End of NBO

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-10-05 17:49:06 +02:00
parent 3e8dfee25e
commit f97b9f87a1
7 changed files with 2298 additions and 809 deletions

349
sec/app/massive.tex Normal file
View File

@@ -0,0 +1,349 @@
We report the full expression of the overlap with two derivatives considered in the main text.
It corresponds to the colour ordered amplitude of two tachyons and one level-2 massive state:
\begin{equation}
\begin{split}
K
& =
\cN^2
\int \dd[D]{x}\,
\sqrt{-\det g}
\\
& \times
\Biggl[
u^{-3}\, \ffs^{(-3)}_{\qty{\cS};\, \kmkrN{i}}
+
u^{-2}\, \ffs^{(-2)}_{\qty{\cS};\, \kmkrN{i}}
\\
& +
u^{-1}\, \ffs^{(-1)}_{\qty{\cS};\, \kmkrN{i}}
+
\ffs^{(0)}_{\qty{\cS};\, \kmkrN{i}}
\\
& +
u\, \ffs^{(1)}_{\qty{\cS};\, \kmkrN{i}}
\Biggr]~
\prod_{j = 1}^3 \phi_{\kmkrN{j}}
\end{split}
\end{equation}
where $i = 1,\, 2,\, 3$ and:
\begin{equation}
\begin{split}
\ffs^{(-3)}_{\qty{\cS},\, \kmkrN{i}}
& =
\Biggl(
-
\frac{%
k_{\qty(2)\, +}^4\, l_{\qty(3)}^4
-
4\, k_{\qty(2)\, +}^3\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)}^3
}{%
4\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^4\, \Delta^3
}
\\
& -
\frac{%
6\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, l_{\qty(2)}^2\,l_{\qty(3)}^2 + k_{\qty(3)\, +}^4\, l_{\qty(2)}^4
}{%
4\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^4\, \Delta^3
}
\Biggr)\,
\cS_{v\, v},
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\ffs^{(-2)}_{\qty{\cS},\, \kmkrN{i}}
& =
\Biggl(
-
\frac{%
3 i\, \qty(%
k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}\, l_{\qty(3)}^2
+
k_{\qty(2)\, +}^3\, l_{\qty(3)}^2
)
}{%
2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}^3\, \Delta
}
\\
& +
\frac{%
i\, \qty(%
2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}^2\, l_{\qty(2)}\, l_{\qty(3)}
+
3\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)}
)
}{%
k_{\qty(2)\, +}\, k_{\qty(3)\, +}^3\, \Delta
}
\\
& -
\frac{%
3 i\, \qty(%
k_{\qty(3)\, +}^3\, l_{\qty(2)}^2
+
k_{\qty(2)\, +}\, k_{\qty(3)\, +}^2\, l_{\qty(2)}^2
)
}{%
2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}^3\, \Delta
}
\Biggr)\,
\cS_{v\, v}
\\
& -
\qty(%
\frac{%
l_{\qty(3)}\,
\qty(%
k_{\qty(2)\, +}^2\, l_{\qty(3)}^2-3\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)}
+
3\, k_{\qty(3)\, +}^2\, l_{\qty(2)}^2
)
}{%
k_{\qty(3)\, +}^3\, \Delta^2
}
)\,
\cS_{v\, z},
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\ffs^{(-1)}_{\qty{\cS},\, \kmkrN{i}}
& =
\qty(%
-
\frac{%
\qty(%
k_{\qty(2)\, +}\, l_{\qty(3)}
-
k_{\qty(3)\, +}\, l_{\qty(2)}
)^2
}{%
k_{\qty(3)\, +}^2\, \Delta
}
)\,
\cS_{u\, v}
\\
& +
\Biggl(
-
\frac{%
k_{\qty(2)\, +}^2\, l_{\qty(3)}^2\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)\,
+
k_{\qty(3)\, +}^2\, l_{\qty(2)}^2\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)\,
}{%
2\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, \Delta
