mathscr{F}}}\xspace} | ||||||
|  | \providecommand{\uccG}{\ensuremath{\underline{\mathscr{G}}}\xspace} | ||||||
|  | \providecommand{\uccH}{\ensuremath{\underline{\mathscr{H}}}\xspace} | ||||||
|  | \providecommand{\uccI}{\ensuremath{\underline{\mathscr{I}}}\xspace} | ||||||
|  | \providecommand{\uccJ}{\ensuremath{\underline{\mathscr{J}}}\xspace} | ||||||
|  | \providecommand{\uccK}{\ensuremath{\underline{\mathscr{K}}}\xspace} | ||||||
|  | \providecommand{\uccL}{\ensuremath{\underline{\mathscr{L}}}\xspace} | ||||||
|  | \providecommand{\uccM}{\ensuremath{\underline{\mathscr{M}}}\xspace} | ||||||
|  | \providecommand{\uccN}{\ensuremath{\underline{\mathscr{N}}}\xspace} | ||||||
|  | \providecommand{\uccO}{\ensuremath{\underline{\mathscr{O}}}\xspace} | ||||||
|  | \providecommand{\uccP}{\ensuremath{\underline{\mathscr{P}}}\xspace} | ||||||
|  | \providecommand{\uccQ}{\ensuremath{\underline{\mathscr{Q}}}\xspace} | ||||||
|  | \providecommand{\uccR}{\ensuremath{\underline{\mathscr{R}}}\xspace} | ||||||
|  | \providecommand{\uccS}{\ensuremath{\underline{\mathscr{S}}}\xspace} | ||||||
|  | \providecommand{\uccT}{\ensuremath{\underline{\mathscr{T}}}\xspace} | ||||||
|  | \providecommand{\uccU}{\ensuremath{\underline{\mathscr{U}}}\xspace} | ||||||
|  | \providecommand{\uccV}{\ensuremath{\underline{\mathscr{V}}}\xspace} | ||||||
|  | \providecommand{\uccW}{\ensuremath{\underline{\mathscr{W}}}\xspace} | ||||||
|  | \providecommand{\uccX}{\ensuremath{\underline{\mathscr{X}}}\xspace} | ||||||
|  | \providecommand{\uccY}{\ensuremath{\underline{\mathscr{Y}}}\xspace} | ||||||
|  | \providecommand{\uccZ}{\ensuremath{\underline{\mathscr{Z}}}\xspace} | ||||||
|  |  | ||||||
| %---- roman letters | %---- roman letters | ||||||
|  |  | ||||||
| \providecommand{\rA}{\ensuremath{\mathrm{A}}\xspace} | \providecommand{\rA}{\ensuremath{\mathrm{A}}\xspace} | ||||||
| @@ -834,6 +983,33 @@ | |||||||
| \providecommand{\trY}{\ensuremath{\widetilde{\mathrm{Y}}}\xspace} | \providecommand{\trY}{\ensuremath{\widetilde{\mathrm{Y}}}\xspace} | ||||||
| \providecommand{\trZ}{\ensuremath{\widetilde{\mathrm{Z}}}\xspace} | \providecommand{\trZ}{\ensuremath{\widetilde{\mathrm{Z}}}\xspace} | ||||||
|  |  | ||||||
|  | \providecommand{\urA}{\ensuremath{\underline{\mathrm{A}}}\xspace} | ||||||
|  | \providecommand{\urB}{\ensuremath{\underline{\mathrm{B}}}\xspace} | ||||||
|  | \providecommand{\urC}{\ensuremath{\underline{\mathrm{C}}}\xspace} | ||||||
|  | \providecommand{\urD}{\ensuremath{\underline{\mathrm{D}}}\xspace} | ||||||
|  | \providecommand{\urE}{\ensuremath{\underline{\mathrm{E}}}\xspace} | ||||||
|  | \providecommand{\urF}{\ensuremath{\underline{\mathrm{F}}}\xspace} | ||||||
|  | \providecommand{\urG}{\ensuremath{\underline{\mathrm{G}}}\xspace} | ||||||
|  | \providecommand{\urH}{\ensuremath{\underline{\mathrm{H}}}\xspace} | ||||||
|  | \providecommand{\urI}{\ensuremath{\underline{\mathrm{I}}}\xspace} | ||||||
|  | \providecommand{\urJ}{\ensuremath{\underline{\mathrm{J}}}\xspace} | ||||||
|  | \providecommand{\urK}{\ensuremath{\underline{\mathrm{K}}}\xspace} | ||||||
|  | \providecommand{\urL}{\ensuremath{\underline{\mathrm{L}}}\xspace} | ||||||
|  | \providecommand{\urM}{\ensuremath{\underline{\mathrm{M}}}\xspace} | ||||||
|  | \providecommand{\urN}{\ensuremath{\underline{\mathrm{N}}}\xspace} | ||||||
|  | \providecommand{\urO}{\ensuremath{\underline{\mathrm{O}}}\xspace} | ||||||
|  | \providecommand{\urP}{\ensuremath{\underline{\mathrm{P}}}\xspace} | ||||||
|  | \providecommand{\urQ}{\ensuremath{\underline{\mathrm{Q}}}\xspace} | ||||||
|  | \providecommand{\urR}{\ensuremath{\underline{\mathrm{R}}}\xspace} | ||||||
|  | \providecommand{\urS}{\ensuremath{\underline{\mathrm{S}}}\xspace} | ||||||
