First draft of the introduction
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -179,7 +179,7 @@ The transformation maps the Lorentzian worldsheet to a new surface: an infinite
|
||||
|
||||
In these terms, the tracelessness of the stress-energy tensor translates to
|
||||
\begin{equation}
|
||||
T_{z \bz} = 0,
|
||||
T_{\xi \bxi} = 0,
|
||||
\end{equation}
|
||||
while its conservation $\partial^{\alpha} T_{\alpha\beta} = 0$ becomes:\footnotemark{}
|
||||
\footnotetext{%
|
||||
@@ -969,6 +969,7 @@ The variation of such action with respect to $\delta X$ leads to the equation of
|
||||
\partial_{\alpha} \partial^{\alpha}\, X^{\mu}( \tau, \sigma ) = 0
|
||||
\qquad
|
||||
\mu = 0, 1, \dots, D - 1,
|
||||
\label{eq:tduality:eom}
|
||||
\end{equation}
|
||||
and naturally to the \emph{Neumann} boundary conditions:\footnotemark{}
|
||||
\footnotetext{%
|
||||
@@ -978,6 +979,7 @@ and naturally to the \emph{Neumann} boundary conditions:\footnotemark{}
|
||||
\eval{\ipd{\sigma} X^{\mu}( \tau, \sigma )}_{\sigma = 0}^{\sigma = \ell} = 0,
|
||||
\qquad
|
||||
\mu = 0, 1, \dots, D - 1.
|
||||
\label{eq:tduality:bc}
|
||||
\end{equation}
|
||||
|
||||
Closed strings are such that $X^{\mu}( \tau, \sigma + \ell ) = X^{\mu}( \tau, \sigma )$.
|
||||
@@ -1004,6 +1006,7 @@ The usual mode expansion in conformal coordinates $X^{\mu}( z, \bz ) = X( z ) +
|
||||
+ \sum\limits_{n \in \Z \setminus \{0\}} \frac{\balpha_n^{\mu}}{n} \bz^{-n}
|
||||
\right),
|
||||
\end{split}
|
||||
\label{eq:tduality:modes}
|
||||
\end{equation}
|
||||
where $\alpha_0^{\mu} = \balpha_0^{\mu}$ and $\ell = 2 \pi$.
|
||||
When the string is free to move in the entire $D$-dimensional space, then the momentum of the center of mass is $p^{\mu} = \frac{1}{\sqrt{2 \ap}} ( \alpha_0^{\mu} + \balpha_0^{\mu} )$.
|
||||
@@ -1011,6 +1014,7 @@ When the string is free to move in the entire $D$-dimensional space, then the mo
|
||||
Now let
|
||||
\begin{equation}
|
||||
\ccM^{1, D - 1} = \ccM^{1, D - 2} \otimes S^1( R ),
|
||||
\label{eq:tduality:compactification}
|
||||
\end{equation}
|
||||
where $S^1( R )$ is a compact $1$-dimensional circle of radius $R$ such that the boundary conditions for the compact coordinate are
|
||||
\begin{equation}
|
||||
@@ -1098,12 +1102,91 @@ At the level of the modes this \emph{T-duality} acts by swapping the sign of the
|
||||
\begin{equation}
|
||||
\alpha_0^{D-1} \stackrel{T}{\longmapsto} \alpha_0^{D-1},
|
||||
\qquad
|
||||
\balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1}.
|
||||
\balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1},
|
||||
\end{equation}
|
||||
defining the dual coordinate
|
||||
\begin{equation}
|
||||
Y^{D-1}( z, \bz ) = Y^{D-1}( z ) + \overline{Y}^{D-1}( \bz ) = X^{D-1}( z ) - \bX^{D-1}( \bz ).
|
||||
\label{eq:tduality:compactdirection}
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
\subsubsection{D-branes from T-duality}
|
||||
|
||||
Consider the case of open strings satisfying the \eom~\eqref{eq:tduality:eom} and the coundary conditions~\eqref{eq:tduality:bc}.
|
||||
The usual mode expansion~\eqref{eq:tduality:modes} here leads to
|
||||
\begin{equation}
|
||||
X^{\mu}( z, \bz )
|
||||
=
|
||||
x_0^{\mu}
|
||||
-
|
||||
i\, \ap\, p^{\mu}\, \ln( z \bz )
|
||||
+
|
||||
i\, \sqrt{\frac{\ap}{2}}\,
|
||||
\sum\limits_{n \in \Z \setminus \{0\}}
|
||||
\frac{\alpha_n^{\mu}}{n} \left( z^{-n} + \bz^{-n} \right)
|
||||
\end{equation}
|
||||
and $\ell = \pi$.
|
||||
|
||||
Under the compactification~\eqref{eq:tduality:compactification} open strings do not wind around the compact cycle.
|
||||
Thus they do not present a quantum number $m$ as closed strings do.
|
||||
When $R \to 0$ modes with non vanishing momentum (i.e.\ with $n \neq 0$) become infinitely massive:
|
||||
\begin{equation}
|
||||
p^{D-1}
|
||||
=
|
||||
\frac{n}{R} \stackrel{R \to 0}{\longrightarrow} \infty.
