From f3c03fcc5e8c939b9e30b2bbec96f8185d371ce0 Mon Sep 17 00:00:00 2001 From: Riccardo Finotello Date: Wed, 30 Sep 2020 14:43:55 +0200 Subject: [PATCH] Continuing with fermions Signed-off-by: Riccardo Finotello --- sec/part1/fermions.tex | 106 ++++++++++++++++++++++------------------- thesis.tex | 2 +- 2 files changed, 58 insertions(+), 50 deletions(-) diff --git a/sec/part1/fermions.tex b/sec/part1/fermions.tex index eb3b9f4..0e620f3 100644 --- a/sec/part1/fermions.tex +++ b/sec/part1/fermions.tex @@ -2188,57 +2188,65 @@ From the usual definition of the stress-energy tensor in terms of the Virasoro g \end{split} \end{equation} +We already hinted to the fact that the vacua state involved are not in general \SL{2}{R} invariant. +In particular we can see that that the excited vacua \eexcvacket is a primary field +\begin{equation} + \begin{split} + L_{(\rE)\, k} \eexcvacket + & = + 0, + \qquad + k > 0, + \\ + L_{(\rE)\, 0} \eexcvacket + & = + \frac{\rE^2}{2} \eexcvacket, + \end{split} +\end{equation} +with non trivial conformal dimensions $\Delta\qty( \eexcvacket ) = \frac{\rE^2}{2}$. +This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ inserted at $x = 0$. +Its equivalent expression using bosonisation is: +\begin{equation} + \rS_{\rE}\qty( x ) = e^{i \rE \phi( x )}, +\end{equation} +where $\phi$ is such that +\begin{equation} + \left\langle \phi( z ) \phi( w ) \right\rangle + = + -\frac{1}{( z - w)^2}. +\end{equation} +The minimal conformal dimension is achieved for $n_{\rE}=n_{\brE}=0$, i.e.\ $\Delta\qty( \twsvacket ) = \frac{\epsilon^2}{8}$, and identifies a plain spin field. +We can further check this idea by showing that the conformal dimensions are consistent. +Using~\eqref{eq:usual-twisted-fermion-conformal-twisted} we get: +\begin{equation} + \begin{split} + L_{(\rE)\, 0} \twsvacket + & = + L_0\, + \qty(% + b^{*\, ( \brE )}_0\, + b^{*\, ( \brE )}_{-1}\, + \dots\, + b^{*\, ( \brE )}_{2-n_{\rE}} + \eexcvacket + ) + \\ + & = + \left[% + \finitesum{n}{1}{n_{\rE}} + \qty( n - \frac{\rE + 1}{2} ) + + + \frac{\rE^2}{2} + \right] + \twsvacket + = + \frac{\epsilon^2}{8} \twsvacket. + \end{split} +\end{equation} + + %%% TODO %%% - Looking back at the analysis of the excited and twisted vacua, we already - hinted to the fact that they are not in general \SL{2}{R} invariant. - In particular we can see that that the excited vacua $\eexcvacket$ - is a primary field - \begin{equation} - L_{(\rE) k > 0} \eexcvacket =0, - \qquad - L_{(\rE) 0} \eexcvacket = \frac{\rE^2}{2} \eexcvacket - , - \end{equation} - with non trivial conformal dimensions - $\Delta\qty( \eexcvacket ) = \frac{\rE^2}{2}$. - This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ - inserted at $x=0$ whose bosonized expression is given by - \begin{equation} - \rS_{\rE}\qty( x ) = e^{i \rE \phi( x )}, - \end{equation} - where $\phi$ is such that - \begin{equation} - \left\langle \phi( z ) \phi( w ) \right\rangle = -\frac{1}{( z - - w)^2} - . - \end{equation} - - In fact the minimal conformal dimension is achieved - for $n_{\rE}=n_{\brE}=0$, i.e. - $ - \Delta\qty( \twsvacket ) = \frac{\epsilon^2}{8} - $ - and we know this is the basic spin field. - We can further check this idea - by showing that the conformal dimensions are consistent. - Using \eqref{eq:usual-twisted-fermion-conformal-twisted} we get - \begin{equation} - \begin{split} - L_{(\rE) 0}\twsvacket - & = - L_0 - \qty( b^{*\, ( \brE )}_0 b^{*\, ( \brE )}_{-1} \dots b^{*\, ( \brE )}_{2-n_{\rE}} \eexcvacket) - \\ - & = - \left[ \sum\limits^{n_{\rE}}_{n = 1} ( n - \frac{\rE + 1}{2} ) - +\frac{\rE^2}{2} - \right] \twsvacket - = +\frac{1}{8} \epsilon^2\twsvacket . - \end{split} - \end{equation} - - \subsection{Generic Case With Defects} We will now apply the same procedure to the generic case of one complex diff --git a/thesis.tex b/thesis.tex index 35b2a41..c119476 100644 --- a/thesis.tex +++ b/thesis.tex @@ -7,7 +7,7 @@ \usepackage{import} \author{Riccardo Finotello} -\title{Theoretical and Computational Aspects of String Theory and Their Phenomenological Implications} +\title{Theoretical and Computational Aspects for Phenomenology in String Theory} \advisor{Igor Pesando} \institution{Università degli Studi di Torino} \school{Scuola di Dottorato}