First draft of the introduction
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -179,7 +179,7 @@ The transformation maps the Lorentzian worldsheet to a new surface: an infinite | |||||||
|  |  | ||||||
| In these terms, the tracelessness of the stress-energy tensor translates to | In these terms, the tracelessness of the stress-energy tensor translates to | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   T_{z \bz} = 0, |   T_{\xi \bxi} = 0, | ||||||
| \end{equation} | \end{equation} | ||||||
| while its conservation $\partial^{\alpha} T_{\alpha\beta} = 0$ becomes:\footnotemark{} | while its conservation $\partial^{\alpha} T_{\alpha\beta} = 0$ becomes:\footnotemark{} | ||||||
| \footnotetext{% | \footnotetext{% | ||||||
| @@ -969,6 +969,7 @@ The variation of such action with respect to $\delta X$ leads to the equation of | |||||||
|   \partial_{\alpha} \partial^{\alpha}\, X^{\mu}( \tau, \sigma ) = 0 |   \partial_{\alpha} \partial^{\alpha}\, X^{\mu}( \tau, \sigma ) = 0 | ||||||
|   \qquad |   \qquad | ||||||
|   \mu = 0, 1, \dots, D - 1, |   \mu = 0, 1, \dots, D - 1, | ||||||
|  |   \label{eq:tduality:eom} | ||||||
| \end{equation} | \end{equation} | ||||||
| and naturally to the \emph{Neumann} boundary conditions:\footnotemark{} | and naturally to the \emph{Neumann} boundary conditions:\footnotemark{} | ||||||
| \footnotetext{% | \footnotetext{% | ||||||
| @@ -978,6 +979,7 @@ and naturally to the \emph{Neumann} boundary conditions:\footnotemark{} | |||||||
|   \eval{\ipd{\sigma} X^{\mu}( \tau, \sigma )}_{\sigma = 0}^{\sigma = \ell} = 0, |   \eval{\ipd{\sigma} X^{\mu}( \tau, \sigma )}_{\sigma = 0}^{\sigma = \ell} = 0, | ||||||
|   \qquad |   \qquad | ||||||
|   \mu = 0, 1, \dots, D - 1. |   \mu = 0, 1, \dots, D - 1. | ||||||
|  |   \label{eq:tduality:bc} | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
| Closed strings are such that $X^{\mu}( \tau, \sigma + \ell ) = X^{\mu}( \tau, \sigma )$. | Closed strings are such that $X^{\mu}( \tau, \sigma + \ell ) = X^{\mu}( \tau, \sigma )$. | ||||||
| @@ -1004,6 +1006,7 @@ The usual mode expansion in conformal coordinates $X^{\mu}( z, \bz ) = X( z ) + | |||||||
|       + \sum\limits_{n \in \Z \setminus \{0\}} \frac{\balpha_n^{\mu}}{n} \bz^{-n} |       + \sum\limits_{n \in \Z \setminus \{0\}} \frac{\balpha_n^{\mu}}{n} \bz^{-n} | ||||||
|     \right), |     \right), | ||||||
|   \end{split} |   \end{split} | ||||||
|  |   \label{eq:tduality:modes} | ||||||
| \end{equation} | \end{equation} | ||||||
| where $\alpha_0^{\mu} = \balpha_0^{\mu}$ and $\ell = 2 \pi$. | where $\alpha_0^{\mu} = \balpha_0^{\mu}$ and $\ell = 2 \pi$. | ||||||
| When the string is free to move in the entire $D$-dimensional space, then the momentum of the center of mass is $p^{\mu} = \frac{1}{\sqrt{2 \ap}} ( \alpha_0^{\mu} + \balpha_0^{\mu} )$. | When the string is free to move in the entire $D$-dimensional space, then the momentum of the center of mass is $p^{\mu} = \frac{1}{\sqrt{2 \ap}} ( \alpha_0^{\mu} + \balpha_0^{\mu} )$. | ||||||
| @@ -1011,6 +1014,7 @@ When the string is free to move in the entire $D$-dimensional space, then the mo | |||||||
| Now let | Now let | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \ccM^{1, D - 1} = \ccM^{1, D - 2} \otimes S^1( R ), |   \ccM^{1, D - 1} = \ccM^{1, D - 2} \otimes S^1( R ), | ||||||
|  |   \label{eq:tduality:compactification} | ||||||
| \end{equation} | \end{equation} | ||||||
| where $S^1( R )$ is a compact $1$-dimensional circle of radius $R$ such that the boundary conditions for the compact coordinate are | where $S^1( R )$ is a compact $1$-dimensional circle of radius $R$ such that the boundary conditions for the compact coordinate are | ||||||
| \begin{equation} | \begin{equation} | ||||||
| @@ -1098,12 +1102,91 @@ At the level of the modes this \emph{T-duality} acts by swapping the sign of the | |||||||
| \begin{equation} | \begin{equation} | ||||||
|   \alpha_0^{D-1} \stackrel{T}{\longmapsto} \alpha_0^{D-1}, |   \alpha_0^{D-1} \stackrel{T}{\longmapsto} \alpha_0^{D-1}, | ||||||
|   \qquad |   \qquad | ||||||
|   \balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1}. |   \balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1}, | ||||||
|  | \end{equation} | ||||||
|  | defining the dual coordinate | ||||||
|  | \begin{equation} | ||||||
|  |   Y^{D-1}( z, \bz ) = Y^{D-1}( z ) + \overline{Y}^{D-1}( \bz ) =  X^{D-1}( z ) - \bX^{D-1}( \bz ). | ||||||
|  |   \label{eq:tduality:compactdirection} | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| \subsubsection{D-branes from T-duality} | \subsubsection{D-branes from T-duality} | ||||||