}
\\
& +
\frac{%
2\, k_{\qty(2)\, +}^3\, k_{\qty(3)\, +}\, l_{\qty(2)}\, l_{\qty(3)}
}{%
k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, \Delta
}
\\
& +
\frac{%
3\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2\, \Delta
6\, k_{\qty(2)\, +}^3\, k_{\qty(3)\, +}\, \Delta
3\, k_{\qty(2)\, +}^4\, \Delta
}{%
4\, k_{\qty(2)\, +}^2\, k_{\qty(3)\, +}^2
}
\Biggr)\,
\cS_{v\, v}
\\
& -
\Biggl(%
\frac{%
i\, \qty(%
3\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(3)}
+
3\, k_{\qty(2)\, +}^2\, l_{\qty(3)}
)
}{%
k_{\qty(3)\, +}^2
}
\\
& +
\frac{%
i\, \qty(%
2\, k_{\qty(3)\, +}^2\, l_{\qty(2)}
+
3\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(2)}
)
}{%
k_{\qty(3)\, +}^2
}
\Biggr)\,
\cS_{v\, z}
\\
& +
\qty(%
\frac{%
k_{\qty(2)\, i}\, l_{\qty(3)}\,
\qty(%
k_{\qty(2)\, +}\, l_{\qty(3)}
-
2\, k_{\qty(3)\, +}\, l_{\qty(2)}
)
}{%
k_{\qty(3)\, +}^2\, \Delta
}
)\,
\cS_{v\,{i}}
\\
& +
\qty(%
-
\frac{%
\qty(%
k_{\qty(2)\, +}\, l_{\qty(3)}
-
k_{\qty(3)\, +}\, l_{\qty(2)}
)^2
}{%
k_{\qty(3)\, +}^2\, \Delta
}
)\,
\cS_{z\, z},
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\ffs^{(0)}_{\qty{\cS},\, \kmkrN{i}}
& =
\qty(%
-\frac{%
i\, k_{\qty(2)\, +}\, \qty(k_{\qty(3)\, +} + k_{\qty(2)\, +})\, \Delta
}{%
k_{\qty(3)\, +}
}
)\,
\cS_{u\, v}
\\
& +
\qty(%
-
\frac{%
2\, k_{\qty(2)\, +}\,
\qty(%
k_{\qty(2)\, +}\, l_{\qty(3)}
-
k_{\qty(3)\, +}\, l_{\qty(2)}
)
}{%
k_{\qty(3)\, +}
}
)\,
\cS_{u\, z}
\\
& +
\qty(%
-
\frac{%
i\, \qty(%
k_{\qty(3)\, +}
+
k_{\qty(2)\, +})\, \Delta\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)
}{%
2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}
}
)\,
\cS_{v\, v}
\\
& +
\qty(%
-
\frac{%
l_{\qty(3)}\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)
-
2\, k_{\qty(2)\, +}\, k_{\qty(3)\, +}\, l_{\qty(2)}
}{%
k_{\qty(3)\, +}
}
)\,
\cS_{v\, z}
\\
& +
\qty(%
\frac{%
i\, k_{\qty(2)\, i}\, k_{\qty(2)\, +}\, \Delta
}{%
k_{\qty(3)\, +}
}
)\,
\cS_{v\,{i}}
\\
& +
\qty(%
-
\frac{%
i\, k_{\qty(2)\, +}\, \qty(k_{\qty(3)\, +} + k_{\qty(2)\, +})\, \Delta
}{%
k_{\qty(3)\, +}
}
)\,
\cS_{z\, z}
\\
& +
\qty(%
\frac{%
2\, k_{\qty(2)\, i}\,
\qty(%
k_{\qty(2)\, +}\, l_{\qty(3)}
-
k_{\qty(3)\, +}\, l_{\qty(2)}
)
}{%
k_{\qty(3)\, +}
}
)\,
\cS_{z\,{i}},
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\ffs^{(1)}_{\qty{\cS},\, \kmkrN{i}}
& =
\qty(%
-k_{\qty(2)\, +}^2\, \Delta
)\,
\cS_{u\, u}
\\
& +
\qty(%
-\Delta\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)\,
)\,
\cS_{u\, v}
\\
& +
\qty(%
2\, k_{\qty(2)\, i}\, k_{\qty(2)\, +}\, \Delta
)\,
\cS_{u\,{i}}
\\
& +
\qty(%
-
\frac{%
\Delta\, \qty(r_{(2)} + \norm{\vec{k}_{(2)}}^2)^2
}{%
4\, k_{\qty(2)\, +}^2
}
)\,
\cS_{v\, v}
\\
& +
\qty(%
2\, k_{\qty(2)\, i}\, k_{\qty(2)\, +}\, \Delta
)\,
\cS_{v\,{i}}
\\
& +
\qty(- k_{\qty(2)\, i} k_{\qty(2)\, j}\, \Delta)\,
\cS_{{i}\,{j}}.
\end{split}
\end{equation}