|  | \providecommand{\urT}{\ensuremath{\underline{\mathrm{T}}}\xspace} | ||||||
|  | \providecommand{\urU}{\ensuremath{\underline{\mathrm{U}}}\xspace} | ||||||
|  | \providecommand{\urV}{\ensuremath{\underline{\mathrm{V}}}\xspace} | ||||||
|  | \providecommand{\urW}{\ensuremath{\underline{\mathrm{W}}}\xspace} | ||||||
|  | \providecommand{\urX}{\ensuremath{\underline{\mathrm{X}}}\xspace} | ||||||
|  | \providecommand{\urY}{\ensuremath{\underline{\mathrm{Y}}}\xspace} | ||||||
|  | \providecommand{\urZ}{\ensuremath{\underline{\mathrm{Z}}}\xspace} | ||||||
|  |  | ||||||
| \providecommand{\hrA}{\ensuremath{\widehat{\mathrm{A}}}\xspace} | \providecommand{\hrA}{\ensuremath{\widehat{\mathrm{A}}}\xspace} | ||||||
| \providecommand{\hrB}{\ensuremath{\widehat{\mathrm{B}}}\xspace} | \providecommand{\hrB}{\ensuremath{\widehat{\mathrm{B}}}\xspace} | ||||||
| \providecommand{\hrC}{\ensuremath{\widehat{\mathrm{C}}}\xspace} | \providecommand{\hrC}{\ensuremath{\widehat{\mathrm{C}}}\xspace} | ||||||
| @@ -1155,6 +1331,59 @@ | |||||||
| \providecommand{\bffY}{\ensuremath{\overline{\mathfrak{Y}}}\xspace} | \providecommand{\bffY}{\ensuremath{\overline{\mathfrak{Y}}}\xspace} | ||||||
| \providecommand{\bffZ}{\ensuremath{\overline{\mathfrak{Z}}}\xspace} | \providecommand{\bffZ}{\ensuremath{\overline{\mathfrak{Z}}}\xspace} | ||||||
|  |  | ||||||
|  | \providecommand{\uffa}{\ensuremath{\underline{\mathfrak{a}}}\xspace} | ||||||
|  | \providecommand{\uffb}{\ensuremath{\underline{\mathfrak{b}}}\xspace} | ||||||
|  | \providecommand{\uffc}{\ensuremath{\underline{\mathfrak{c}}}\xspace} | ||||||
|  | \providecommand{\uffd}{\ensuremath{\underline{\mathfrak{d}}}\xspace} | ||||||
|  | \providecommand{\uffe}{\ensuremath{\underline{\mathfrak{e}}}\xspace} | ||||||
|  | \providecommand{\ufff}{\ensuremath{\underline{\mathfrak{f}}}\xspace} | ||||||
|  | \providecommand{\uffg}{\ensuremath{\underline{\mathfrak{g}}}\xspace} | ||||||
|  | \providecommand{\uffh}{\ensuremath{\underline{\mathfrak{h}}}\xspace} | ||||||
|  | \providecommand{\uffi}{\ensuremath{\underline{\mathfrak{i}}}\xspace} | ||||||
|  | \providecommand{\uffj}{\ensuremath{\underline{\mathfrak{j}}}\xspace} | ||||||
|  | \providecommand{\uffk}{\ensuremath{\underline{\mathfrak{k}}}\xspace} | ||||||
|  | \providecommand{\uffl}{\ensuremath{\underline{\mathfrak{l}}}\xspace} | ||||||
|  | \providecommand{\uffm}{\ensuremath{\underline{\mathfrak{m}}}\xspace} | ||||||
|  | \providecommand{\uffn}{\ensuremath{\underline{\mathfrak{n}}}\xspace} | ||||||
|  | \providecommand{\uffo}{\ensuremath{\underline{\mathfrak{o}}}\xspace} | ||||||
|  | \providecommand{\uffp}{\ensuremath{\underline{\mathfrak{p}}}\xspace} | ||||||
|  | \providecommand{\uffq}{\ensuremath{\underline{\mathfrak{q}}}\xspace} | ||||||
|  | \providecommand{\uffr}{\ensuremath{\underline{\mathfrak{r}}}\xspace} | ||||||
|  | \providecommand{\uffs}{\ensuremath{\underline{\mathfrak{s}}}\xspace} | ||||||
|  | \providecommand{\ufft}{\ensuremath{\underline{\mathfrak{t}}}\xspace} | ||||||
|  | \providecommand{\uffu}{\ensuremath{\underline{\mathfrak{u}}}\xspace} | ||||||
|  | \providecommand{\uffv}{\ensuremath{\underline{\mathfrak{v}}}\xspace} | ||||||
|  | \providecommand{\uffw}{\ensuremath{\underline{\mathfrak{w}}}\xspace} | ||||||
|  | \providecommand{\uffx}{\ensuremath{\underline{\mathfrak{x}}}\xspace} | ||||||
|  | \providecommand{\uffy}{\ensuremath{\underline{\mathfrak{y}}}\xspace} | ||||||
|  | \providecommand{\uffz}{\ensuremath{\underline{\mathfrak{z}}}\xspace} | ||||||
|  | \providecommand{\uffA}{\ensuremath{\underline{\mathfrak{A}}}\xspace} | ||||||
|  | \providecommand{\uffB}{\ensuremath{\underline{\mathfrak{B}}}\xspace} | ||||||
|  | \providecommand{\uffC}{\ensuremath{\underline{\mathfrak{C}}}\xspace} | ||||||
