Continuing with fermions
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -2188,57 +2188,65 @@ From the usual definition of the stress-energy tensor in terms of the Virasoro g | |||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
|  | We already hinted to the fact that the vacua state involved are not in general \SL{2}{R} invariant. | ||||||
|  | In particular we can see that that the excited vacua \eexcvacket is a primary field | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     L_{(\rE)\, k} \eexcvacket | ||||||
|  |     & = | ||||||
|  |     0, | ||||||
|  |     \qquad | ||||||
|  |     k > 0, | ||||||
|  |     \\ | ||||||
|  |     L_{(\rE)\, 0} \eexcvacket | ||||||
|  |     & = | ||||||
|  |     \frac{\rE^2}{2} \eexcvacket, | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | with non trivial conformal dimensions $\Delta\qty( \eexcvacket ) =  \frac{\rE^2}{2}$. | ||||||
|  | This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ inserted at $x = 0$. | ||||||
|  | Its equivalent expression using bosonisation is: | ||||||
|  | \begin{equation} | ||||||
|  |   \rS_{\rE}\qty( x ) = e^{i \rE \phi( x )}, | ||||||
|  | \end{equation} | ||||||
|  | where $\phi$ is such that | ||||||
|  | \begin{equation} | ||||||
|  |   \left\langle \phi( z ) \phi( w ) \right\rangle | ||||||
|  |   = | ||||||
|  |   -\frac{1}{( z - w)^2}. | ||||||
|  | \end{equation} | ||||||
|  | The minimal conformal dimension is achieved for $n_{\rE}=n_{\brE}=0$, i.e.\ $\Delta\qty( \twsvacket ) =  \frac{\epsilon^2}{8}$, and identifies a plain spin field. | ||||||
|  | We can further check this idea  by showing that the conformal dimensions are consistent. | ||||||
|  | Using~\eqref{eq:usual-twisted-fermion-conformal-twisted} we get: | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     L_{(\rE)\, 0} \twsvacket | ||||||
|  |     & = | ||||||
|  |     L_0\, | ||||||
|  |     \qty(% | ||||||
|  |       b^{*\, ( \brE )}_0\, | ||||||
|  |       b^{*\, ( \brE )}_{-1}\, | ||||||
|  |       \dots\, | ||||||
|  |       b^{*\, ( \brE )}_{2-n_{\rE}} | ||||||
|  |       \eexcvacket | ||||||
|  |     ) | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     \left[% | ||||||
|  |       \finitesum{n}{1}{n_{\rE}} | ||||||
|  |       \qty( n - \frac{\rE +  1}{2} ) | ||||||
|  |       + | ||||||
|  |       \frac{\rE^2}{2} | ||||||
|  |     \right] | ||||||
|  |     \twsvacket | ||||||
|  |     = | ||||||
|  |     \frac{\epsilon^2}{8} \twsvacket. | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  |  | ||||||
|  |  | ||||||
| %%% TODO %%% | %%% TODO %%% | ||||||
|  |  | ||||||
|     Looking back at the analysis of the excited and twisted vacua, we already |  | ||||||
|       hinted to the fact that they are not in general \SL{2}{R} invariant.  |  | ||||||
|       In particular we can see that that the excited vacua  $\eexcvacket$ |  | ||||||
|       is a primary field |  | ||||||
|       \begin{equation} |  | ||||||
|         L_{(\rE) k > 0} \eexcvacket =0, |  | ||||||
|         \qquad |  | ||||||
|         L_{(\rE) 0} \eexcvacket = \frac{\rE^2}{2} \eexcvacket |  | ||||||
|         , |  | ||||||
|         \end{equation} |  | ||||||
|       with non trivial conformal dimensions |  | ||||||
|       $\Delta\qty( \eexcvacket ) =  \frac{\rE^2}{2}$. |  | ||||||
|       This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ |  | ||||||
|       inserted at $x=0$ whose bosonized expression is given by |  | ||||||
|       \begin{equation} |  | ||||||
|         \rS_{\rE}\qty( x ) = e^{i \rE \phi( x )}, |  | ||||||
|       \end{equation} |  | ||||||
|       where $\phi$ is such that |  | ||||||
|       \begin{equation} |  | ||||||
|         \left\langle \phi( z ) \phi( w ) \right\rangle = -\frac{1}{( z - |  | ||||||
|           w)^2} |  | ||||||
|         . |  | ||||||
|       \end{equation} |  | ||||||
|  |  | ||||||
|       In fact the minimal conformal dimension is achieved |  | ||||||
|       for $n_{\rE}=n_{\brE}=0$, i.e. |  | ||||||
|       $ |  | ||||||
|       \Delta\qty( \twsvacket ) =  \frac{\epsilon^2}{8} |  | ||||||
|       $ |  | ||||||
|       and we know this is the basic spin field. |  | ||||||
|       We can further check this idea  |  | ||||||
|       by showing that the conformal dimensions are consistent. |  | ||||||
|       Using \eqref{eq:usual-twisted-fermion-conformal-twisted} we get |  | ||||||
|       \begin{equation} |  | ||||||
|         \begin{split} |  | ||||||
|           L_{(\rE) 0}\twsvacket |  | ||||||
|           & = |  | ||||||
|           L_0 |  | ||||||
|           \qty( b^{*\, ( \brE )}_0 b^{*\, ( \brE )}_{-1} \dots b^{*\, ( \brE )}_{2-n_{\rE}}   \eexcvacket) |  | ||||||
|           \\ |  | ||||||
|           & = |  | ||||||
|           \left[ \sum\limits^{n_{\rE}}_{n = 1} ( n - \frac{\rE +  1}{2} ) |  | ||||||
|             +\frac{\rE^2}{2} |  | ||||||
|             \right] \twsvacket |  | ||||||
|            = +\frac{1}{8} \epsilon^2\twsvacket . |  | ||||||
|         \end{split} |  | ||||||
|       \end{equation} |  | ||||||
|  |  | ||||||
|  |  | ||||||
|     \subsection{Generic Case With Defects} |     \subsection{Generic Case With Defects} | ||||||
|  |  | ||||||
|     We will now apply the same procedure to the generic case of one complex |     We will now apply the same procedure to the generic case of one complex | ||||||
|   | |||||||
| @@ -7,7 +7,7 @@ | |||||||
| \usepackage{import} | \usepackage{import} | ||||||
|  |  | ||||||
| \author{Riccardo Finotello} | \author{Riccardo Finotello} | ||||||
| \title{Theoretical and Computational Aspects of String Theory and Their Phenomenological Implications} | \title{Theoretical and Computational Aspects for Phenomenology in String Theory} | ||||||
| \advisor{Igor Pesando} | \advisor{Igor Pesando} | ||||||
| \institution{Università degli Studi di Torino} | \institution{Università degli Studi di Torino} | ||||||
| \school{Scuola di Dottorato} | \school{Scuola di Dottorato} | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user