|  |  | ||||||
|  | Consider the case of open strings satisfying the \eom~\eqref{eq:tduality:eom} and the coundary conditions~\eqref{eq:tduality:bc}. | ||||||
|  | The usual mode expansion~\eqref{eq:tduality:modes} here leads to | ||||||
|  | \begin{equation} | ||||||
|  |   X^{\mu}( z, \bz ) | ||||||
|  |   = | ||||||
|  |   x_0^{\mu} | ||||||
|  |   - | ||||||
|  |   i\, \ap\, p^{\mu}\, \ln( z \bz ) | ||||||
|  |   + | ||||||
|  |   i\, \sqrt{\frac{\ap}{2}}\, | ||||||
|  |   \sum\limits_{n \in \Z \setminus \{0\}} | ||||||
|  |   \frac{\alpha_n^{\mu}}{n} \left( z^{-n} + \bz^{-n} \right) | ||||||
|  | \end{equation} | ||||||
|  | and $\ell = \pi$. | ||||||
|  |  | ||||||
|  | Under the compactification~\eqref{eq:tduality:compactification} open strings do not wind around the compact cycle. | ||||||
|  | Thus they do not present a quantum number $m$ as closed strings do. | ||||||
|  | When $R \to 0$ modes with non vanishing momentum (i.e.\ with $n \neq 0$) become infinitely massive: | ||||||
|  | \begin{equation} | ||||||
|  |   p^{D-1} | ||||||
|  |   = | ||||||
|  |   \frac{n}{R} \stackrel{R \to 0}{\longrightarrow} \infty. | ||||||
|  | \end{equation} | ||||||
|  | The behaviour resembles field theory: the compactified dimension disappears and open string endpoints live in a $(D-1)$-dimensional hypersurface. | ||||||
|  | This is a consequence of the T-duality transformation applied on the compact direction. | ||||||
|  | In fact the original Neumann boundary condition~\eqref{eq:tduality:bc} becomes a \emph{Dirichlet condition} for $Y^{D-1}$ defined as in~\eqref{eq:tduality:compactdirection}: | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     \eval{\ipd{\sigma} X^{D-1}( \tau, \sigma )}^{\sigma = \pi}_{\sigma = 0} | ||||||
|  |     & = | ||||||
|  |     \eval{\ipd{\sigma} X^{D-1}( e^{\tau_E + i \sigma} ) + \ipd{\sigma} \bX^{D-1}( e^{\tau_E - i \sigma} )}^{\sigma = \pi}_{\sigma = 0} | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     \eval{i\, \ipd{\xi} X^{D-1}( e^{\xi} ) - i\, \ipd{\bxi} \bX^{D-1}( e^{\bxi} )}^{\Im \xi = \pi}_{\Im \xi = 0} | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     \eval{i\, \ipd{\tau_E} Y^{D-1}( e^{\tau_E + i \sigma} ) + i\, \ipd{\tau_E} \overline{Y}^{D-1}( e^{\tau_E - i \sigma} )}^{\sigma = \pi}_{\sigma = 0} | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     \eval{i\, \ipd{\tau} Y^{D-1}( \tau, \sigma )}^{\sigma = \pi}_{\sigma = 0} | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     0. | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | The coordinate of the endpoint in the compact direction is therefore fixed and constrained on a hypersurface called \emph{Dp-brane}, where $p$ stands for the dimension of the surface (in this case $p = D - 1$): | ||||||
|  | \begin{equation} | ||||||
|  |   \begin{split} | ||||||
|  |     Y^{D-1}( \tau, \pi ) - Y^{D-1}( \tau, 0 ) | ||||||
|  |     & = | ||||||
|  |     \finiteint{\sigma}{0}{\pi} \ipd{\sigma} Y^{D-1}( \tau, \sigma ) | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     i\, \finiteint{\sigma}{0}{\pi} \ipd{\tau} X^{D-1}( \tau, \sigma) | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     2 \pi \ap p^{D-1} | ||||||
|  |     \\ | ||||||
|  |     & =  | ||||||
|  |     2 \pi n\, \frac{\ap}{R} | ||||||
|  |     \\ | ||||||
|  |     & = | ||||||
|  |     2 \pi n\, R'. | ||||||
|  |   \end{split} | ||||||
|  | \end{equation} | ||||||
|  | The only difference in the position of the endpoints can only be a multiple of the radius of the compactified dimension. | ||||||
|  | Otherwise they lie on the same hypersurface. | ||||||
|  | The procedure can be generalise to $p$ coordinates and constraining the string to live on a $(D - p)$-brane. | ||||||
|  |  | ||||||
|  | This geometric interpretation of the Dirichlet branes and boundary conditions is the basis for the definition of more complex scenarios in which multiple D-branes are inserted in spacetime. | ||||||
|  | D-branes are however much more than mathematical entities. | ||||||
|  | They also present physical properties such as tension and charge~\cite{DiVecchia:1997:ClassicalPbranesBoundary,DiVecchia:2006:BoundaryStateMagnetized,Polchinski:1995:DirichletBranesRamondRamond}. | ||||||
|  | However these aspects will not be discussed here as the following analysis will mainly focus on geometrical aspects of D-branes in spacetime. | ||||||
|  |  | ||||||
|  |  | ||||||
| % vim ft=tex | % vim ft=tex | ||||||
|   | |||||||
							