|  | \providecommand{\uffD}{\ensuremath{\underline{\mathfrak{D}}}\xspace} | ||||||
|  | \providecommand{\uffE}{\ensuremath{\underline{\mathfrak{E}}}\xspace} | ||||||
|  | \providecommand{\uffF}{\ensuremath{\underline{\mathfrak{F}}}\xspace} | ||||||
|  | \providecommand{\uffG}{\ensuremath{\underline{\mathfrak{G}}}\xspace} | ||||||
|  | \providecommand{\uffH}{\ensuremath{\underline{\mathfrak{H}}}\xspace} | ||||||
|  | \providecommand{\uffI}{\ensuremath{\underline{\mathfrak{I}}}\xspace} | ||||||
|  | \providecommand{\uffJ}{\ensuremath{\underline{\mathfrak{J}}}\xspace} | ||||||
|  | \providecommand{\uffK}{\ensuremath{\underline{\mathfrak{K}}}\xspace} | ||||||
|  | \providecommand{\uffL}{\ensuremath{\underline{\mathfrak{L}}}\xspace} | ||||||
|  | \providecommand{\uffM}{\ensuremath{\underline{\mathfrak{M}}}\xspace} | ||||||
|  | \providecommand{\uffN}{\ensuremath{\underline{\mathfrak{N}}}\xspace} | ||||||
|  | \providecommand{\uffO}{\ensuremath{\underline{\mathfrak{O}}}\xspace} | ||||||
|  | \providecommand{\uffP}{\ensuremath{\underline{\mathfrak{P}}}\xspace} | ||||||
|  | \providecommand{\uffQ}{\ensuremath{\underline{\mathfrak{Q}}}\xspace} | ||||||
|  | \providecommand{\uffR}{\ensuremath{\underline{\mathfrak{R}}}\xspace} | ||||||
|  | \providecommand{\uffS}{\ensuremath{\underline{\mathfrak{S}}}\xspace} | ||||||
|  | \providecommand{\uffT}{\ensuremath{\underline{\mathfrak{T}}}\xspace} | ||||||
|  | \providecommand{\uffU}{\ensuremath{\underline{\mathfrak{U}}}\xspace} | ||||||
|  | \providecommand{\uffV}{\ensuremath{\underline{\mathfrak{V}}}\xspace} | ||||||
|  | \providecommand{\uffW}{\ensuremath{\underline{\mathfrak{W}}}\xspace} | ||||||
|  | \providecommand{\uffX}{\ensuremath{\underline{\mathfrak{X}}}\xspace} | ||||||
|  | \providecommand{\uffY}{\ensuremath{\underline{\mathfrak{Y}}}\xspace} | ||||||
|  | \providecommand{\uffZ}{\ensuremath{\underline{\mathfrak{Z}}}\xspace} | ||||||
|  |  | ||||||
| %---- groups | %---- groups | ||||||
|  |  | ||||||
| \providecommand{\OO}[1]{\ensuremath{\mathrm{O}(#1)}\xspace} | \providecommand{\OO}[1]{\ensuremath{\mathrm{O}(#1)}\xspace} | ||||||
| @@ -1165,6 +1394,7 @@ | |||||||
| \providecommand{\GL}[2]{\ensuremath{\mathrm{GL}_{#1}(#2)}\xspace} | \providecommand{\GL}[2]{\ensuremath{\mathrm{GL}_{#1}(#2)}\xspace} | ||||||
|  |  | ||||||
| %---- algebras | %---- algebras | ||||||
|  |  | ||||||
| \providecommand{\liebraket}[2]{\ensuremath{\left[ #1,\, #2 \right]}} | \providecommand{\liebraket}[2]{\ensuremath{\left[ #1,\, #2 \right]}} | ||||||
| \providecommand{\no}[1]{\ensuremath{\colon #1 \colon}\xspace} | \providecommand{\no}[1]{\ensuremath{\colon #1 \colon}\xspace} | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										349
									
								
								sec/app/massive.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										349
									
								
								sec/app/massive.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,349 @@ | |||||||
|  | We report the full expression of the overlap with two derivatives considered in the main text. | ||||||
|  | It corresponds to the colour ordered amplitude of two tachyons and one level-2 massive state: | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     K | ||||||
|  |     & =  | ||||||
|  |     \cN^2 | ||||||
|  |     \int \dd[D]{x}\, | ||||||
|  |     \sqrt{-\det g} | ||||||
|  |     \\ | ||||||
|  |     & \times | ||||||
|  |     \Biggl[ | ||||||
|  |       u^{-3}\, \ffs^{(-3)}_{\qty{\cS};\, \kmkrN{i}} | ||||||
|  |       + | ||||||
|  |       u^{-2}\, \ffs^{(-2)}_{\qty{\cS};\, \kmkrN{i}} | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       u^{-1}\, \ffs^{(-1)}_{\qty{\cS};\, \kmkrN{i}} | ||||||
|  |       + | ||||||
