diff --git a/sec/part1/introduction.tex b/sec/part1/introduction.tex index cd5b0ee..5b63531 100644 --- a/sec/part1/introduction.tex +++ b/sec/part1/introduction.tex @@ -179,7 +179,7 @@ The transformation maps the Lorentzian worldsheet to a new surface: an infinite In these terms, the tracelessness of the stress-energy tensor translates to \begin{equation} - T_{z \bz} = 0, + T_{\xi \bxi} = 0, \end{equation} while its conservation $\partial^{\alpha} T_{\alpha\beta} = 0$ becomes:\footnotemark{} \footnotetext{% @@ -969,6 +969,7 @@ The variation of such action with respect to $\delta X$ leads to the equation of \partial_{\alpha} \partial^{\alpha}\, X^{\mu}( \tau, \sigma ) = 0 \qquad \mu = 0, 1, \dots, D - 1, + \label{eq:tduality:eom} \end{equation} and naturally to the \emph{Neumann} boundary conditions:\footnotemark{} \footnotetext{% @@ -978,6 +979,7 @@ and naturally to the \emph{Neumann} boundary conditions:\footnotemark{} \eval{\ipd{\sigma} X^{\mu}( \tau, \sigma )}_{\sigma = 0}^{\sigma = \ell} = 0, \qquad \mu = 0, 1, \dots, D - 1. + \label{eq:tduality:bc} \end{equation} Closed strings are such that $X^{\mu}( \tau, \sigma + \ell ) = X^{\mu}( \tau, \sigma )$. @@ -1004,6 +1006,7 @@ The usual mode expansion in conformal coordinates $X^{\mu}( z, \bz ) = X( z ) + + \sum\limits_{n \in \Z \setminus \{0\}} \frac{\balpha_n^{\mu}}{n} \bz^{-n} \right), \end{split} + \label{eq:tduality:modes} \end{equation} where $\alpha_0^{\mu} = \balpha_0^{\mu}$ and $\ell = 2 \pi$. When the string is free to move in the entire $D$-dimensional space, then the momentum of the center of mass is $p^{\mu} = \frac{1}{\sqrt{2 \ap}} ( \alpha_0^{\mu} + \balpha_0^{\mu} )$. @@ -1011,6 +1014,7 @@ When the string is free to move in the entire $D$-dimensional space, then the mo Now let \begin{equation} \ccM^{1, D - 1} = \ccM^{1, D - 2} \otimes S^1( R ), + \label{eq:tduality:compactification} \end{equation} where $S^1( R )$ is a compact $1$-dimensional circle of radius $R$ such that the boundary conditions for the compact coordinate are \begin{equation} @@ -1098,12 +1102,91 @@ At the level of the modes this \emph{T-duality} acts by swapping the sign of the \begin{equation} \alpha_0^{D-1} \stackrel{T}{\longmapsto} \alpha_0^{D-1}, \qquad - \balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1}. + \balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1}, +\end{equation} +defining the dual coordinate +\begin{equation} + Y^{D-1}( z, \bz ) = Y^{D-1}( z ) + \overline{Y}^{D-1}( \bz ) = X^{D-1}( z ) - \bX^{D-1}( \bz ). + \label{eq:tduality:compactdirection} \end{equation} \subsubsection{D-branes from T-duality} +Consider the case of open strings satisfying the \eom~\eqref{eq:tduality:eom} and the coundary conditions~\eqref{eq:tduality:bc}. +The usual mode expansion~\eqref{eq:tduality:modes} here leads to +\begin{equation} + X^{\mu}( z, \bz ) + = + x_0^{\mu} + - + i\, \ap\, p^{\mu}\, \ln( z \bz ) + + + i\, \sqrt{\frac{\ap}{2}}\, + \sum\limits_{n \in \Z \setminus \{0\}} + \frac{\alpha_n^{\mu}}{n} \left( z^{-n} + \bz^{-n} \right) +\end{equation} +and $\ell = \pi$. + +Under the compactification~\eqref{eq:tduality:compactification} open strings do not wind around the compact cycle. +Thus they do not present a quantum number $m$ as closed strings do. +When $R \to 0$ modes with non vanishing momentum (i.e.