								
								
									
										10
									
								
								thesis.bib
									
									
									
									
									
								
							
							
						
						
									
										10
									
								
								thesis.bib
									
									
									
									
									
								
							| @@ -150,6 +150,16 @@ | |||||||
|   number = {NORDITA-1999-77-HE} |   number = {NORDITA-1999-77-HE} | ||||||
| } | } | ||||||
|  |  | ||||||
|  | @article{DiVecchia:2006:BoundaryStateMagnetized, | ||||||
|  |   title = {Boundary {{State}} for {{Magnetized D9 Branes}} and {{One}}-{{Loop Calculation}}}, | ||||||
|  |   author = {Di Vecchia, Paolo and Liccardo, Antonella and Marotta, Raffaele and Pezzella, Franco and Pesando, Igor}, | ||||||
|  |   date = {2006-01}, | ||||||
|  |   url = {http://arxiv.org/abs/hep-th/0601067}, | ||||||
|  |   abstract = {We construct the boundary state describing magnetized D9 branes in R\^\{3,1\} x T\^6 and we use it to compute the annulus and Moebius amplitudes. We derive from them, by using open/closed string duality, the number of Landau levels on the torus T\^d.}, | ||||||
|  |   annotation = {ZSCC: 0000007}, | ||||||
|  |   file = {/home/riccardo/.local/share/zotero/files/di_vecchia_et_al_2006_boundary_state_for_magnetized_d9_branes_and_one-loop_calculation.pdf} | ||||||
|  | } | ||||||
|  |  | ||||||
| @article{Friedan:1986:ConformalInvarianceSupersymmetry, | @article{Friedan:1986:ConformalInvarianceSupersymmetry, | ||||||
|   title = {Conformal Invariance, Supersymmetry and String Theory}, |   title = {Conformal Invariance, Supersymmetry and String Theory}, | ||||||
|   author = {Friedan, Daniel and Martinec, Emil and Shenker, Stephen}, |   author = {Friedan, Daniel and Martinec, Emil and Shenker, Stephen}, | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user