|  |       \ffs^{(0)}_{\qty{\cS};\, \kmkrN{i}} | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       u\, \ffs^{(1)}_{\qty{\cS};\, \kmkrN{i}} | ||||||
|  |     \Biggr]~ | ||||||
|  |     \prod_{j = 1}^3 \phi_{\kmkrN{j}} | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | where $i = 1,\, 2,\, 3$ and: | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \ffs^{(-3)}_{\qty{\cS},\, \kmkrN{i}} | ||||||
|  |     & = | ||||||
|  |     \Biggl( | ||||||
|  |         - | ||||||
|  |         \frac{% | ||||||
|  |           k_{\qty(2)\, +}^4\, l_{\qty(3)}^4 | ||||||
|  |           - | ||||||
|  |           4\, k_{\qty(2)\, +}^3\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)}^3 | ||||||
|  |         }{% | ||||||
|  |           4\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^4\, \Delta^3 | ||||||
|  |         } | ||||||
|  |         \\ | ||||||
|  |         & - | ||||||
|  |         \frac{% | ||||||
|  |           6\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, l_{\qty(2)}^2\,l_{\qty(3)}^2 + k_{\qty(3)\, +}^4\, l_{\qty(2)}^4 | ||||||
|  |         }{% | ||||||
|  |           4\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^4\, \Delta^3 | ||||||
|  |         } | ||||||
|  |     \Biggr)\, | ||||||
|  |     \cS_{v\, v}, | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \ffs^{(-2)}_{\qty{\cS},\, \kmkrN{i}} | ||||||
|  |     & = | ||||||
|  |     \Biggl( | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         3 i\, \qty(% | ||||||
|  |           k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}\, l_{\qty(3)}^2 | ||||||
|  |           + | ||||||
|  |           k_{\qty(2)\, +}^3\, l_{\qty(3)}^2 | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}^3\, \Delta | ||||||
|  |       } | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \frac{% | ||||||
|  |         i\, \qty(% | ||||||
|  |           2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}^2\, l_{\qty(2)}\, l_{\qty(3)} | ||||||
|  |           + | ||||||
|  |           3\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)} | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(2)\, +}\, k_{\qty(3)\, +}^3\, \Delta | ||||||
|  |       } | ||||||
|  |       \\ | ||||||
|  |       & - | ||||||
|  |       \frac{% | ||||||
|  |         3 i\, \qty(% | ||||||
|  |           k_{\qty(3)\, +}^3\, l_{\qty(2)}^2 | ||||||
|  |           + | ||||||
|  |           k_{\qty(2)\, +}\, k_{\qty(3)\, +}^2\, l_{\qty(2)}^2 | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}^3\, \Delta | ||||||
|  |       } | ||||||
|  |     \Biggr)\, | ||||||
|  |     \cS_{v\, v}  | ||||||
|  |     \\ | ||||||
|  |     & - | ||||||
|  |     \qty(% | ||||||
|  |       \frac{% | ||||||
|  |         l_{\qty(3)}\, | ||||||
|  |         \qty(% | ||||||
|  |           k_{\qty(2)\, +}^2\, l_{\qty(3)}^2-3\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)} | ||||||
|  |           + | ||||||
|  |           3\, k_{\qty(3)\, +}^2\, l_{\qty(2)}^2 | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +}^3\, \Delta^2 | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\, z}, | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \ffs^{(-1)}_{\qty{\cS},\, \kmkrN{i}} | ||||||
|  |     & = | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         \qty(% | ||||||
|  |           k_{\qty(2)\, +}\, l_{\qty(3)} | ||||||
|  |           - | ||||||
|  |           k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |         )^2 | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +}^2\, \Delta | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{u\, v}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \Biggl( | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         k_{\qty(2)\, +}^2\, l_{\qty(3)}^2\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)\, | ||||||
