293 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| For the sake of completeness we report the expression of the full \nbo tensor wave function.
 | |
| In what follows $L = \frac{l}{k_+}$.
 | |
| We have
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \mqty(
 | |
|       S_{u\, u}
 | |
|       \\
 | |
|       S_{u\, v}
 | |
|       \\
 | |
|       S_{u\, z}
 | |
|       \\
 | |
|       S_{u\, i}
 | |
|       \\
 | |
|       S_{v\, v}
 | |
|       \\
 | |
|       S_{v\, z}
 | |
|       \\
 | |
|       S_{v\, i}
 | |
|       \\
 | |
|       S_{z\, z}
 | |
|       \\
 | |
|       S_{z\, i}
 | |
|       \\
 | |
|       S_{i\, i}
 | |
|     )
 | |
|     & =
 | |
|     \Biggl\lbrace
 | |
|       \cS_{u\, u}
 | |
|       \mqty(
 | |
|         1
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       +
 | |
|       \cS_{u\, v}
 | |
|       \mqty(
 | |
|         \frac{i}{k_+\, u} + \frac{L^2}{\Delta^2\, u^2}
 | |
|         \\
 | |
|         1
 | |
|         \\
 | |
|         L
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       +
 | |
|       \cS_{u\, z}
 | |
|       \mqty(
 | |
|         \frac{2\, L}{\Delta\, u}
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \Delta\, u
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       +
 | |
|       \cS_{u\, i}
 | |
|       \mqty(
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         1
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       \\
 | |
|       & +
 | |
|       \cS_{v\, v}
 | |
|       \mqty(
 | |
|         -\frac{3}{4\, k_+^2\, u^2}
 | |
|         +
 | |
|         \frac{3\, i\, L^2}{2\, \Delta^2\, k_+\, u^3}
 | |
|         +
 | |
|         \frac{L^4}{4\, \Delta^4\, u^4}
 | |
|         \\
 | |
|         \frac{i}{2\, k_+\, u}
 | |
|         +
 | |
|         \frac{L^2}{2\, \Delta^2\, u^2}
 | |
|         \\
 | |
|         \frac{3\, i\, L}{2\, k_+\, u}
 | |
|         +
 | |
|         \frac{L^3}{2\, \Delta^2\, u^2}
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         1
 | |
|         \\
 | |
|         L
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \frac{i\, \Delta^2\, u}{k_+}
 | |
|         +
 | |
|         L^2
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       +
 | |
|       \cS_{v\, z}
 | |
|       \mqty(
 | |
|         \frac{3\, i\, L}{\Delta\, k_+\, u^2}
 | |
|         +
 | |
|         \frac{L^3}{\Delta^3\, u^3}
 | |
|         \\
 | |
|         \frac{L}{\Delta\, u}
 | |
|         \\
 | |
|         \frac{3\, L^2}{2\, \Delta\, u}
 | |
|         +
 | |
|         \frac{3\, i\, \Delta}{2\, k_+}
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \Delta\, u
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         2\, \Delta\, L\, u
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       \\
 | |
|       & +
 | |
|       \cS_{v\, i}
 | |
|       \mqty(
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \frac{i}{2\, k_+\, u}
 | |
|         +
 | |
|         \frac{L^2}{2\, \Delta^2\, u^2}
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         1
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         L
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       +
 | |
|       \cS_{z\, z}
 | |
|       \mqty(
 | |
|         \frac{i}{k_+\, u}
 | |
|         +
 | |
|         \frac{L^2}{\Delta^2\, u^2}
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         L
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \Delta^2\, u^2
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       +
 | |
|       \cS_{z\, i}
 | |
|       \mqty(
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \frac{L}{\Delta\, u}
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \Delta\, u
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|       )\,
 | |
|       \\
 | |
|       & +
 | |
|       \cS_{i\, j}
 | |
|       \mqty(
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         0
 | |
|         \\
 | |
|         \delta_{i j}
 | |
|         \\
 | |
|       )\,
 | |
|     \Biggr\rbrace
 | |
|     \phi_{\kmkr}.
 | |
|   \end{split}
 | |
| \end{equation}
 |