|
||||
\end{equation}
|
||||
The behaviour resembles field theory: the compactified dimension disappears and open string endpoints live in a $(D-1)$-dimensional hypersurface.
|
||||
This is a consequence of the T-duality transformation applied on the compact direction.
|
||||
In fact the original Neumann boundary condition~\eqref{eq:tduality:bc} becomes a \emph{Dirichlet condition} for $Y^{D-1}$ defined as in~\eqref{eq:tduality:compactdirection}:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\eval{\ipd{\sigma} X^{D-1}( \tau, \sigma )}^{\sigma = \pi}_{\sigma = 0}
|
||||
& =
|
||||
\eval{\ipd{\sigma} X^{D-1}( e^{\tau_E + i \sigma} ) + \ipd{\sigma} \bX^{D-1}( e^{\tau_E - i \sigma} )}^{\sigma = \pi}_{\sigma = 0}
|
||||
\\
|
||||
& =
|
||||
\eval{i\, \ipd{\xi} X^{D-1}( e^{\xi} ) - i\, \ipd{\bxi} \bX^{D-1}( e^{\bxi} )}^{\Im \xi = \pi}_{\Im \xi = 0}
|
||||
\\
|
||||
& =
|
||||
\eval{i\, \ipd{\tau_E} Y^{D-1}( e^{\tau_E + i \sigma} ) + i\, \ipd{\tau_E} \overline{Y}^{D-1}( e^{\tau_E - i \sigma} )}^{\sigma = \pi}_{\sigma = 0}
|
||||
\\
|
||||
& =
|
||||
\eval{i\, \ipd{\tau} Y^{D-1}( \tau, \sigma )}^{\sigma = \pi}_{\sigma = 0}
|
||||
\\
|
||||
& =
|
||||
0.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The coordinate of the endpoint in the compact direction is therefore fixed and constrained on a hypersurface called \emph{Dp-brane}, where $p$ stands for the dimension of the surface (in this case $p = D - 1$):
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
Y^{D-1}( \tau, \pi ) - Y^{D-1}( \tau, 0 )
|
||||
& =
|
||||
\finiteint{\sigma}{0}{\pi} \ipd{\sigma} Y^{D-1}( \tau, \sigma )
|
||||
\\
|
||||
& =
|
||||
i\, \finiteint{\sigma}{0}{\pi} \ipd{\tau} X^{D-1}( \tau, \sigma)
|
||||
\\
|
||||
& =
|
||||
2 \pi \ap p^{D-1}
|
||||
\\
|
||||
& =
|
||||
2 \pi n\, \frac{\ap}{R}
|
||||
\\
|
||||
& =
|
||||
2 \pi n\, R'.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The only difference in the position of the endpoints can only be a multiple of the radius of the compactified dimension.
|
||||
Otherwise they lie on the same hypersurface.
|
||||
The procedure can be generalise to $p$ coordinates and constraining the string to live on a $(D - p)$-brane.
|
||||
|
||||
This geometric interpretation of the Dirichlet branes and boundary conditions is the basis for the definition of more complex scenarios in which multiple D-branes are inserted in spacetime.
|
||||
D-branes are however much more than mathematical entities.
|
||||
They also present physical properties such as tension and charge~\cite{DiVecchia:1997:ClassicalPbranesBoundary,DiVecchia:2006:BoundaryStateMagnetized,Polchinski:1995:DirichletBranesRamondRamond}.
|
||||
However these aspects will not be discussed here as the following analysis will mainly focus on geometrical aspects of D-branes in spacetime.
|
||||
|
||||
|
||||
% vim ft=tex
|
||||
|
||||
10
thesis.bib
10
thesis.bib
@@ -150,6 +150,16 @@
|
||||
number = {NORDITA-1999-77-HE}
|
||||
}
|
||||
|
||||
@article{DiVecchia:2006:BoundaryStateMagnetized,
|
||||
title = {Boundary {{State}} for {{Magnetized D9 Branes}} and {{One}}-{{Loop Calculation}}},
|
||||
author = {Di Vecchia, Paolo and Liccardo, Antonella and Marotta, Raffaele and Pezzella, Franco and Pesando, Igor},
|
||||
date = {2006-01},
|
||||
url = {http://arxiv.org/abs/hep-th/0601067},
|
||||
abstract = {We construct the boundary state describing magnetized D9 branes in R\^\{3,1\} x T\^6 and we use it to compute the annulus and Moebius amplitudes. We derive from them, by using open/closed string duality, the number of Landau levels on the torus T\^d.},
|
||||
annotation = {ZSCC: 0000007},
|
||||
file = {/home/riccardo/.local/share/zotero/files/di_vecchia_et_al_2006_boundary_state_for_magnetized_d9_branes_and_one-loop_calculation.pdf}
|
||||
}
|
||||
|
||||
@article{Friedan:1986:ConformalInvarianceSupersymmetry,
|
||||
title = {Conformal Invariance, Supersymmetry and String Theory},
|
||||
author = {Friedan, Daniel and Martinec, Emil and Shenker, Stephen},
|
||||
|
||||
Reference in New Issue
Block a user