|  |         + | ||||||
|  |         k_{\qty(3)\, +}^2\, l_{\qty(2)}^2\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)\, | ||||||
|  |       }{% | ||||||
|  |         2\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, \Delta | ||||||
|  |       } | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \frac{% | ||||||
|  |         2\, k_{\qty(2)\, +}^3\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)} | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, \Delta | ||||||
|  |       } | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \frac{% | ||||||
|  |         3\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, \Delta | ||||||
|  |         6\, k_{\qty(2)\, +}^3\, k_{\qty(3)\, +}\, \Delta | ||||||
|  |         3\, k_{\qty(2)\, +}^4\, \Delta | ||||||
|  |       }{% | ||||||
|  |         4\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2 | ||||||
|  |       } | ||||||
|  |     \Biggr)\, | ||||||
|  |     \cS_{v\, v}  | ||||||
|  |     \\ | ||||||
|  |     & - | ||||||
|  |     \Biggl(% | ||||||
|  |       \frac{% | ||||||
|  |         i\, \qty(% | ||||||
|  |           3\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(3)} | ||||||
|  |           + | ||||||
|  |           3\, k_{\qty(2)\, +}^2\, l_{\qty(3)} | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +}^2 | ||||||
|  |       } | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \frac{% | ||||||
|  |         i\, \qty(% | ||||||
|  |           2\, k_{\qty(3)\, +}^2\, l_{\qty(2)} | ||||||
|  |           + | ||||||
|  |           3\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +}^2 | ||||||
|  |       } | ||||||
|  |     \Biggr)\, | ||||||
|  |     \cS_{v\, z}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       \frac{% | ||||||
|  |         k_{\qty(2)\, i}\, l_{\qty(3)}\, | ||||||
|  |         \qty(% | ||||||
|  |           k_{\qty(2)\, +}\, l_{\qty(3)} | ||||||
|  |           - | ||||||
|  |           2\, k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +}^2\, \Delta | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\,{i}}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         \qty(% | ||||||
|  |           k_{\qty(2)\, +}\, l_{\qty(3)} | ||||||
|  |           - | ||||||
|  |           k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |         )^2 | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +}^2\, \Delta | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{z\, z}, | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \ffs^{(0)}_{\qty{\cS},\, \kmkrN{i}} | ||||||
|  |     & = | ||||||
|  |     \qty(% | ||||||
|  |       -\frac{% | ||||||
|  |         i\, k_{\qty(2)\, +}\, \qty(k_{\qty(3)\, +} + k_{\qty(2)\, +})\, \Delta | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{u\, v}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         2\, k_{\qty(2)\, +}\, | ||||||
|  |         \qty(% | ||||||
|  |           k_{\qty(2)\, +}\, l_{\qty(3)} | ||||||
|  |           - | ||||||
|  |           k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{u\, z}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         i\, \qty(% | ||||||
|  |           k_{\qty(3)\, +} | ||||||
|  |           + | ||||||
|  |           k_{\qty(2)\, +})\, \Delta\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2) | ||||||
|  |       }{% | ||||||
|  |         2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\, v}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         l_{\qty(3)}\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2) | ||||||
|  |         - | ||||||
|  |         2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\, z}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       \frac{% | ||||||