\ with $n \neq 0$) become infinitely massive: +\begin{equation} + p^{D-1} + = + \frac{n}{R} \stackrel{R \to 0}{\longrightarrow} \infty. +\end{equation} +The behaviour resembles field theory: the compactified dimension disappears and open string endpoints live in a $(D-1)$-dimensional hypersurface. +This is a consequence of the T-duality transformation applied on the compact direction. +In fact the original Neumann boundary condition~\eqref{eq:tduality:bc} becomes a \emph{Dirichlet condition} for $Y^{D-1}$ defined as in~\eqref{eq:tduality:compactdirection}: +\begin{equation} + \begin{split} + \eval{\ipd{\sigma} X^{D-1}( \tau, \sigma )}^{\sigma = \pi}_{\sigma = 0} + & = + \eval{\ipd{\sigma} X^{D-1}( e^{\tau_E + i \sigma} ) + \ipd{\sigma} \bX^{D-1}( e^{\tau_E - i \sigma} )}^{\sigma = \pi}_{\sigma = 0} + \\ + & = + \eval{i\, \ipd{\xi} X^{D-1}( e^{\xi} ) - i\, \ipd{\bxi} \bX^{D-1}( e^{\bxi} )}^{\Im \xi = \pi}_{\Im \xi = 0} + \\ + & = + \eval{i\, \ipd{\tau_E} Y^{D-1}( e^{\tau_E + i \sigma} ) + i\, \ipd{\tau_E} \overline{Y}^{D-1}( e^{\tau_E - i \sigma} )}^{\sigma = \pi}_{\sigma = 0} + \\ + & = + \eval{i\, \ipd{\tau} Y^{D-1}( \tau, \sigma )}^{\sigma = \pi}_{\sigma = 0} + \\ + & = + 0. + \end{split} +\end{equation} +The coordinate of the endpoint in the compact direction is therefore fixed and constrained on a hypersurface called \emph{Dp-brane}, where $p$ stands for the dimension of the surface (in this case $p = D - 1$): +\begin{equation} + \begin{split} + Y^{D-1}( \tau, \pi ) - Y^{D-1}( \tau, 0 ) + & = + \finiteint{\sigma}{0}{\pi} \ipd{\sigma} Y^{D-1}( \tau, \sigma ) + \\ + & = + i\, \finiteint{\sigma}{0}{\pi} \ipd{\tau} X^{D-1}( \tau, \sigma) + \\ + & = + 2 \pi \ap p^{D-1} + \\ + & = + 2 \pi n\, \frac{\ap}{R} + \\ + & = + 2 \pi n\, R'. + \end{split} +\end{equation} +The only difference in the position of the endpoints can only be a multiple of the radius of the compactified dimension. +Otherwise they lie on the same hypersurface. +The procedure can be generalise to $p$ coordinates and constraining the string to live on a $(D - p)$-brane. + +This geometric interpretation of the Dirichlet branes and boundary conditions is the basis for the definition of more complex scenarios in which multiple D-branes are inserted in spacetime. +D-branes are however much more than mathematical entities. +They also present physical properties such as tension and charge~\cite{DiVecchia:1997:ClassicalPbranesBoundary,DiVecchia:2006:BoundaryStateMagnetized,Polchinski:1995:DirichletBranesRamondRamond}. +However these aspects will not be discussed here as the following analysis will mainly focus on geometrical aspects of D-branes in spacetime. + % vim ft=tex diff --git a/thesis.bib b/thesis.bib index 3bb2423..de0c54b 100644 --- a/thesis.bib +++ b/thesis.bib @@ -150,6 +150,16 @@ number = {NORDITA-1999-77-HE} } +@article{DiVecchia:2006:BoundaryStateMagnetized, + title = {Boundary {{State}} for {{Magnetized D9 Branes}} and {{One}}-{{Loop Calculation}}}, + author = {Di Vecchia, Paolo and Liccardo, Antonella and Marotta, Raffaele and Pezzella, Franco and Pesando, Igor}, + date = {2006-01}, + url = {http://arxiv.org/abs/hep-th/0601067}, + abstract = {We construct the boundary state describing magnetized D9 branes in R\^\{3,1\} x T\^6 and we use it to compute the annulus and Moebius amplitudes. We derive from them, by using open/closed string duality, the number of Landau levels on the torus T\^d.}, + annotation = {ZSCC: 0000007}, + file = {/home/riccardo/.local/share/zotero/files/di_vecchia_et_al_2006_boundary_state_for_magnetized_d9_branes_and_one-loop_calculation.pdf} +} + @article{Friedan:1986:ConformalInvarianceSupersymmetry, title = {Conformal Invariance, Supersymmetry and String Theory}, author = {Friedan, Daniel and Martinec, Emil and Shenker, Stephen},