Continuing with fermions
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -2188,57 +2188,65 @@ From the usual definition of the stress-energy tensor in terms of the Virasoro g | ||||
|   \end{split} | ||||
| \end{equation} | ||||
|  | ||||
| We already hinted to the fact that the vacua state involved are not in general \SL{2}{R} invariant. | ||||
| In particular we can see that that the excited vacua \eexcvacket is a primary field | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     L_{(\rE)\, k} \eexcvacket | ||||
|     & = | ||||
|     0, | ||||
|     \qquad | ||||
|     k > 0, | ||||
|     \\ | ||||
|     L_{(\rE)\, 0} \eexcvacket | ||||
|     & = | ||||
|     \frac{\rE^2}{2} \eexcvacket, | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| with non trivial conformal dimensions $\Delta\qty( \eexcvacket ) =  \frac{\rE^2}{2}$. | ||||
| This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ inserted at $x = 0$. | ||||
| Its equivalent expression using bosonisation is: | ||||
| \begin{equation} | ||||
|   \rS_{\rE}\qty( x ) = e^{i \rE \phi( x )}, | ||||
| \end{equation} | ||||
| where $\phi$ is such that | ||||
| \begin{equation} | ||||
|   \left\langle \phi( z ) \phi( w ) \right\rangle | ||||
|   = | ||||
|   -\frac{1}{( z - w)^2}. | ||||
| \end{equation} | ||||
| The minimal conformal dimension is achieved for $n_{\rE}=n_{\brE}=0$, i.e.\ $\Delta\qty( \twsvacket ) =  \frac{\epsilon^2}{8}$, and identifies a plain spin field. | ||||
| We can further check this idea  by showing that the conformal dimensions are consistent. | ||||
| Using~\eqref{eq:usual-twisted-fermion-conformal-twisted} we get: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     L_{(\rE)\, 0} \twsvacket | ||||
|     & = | ||||
|     L_0\, | ||||
|     \qty(% | ||||
|       b^{*\, ( \brE )}_0\, | ||||
|       b^{*\, ( \brE )}_{-1}\, | ||||
|       \dots\, | ||||
|       b^{*\, ( \brE )}_{2-n_{\rE}} | ||||
|       \eexcvacket | ||||
|     ) | ||||
|     \\ | ||||
|     & = | ||||
|     \left[% | ||||
|       \finitesum{n}{1}{n_{\rE}} | ||||
|       \qty( n - \frac{\rE +  1}{2} ) | ||||
|       + | ||||
|       \frac{\rE^2}{2} | ||||
|     \right] | ||||
|     \twsvacket | ||||
|     = | ||||
|     \frac{\epsilon^2}{8} \twsvacket. | ||||
|   \end{split} | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| %%% TODO %%% | ||||
|  | ||||
|     Looking back at the analysis of the excited and twisted vacua, we already | ||||
|       hinted to the fact that they are not in general \SL{2}{R} invariant.  | ||||
|       In particular we can see that that the excited vacua  $\eexcvacket$ | ||||
|       is a primary field | ||||
|       \begin{equation} | ||||
|         L_{(\rE) k > 0} \eexcvacket =0, | ||||
|         \qquad | ||||
|         L_{(\rE) 0} \eexcvacket = \frac{\rE^2}{2} \eexcvacket | ||||
|         , | ||||
|         \end{equation} | ||||
|       with non trivial conformal dimensions | ||||
|       $\Delta\qty( \eexcvacket ) =  \frac{\rE^2}{2}$. | ||||
|       This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ | ||||
|       inserted at $x=0$ whose bosonized expression is given by | ||||
|       \begin{equation} | ||||
|         \rS_{\rE}\qty( x ) = e^{i \rE \phi( x )}, | ||||
|       \end{equation} | ||||
|       where $\phi$ is such that | ||||
|       \begin{equation} | ||||
|         \left\langle \phi( z ) \phi( w ) \right\rangle = -\frac{1}{( z - | ||||
|           w)^2} | ||||
|         . | ||||
|       \end{equation} | ||||
|  | ||||
|       In fact the minimal conformal dimension is achieved | ||||
|       for $n_{\rE}=n_{\brE}=0$, i.e. | ||||
|       $ | ||||
|       \Delta\qty( \twsvacket ) =  \frac{\epsilon^2}{8} | ||||
|       $ | ||||
|       and we know this is the basic spin field. | ||||
|       We can further check this idea  | ||||
|       by showing that the conformal dimensions are consistent. | ||||
|       Using \eqref{eq:usual-twisted-fermion-conformal-twisted} we get | ||||
|       \begin{equation} | ||||
|         \begin{split} | ||||
|           L_{(\rE) 0}\twsvacket | ||||
|           & = | ||||
|           L_0 | ||||
|           \qty( b^{*\, ( \brE )}_0 b^{*\, ( \brE )}_{-1} \dots b^{*\, ( \brE )}_{2-n_{\rE}}   \eexcvacket) | ||||
|           \\ | ||||
|           & = | ||||
|           \left[ \sum\limits^{n_{\rE}}_{n = 1} ( n - \frac{\rE +  1}{2} ) | ||||
|             +\frac{\rE^2}{2} | ||||
|             \right] \twsvacket | ||||
|            = +\frac{1}{8} \epsilon^2\twsvacket . | ||||
|         \end{split} | ||||
|       \end{equation} | ||||
|  | ||||
|  | ||||
|     \subsection{Generic Case With Defects} | ||||
|  | ||||
|     We will now apply the same procedure to the generic case of one complex | ||||
|   | ||||
		Reference in New Issue
	
	Block a user