|  |         i\, k_{\qty(2)\, i}\, k_{\qty(2)\, +}\, \Delta | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\,{i}}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         i\, k_{\qty(2)\, +}\, \qty(k_{\qty(3)\, +} + k_{\qty(2)\, +})\, \Delta | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{z\, z}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       \frac{% | ||||||
|  |         2\, k_{\qty(2)\, i}\, | ||||||
|  |         \qty(% | ||||||
|  |           k_{\qty(2)\, +}\, l_{\qty(3)} | ||||||
|  |           - | ||||||
|  |           k_{\qty(3)\, +}\, l_{\qty(2)} | ||||||
|  |         ) | ||||||
|  |       }{% | ||||||
|  |         k_{\qty(3)\, +} | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{z\,{i}}, | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \ffs^{(1)}_{\qty{\cS},\, \kmkrN{i}} | ||||||
|  |     & = | ||||||
|  |     \qty(% | ||||||
|  |       -k_{\qty(2)\, +}^2\, \Delta | ||||||
|  |     )\, | ||||||
|  |     \cS_{u\, u}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       -\Delta\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)\, | ||||||
|  |     )\, | ||||||
|  |     \cS_{u\, v}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       2\, k_{\qty(2)\, i}\, k_{\qty(2)\, +}\, \Delta | ||||||
|  |     )\, | ||||||
|  |     \cS_{u\,{i}}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       - | ||||||
|  |       \frac{% | ||||||
|  |         \Delta\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)^2 | ||||||
|  |       }{% | ||||||
|  |         4\, k_{\qty(2)\, +}^2 | ||||||
|  |       } | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\, v}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(% | ||||||
|  |       2\, k_{\qty(2)\, i}\, k_{\qty(2)\, +}\, \Delta | ||||||
|  |     )\, | ||||||
|  |     \cS_{v\,{i}}  | ||||||
|  |     \\ | ||||||
|  |     & + | ||||||
|  |     \qty(- k_{\qty(2)\, i} k_{\qty(2)\, j}\, \Delta)\, | ||||||
|  |     \cS_{{i}\,{j}}. | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  |  | ||||||
|  |  | ||||||
							
								
								
									
										292
									
								
								sec/app/tensor_wave.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										292
									
								
								sec/app/tensor_wave.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,292 @@ | |||||||
|  | For the sake of completeness we report the expression of the full \nbo tensor wave function. | ||||||
|  | In what follows $L = \frac{l}{k_+}$. | ||||||
|  | We have | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \mqty( | ||||||
|  |       S_{u\, u} | ||||||
|  |       \\ | ||||||
|  |       S_{u\, v} | ||||||
|  |       \\ | ||||||
|  |       S_{u\, z} | ||||||
|  |       \\ | ||||||
|  |       S_{u\, i} | ||||||
|  |       \\ | ||||||
|  |       S_{v\, v} | ||||||
|  |       \\ | ||||||
|  |       S_{v\, z} | ||||||
|  |       \\ | ||||||
|  |       S_{v\, i} | ||||||
|  |       \\ | ||||||
|  |       S_{z\, z} | ||||||
|  |       \\ | ||||||
|  |       S_{z\, i} | ||||||
|  |       \\ | ||||||
|  |       S_{i\, i} | ||||||
|  |     ) | ||||||
|  |     & = | ||||||
|  |     \Biggl\lbrace | ||||||
|  |       \cS_{u\, u} | ||||||
|  |       \mqty( | ||||||
|  |         1 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       + | ||||||
|  |       \cS_{u\, v} | ||||||
|  |       \mqty( | ||||||
|  |         \frac{i}{k_+\, u} + \frac{L^2}{\Delta^2\, u^2} | ||||||
|  |         \\ | ||||||
|  |         1 | ||||||
|  |         \\ | ||||||
|  |         L | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       + | ||||||
|  |       \cS_{u\, z} | ||||||
|  |       \mqty( | ||||||