292
sec/app/tensor_wave.tex Normal file
View File

@@ -0,0 +1,292 @@
For the sake of completeness we report the expression of the full \nbo tensor wave function.
In what follows $L = \frac{l}{k_+}$.
We have
\begin{equation}
\begin{split}
\mqty(
S_{u\, u}
\\
S_{u\, v}
\\
S_{u\, z}
\\
S_{u\, i}
\\
S_{v\, v}
\\
S_{v\, z}
\\
S_{v\, i}
\\
S_{z\, z}
\\
S_{z\, i}
\\
S_{i\, i}
)
& =
\Biggl\lbrace
\cS_{u\, u}
\mqty(
1
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
)\,
+
\cS_{u\, v}
\mqty(
\frac{i}{k_+\, u} + \frac{L^2}{\Delta^2\, u^2}
\\
1
\\
L
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
)\,
+
\cS_{u\, z}
\mqty(
\frac{2\, L}{\Delta\, u}
\\
0
\\
\Delta\, u
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
)\,
+
\cS_{u\, i}
\mqty(
0
\\
0
\\
0
\\
1
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
)\,
\\
& +
\cS_{v\, v}
\mqty(
-\frac{3}{4\, k_+^2\, u^2}
+
\frac{3\, i\, L^2}{2\, \Delta^2\, k_+\, u^3}
+
\frac{L^4}{4\, \Delta^4\, u^4}
\\
\frac{i}{2\, k_+\, u}
+
\frac{L^2}{2\, \Delta^2\, u^2}
\\
\frac{3\, i\, L}{2\, k_+\, u}
+
\frac{L^3}{2\, \Delta^2\, u^2}
\\
0
\\
1
\\
L
\\
0
\\
\frac{i\, \Delta^2\, u}{k_+}
+
L^2
\\
0
\\
0
\\
)\,
+
\cS_{v\, z}
\mqty(
\frac{3\, i\, L}{\Delta\, k_+\, u^2}
+
\frac{L^3}{\Delta^3\, u^3}
\\
\frac{L}{\Delta\, u}
\\
\frac{3\, L^2}{2\, \Delta\, u}
+
\frac{3\, i\, \Delta}{2\, k_+}
\\
0
\\
0
\\
\Delta\, u
\\
0
\\
2\, \Delta\, L\, u
\\
0
\\
0
\\
)\,
\\
& +
\cS_{v\, i}
\mqty(
0
\\
0
\\
0
\\
\frac{i}{2\, k_+\, u}
+
\frac{L^2}{2\, \Delta^2\, u^2}
\\
0
\\
0
\\
1
\\
0
\\
L
\\
0
\\
)\,
+
\cS_{z\, z}
\mqty(
\frac{i}{k_+\, u}
+
\frac{L^2}{\Delta^2\, u^2}
\\
0
\\
L
\\
0
\\
0
\\
0
\\
0
\\
\Delta^2\, u^2
\\
0
\\
0
\\
)\,
+
\cS_{z\, i}
\mqty(
0
\\
0
\\
0
\\
\frac{L}{\Delta\, u}
\\
0
\\
0
\\
0
\\
0
\\
\Delta\, u
\\
0
\\
)\,
\\
& +
\cS_{i\, j}
\mqty(
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
0
\\
\delta_{i j}
\\
)\,
\Biggr\rbrace
\phi_{\kmkr}.
\end{split}
\end{equation}