|  |         \frac{2\, L}{\Delta\, u} | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \Delta\, u | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       + | ||||||
|  |       \cS_{u\, i} | ||||||
|  |       \mqty( | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         1 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \cS_{v\, v} | ||||||
|  |       \mqty( | ||||||
|  |         -\frac{3}{4\, k_+^2\, u^2} | ||||||
|  |         + | ||||||
|  |         \frac{3\, i\, L^2}{2\, \Delta^2\, k_+\, u^3} | ||||||
|  |         + | ||||||
|  |         \frac{L^4}{4\, \Delta^4\, u^4} | ||||||
|  |         \\ | ||||||
|  |         \frac{i}{2\, k_+\, u} | ||||||
|  |         + | ||||||
|  |         \frac{L^2}{2\, \Delta^2\, u^2} | ||||||
|  |         \\ | ||||||
|  |         \frac{3\, i\, L}{2\, k_+\, u} | ||||||
|  |         + | ||||||
|  |         \frac{L^3}{2\, \Delta^2\, u^2} | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         1 | ||||||
|  |         \\ | ||||||
|  |         L | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \frac{i\, \Delta^2\, u}{k_+} | ||||||
|  |         + | ||||||
|  |         L^2 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       + | ||||||
|  |       \cS_{v\, z} | ||||||
|  |       \mqty( | ||||||
|  |         \frac{3\, i\, L}{\Delta\, k_+\, u^2} | ||||||
|  |         + | ||||||
|  |         \frac{L^3}{\Delta^3\, u^3} | ||||||
|  |         \\ | ||||||
|  |         \frac{L}{\Delta\, u} | ||||||
|  |         \\ | ||||||
|  |         \frac{3\, L^2}{2\, \Delta\, u} | ||||||
|  |         + | ||||||
|  |         \frac{3\, i\, \Delta}{2\, k_+} | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \Delta\, u | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         2\, \Delta\, L\, u | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \cS_{v\, i} | ||||||
|  |       \mqty( | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \frac{i}{2\, k_+\, u} | ||||||
|  |         + | ||||||
|  |         \frac{L^2}{2\, \Delta^2\, u^2} | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         1 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         L | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       + | ||||||
|  |       \cS_{z\, z} | ||||||
|  |       \mqty( | ||||||
|  |         \frac{i}{k_+\, u} | ||||||
|  |         + | ||||||
|  |         \frac{L^2}{\Delta^2\, u^2} | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         L | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \Delta^2\, u^2 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       + | ||||||
|  |       \cS_{z\, i} | ||||||
|  |       \mqty( | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \frac{L}{\Delta\, u} | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \Delta\, u | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |       \\ | ||||||
|  |       & + | ||||||
|  |       \cS_{i\, j} | ||||||
|  |       \mqty( | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         0 | ||||||
|  |         \\ | ||||||
|  |         \delta_{i j} | ||||||
|  |         \\ | ||||||
|  |       )\, | ||||||
|  |     \Biggr\rbrace | ||||||
|  |     \phi_{\kmkr}. | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
| @@ -2049,7 +2049,7 @@ Explicitly we impose the four real equations in spinorial formalism | |||||||
|   f_{{\bart+1}\, (s)} - f_{{\bart-1}\, (s)}, |   f_{{\bart+1}\, (s)} - f_{{\bart-1}\, (s)}, | ||||||
| \end{equation} | \end{equation} | ||||||
| where we used the mapping~\eqref{eq:def_omega} to write the integrals in the $\omega$ variables. | where we used the mapping~\eqref{eq:def_omega} to write the integrals in the $\omega$ variables. | ||||||
| This equation has enough degrees of freedom to fix completely the two complex parameters $C_1$ and $C_2$. | This equation has enough \dof to fix completely the two complex parameters $C_1$ and $C_2$. | ||||||
| The final generic solution is thus uniquely determined. | The final generic solution is thus uniquely determined. | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1280,7 +1280,7 @@ The field $\cA^a$ forms a vector representation of the group \SO{D-1-p} and from | |||||||
|   \label{fig:dbranes:chanpaton} |   \label{fig:dbranes:chanpaton} | ||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| It is also possible to add non dynamical degrees of freedom to the open string endpoints. | It is also possible to add non dynamical degrees of freedom (\dof) to the open string endpoints. | ||||||
| They are known as \emph{Chan-Paton factors}~\cite{Paton:1969:GeneralizedVenezianoModel}. | They are known as \emph{Chan-Paton factors}~\cite{Paton:1969:GeneralizedVenezianoModel}. | ||||||
| They have no dynamics and do not spoil Poincaré or conformal invariance in the action of the string. | They have no dynamics and do not spoil Poincaré or conformal invariance in the action of the string. | ||||||
| Each state can then be labelled by $i$ and $j$ running from $1$ to $N$. | Each state can then be labelled by $i$ and $j$ running from $1$ to $N$. | ||||||
|   | |||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										22
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										22
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -70,10 +70,16 @@ | |||||||
|  |  | ||||||
| %---- coordinates | %---- coordinates | ||||||
| \newcommand{\pX}{\ensuremath{X'}\xspace} | \newcommand{\pX}{\ensuremath{X'}\xspace} | ||||||
| \newcommand{\kmkr}{\ensuremath{\qty{k_+,\, l,\, \vb{k},\, r}}} | \newcommand{\kmkr}{\ensuremath{\qty{k_+,\, l,\, \vec{k},\, r}}} | ||||||
| \newcommand{\kmkrN}[1]{\ensuremath{\qty{k_{\qty(#1)\, +},\, l_{\qty(#1)},\, \vb{k}_{\qty(#1)},\, r_{\qty(#1)}}}} | \newcommand{\kmr}{\ensuremath{\qty{k_+,\, k_-,\, l,\, r}}} | ||||||
| \newcommand{\mkmkr}{\ensuremath{\qty{-k_+,\, -l,\, -\vb{k},\, r}}} | \newcommand{\kmkrN}[1]{\ensuremath{\qty{k_{\qty(#1)\, +},\, l_{\qty(#1)},\, \vec{k}_{\qty(#1)},\, r_{\qty(#1)}}}} | ||||||
| \newcommand{\mkmkrN}[1]{\ensuremath{\qty{-k_{\qty(#1)\, +},\, -l_{\qty(#1)},\, -\vb{k}_{\qty(#1)},\, r_{\qty(#1)}}}} | \newcommand{\kmrN}[1]{\ensuremath{\qty{k_{\qty(#1)\, +},\, k_{\qty(#1)\, -},\,l_{\qty(#1)},\, r_{\qty(#1)}}}} | ||||||
|  | \newcommand{\mkmkr}{\ensuremath{\qty{-k_+,\, -l,\, -\vec{k},\, r}}} | ||||||
|  | \newcommand{\mkmkrN}[1]{\ensuremath{\qty{-k_{\qty(#1)\, +},\, -l_{\qty(#1)},\, -\vec{k}_{\qty(#1)},\, r_{\qty(#1)}}}} | ||||||
|  | \newcommand{\pol}[1]{\ensuremath{\mathcal{E}_{\kmkr\, \underline{#1}}}} | ||||||
|  | \newcommand{\polN}[2]{\ensuremath{\mathcal{E}_{\kmkrN{#2}\, \underline{#1}}}} | ||||||
|  | \newcommand{\polabbrN}[2]{\ensuremath{\mathcal{E}_{\qty(#2)\, \underline{#1}}}} | ||||||
|  | \newcommand{\genpolN}[1]{\ensuremath{\mathcal{E}_{\kmkrN{#1}}}} | ||||||
|  |  | ||||||
| %---- BEGIN DOCUMENT | %---- BEGIN DOCUMENT | ||||||
|  |  | ||||||
| @@ -141,6 +147,14 @@ | |||||||
| \label{sec:details_reflection} | \label{sec:details_reflection} | ||||||
| \input{sec/app/reflection.tex} | \input{sec/app/reflection.tex} | ||||||
|  |  | ||||||
|  | \section{Tensor Wave Functions on NBO} | ||||||
|  | \label{sec:NO_tensor_wave} | ||||||
|  | \input{sec/app/tensor_wave.tex} | ||||||
|  |  | ||||||
|  | \section{Overlap of Second Level Massive States on NBO} | ||||||
|  | \label{sec:NO_full_TTS} | ||||||
|  | \input{sec/app/massive.tex} | ||||||
|  |  | ||||||
|  |  | ||||||
| %---- BIBLIOGRAPHY | %---- BIBLIOGRAPHY | ||||||
| \cleardoubleplainpage{} | \cleardoubleplainpage{} | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user