Correct typo with regex
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -287,14 +287,14 @@ We therefore have
|
||||
\end{equation}
|
||||
Using Fourier transforms it follows that the eigenmodes are
|
||||
\begin{equation}
|
||||
\phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
\phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
=
|
||||
e^{i k_+ v + i l z + i \vec{k} \cdot \vec{x}}\,
|
||||
\tphi_{k_-kr}(u),
|
||||
\tphi_{\kmkr}(u),
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\tphi_{k_-kr}(u)
|
||||
\tphi_{\kmkr}(u)
|
||||
=
|
||||
\frac{1}{\sqrt{\qty( 2 \pi )^D~ \abs{2 \Delta k_+\, u}}}
|
||||
e^{
|
||||
@@ -304,7 +304,7 @@ with
|
||||
\end{equation}
|
||||
and
|
||||
\begin{equation}
|
||||
\phi^*_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
\phi^*_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
=
|
||||
\phi_{\mkmkr}\qty(u,\, v,\, z,\, \vec{x}).
|
||||
\end{equation}
|
||||
@@ -312,7 +312,7 @@ We chose the numeric factor in order to get a canonical normalisation:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
&
|
||||
\qty( \phi_{k_-krN{1}},\, \phi_{k_-krN{2}} )
|
||||
\qty( \phi_{\kmkrN{1}},\, \phi_{\kmkrN{2}} )
|
||||
\\
|
||||
= &
|
||||
\int\limits_{\R^{D-3}} \dd[D-3]{\vec{x}}\,
|
||||
@@ -320,7 +320,7 @@ We chose the numeric factor in order to get a canonical normalisation:
|
||||
\infinfint{v}\,
|
||||
\finiteint{z}{0}{2\pi}
|
||||
\abs{\Delta u}\,
|
||||
\phi_{k_-krN{1}}\, \phi_{k_-krN{2}}
|
||||
\phi_{\kmkrN{1}}\, \phi_{\kmkrN{2}}
|
||||
\\
|
||||
= &
|
||||
\delta^{D-3}( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)})\,
|
||||
@@ -337,8 +337,8 @@ We can then perform the off-shell expansion
|
||||
\infinfint{k_+}
|
||||
\infinfint{r}
|
||||
\infinfsum{l}
|
||||
\cA_{k_-kr}\,
|
||||
\phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}),
|
||||
\cA_{\kmkr}\,
|
||||
\phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}),
|
||||
\end{equation}
|
||||
such that the scalar kinetic term becomes
|
||||
\begin{equation}
|
||||
@@ -349,8 +349,8 @@ such that the scalar kinetic term becomes
|
||||
\infinfint{r}
|
||||
\infinfsum{l}
|
||||
\qty(r - M^2)\,
|
||||
\cA_{k_-kr}\,
|
||||
\cA_{k_-kr}^*.
|
||||
\cA_{\kmkr}\,
|
||||
\cA_{\kmkr}^*.
|
||||
\end{equation}
|
||||
|
||||
|
||||
@@ -461,7 +461,7 @@ We proceed hierarchically: first we solve for $a_v$ and $a_i$ whose equations ar
|
||||
We get the solutions:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\norm{\tildea_{k_-kr\, \alpha}(u)}
|
||||
\norm{\tildea_{\kmkr\, \alpha}(u)}
|
||||
\,=
|
||||
\mqty(%
|
||||
\tildea_u
|
||||
@@ -479,7 +479,7 @@ We get the solutions:
|
||||
\qty{ \underu, \underv, \underz,\underi }
|
||||
}
|
||||
\pol{\alpha}
|
||||
\norm{\tildea^{\underline{\alpha}}_{k_-kr\, \alpha}(u)}
|
||||
\norm{\tildea^{\underline{\alpha}}_{\kmkr\, \alpha}(u)}
|
||||
\\
|
||||
& =
|
||||
\pol{u}
|
||||
@@ -492,7 +492,7 @@ We get the solutions:
|
||||
\\
|
||||
0
|
||||
)\,
|
||||
\tphi_{k_-kr}(u)
|
||||
\tphi_{\kmkr}(u)
|
||||
\\
|
||||
& +
|
||||
\pol{v}
|
||||
@@ -507,7 +507,7 @@ We get the solutions:
|
||||
\\
|
||||
0
|
||||
)\,
|
||||
\tphi_{k_-kr}(u)
|
||||
\tphi_{\kmkr}(u)
|
||||
\\
|
||||
& +
|
||||
\pol{z}
|
||||
@@ -520,7 +520,7 @@ We get the solutions:
|
||||
\\
|
||||
0
|
||||
)\,
|
||||
\tphi_{k_-kr}(u)
|
||||
\tphi_{\kmkr}(u)
|
||||
\\
|
||||
& +
|
||||
\pol{j}
|
||||
@@ -533,7 +533,7 @@ We get the solutions:
|
||||
\\
|
||||
\delta_{\underline{ij}}
|
||||
)\,
|
||||
\tphi_{k_-kr}(u),
|
||||
\tphi_{\kmkr}(u),
|
||||
\label{eq:Orbifold_spin1_pol}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
@@ -549,13 +549,13 @@ then we can expand the off-shell fields as
|
||||
}
|
||||
\infinfsum{l}
|
||||
\pol{\alpha}\,
|
||||
{a}^{\underline{\alpha}}_{k_-kr\, \alpha}\qty(u,\, v,\, z,\, \vec{x} ),
|
||||
{a}^{\underline{\alpha}}_{\kmkr\, \alpha}\qty(u,\, v,\, z,\, \vec{x} ),
|
||||
\end{equation}
|
||||
where
|
||||
\begin{equation}
|
||||
a^{\underline{\alpha}}_{k_-kr\, \alpha}\qty(u,\, v,\, z,\, \vec{x})
|
||||
a^{\underline{\alpha}}_{\kmkr\, \alpha}\qty(u,\, v,\, z,\, \vec{x})
|
||||
=
|
||||
\tildea^{\underline{\alpha}}_{k_-kr\, \alpha}(u)\,
|
||||
\tildea^{\underline{\alpha}}_{\kmkr\, \alpha}(u)\,
|
||||
e^{i\, \qty( k_+ v + l z + \vec{k} \cdot \vec{x})}
|
||||
\end{equation}
|
||||
and $\int \ccD k = \int\limits_{\R^{D-3}} \dd[D-3]{\vec{k}} \infinfint{k_+} \infinfint{r}$.
|
||||
@@ -573,7 +573,7 @@ We can also compute the normalisation as
|
||||
\\
|
||||
& \times
|
||||
g^{\alpha\beta}\,
|
||||
a_{k_-krN{1}\, \alpha}\, a_{k_-krN{2}\, \beta}
|
||||
a_{\kmkrN{1}\, \alpha}\, a_{\kmkrN{2}\, \beta}
|
||||
\\
|
||||
& =
|
||||
\genpolN{1} \circ \genpolN{2}
|
||||
@@ -624,9 +624,9 @@ The photon kinetic term becomes
|
||||
\infinfint{r}
|
||||
\infinfsum{l}\,
|
||||
\frac{r}{2}\,
|
||||
\cE_{k_-kr}\,
|
||||
\cE_{\kmkr}\,
|
||||
\circ
|
||||
\cE_{k_-kr}^*.
|
||||
\cE_{\kmkr}^*.
|
||||
\end{equation}
|
||||
|
||||
|
||||
@@ -654,7 +654,7 @@ Its computation involves integrals such as
|
||||
\int \dd{u}\,
|
||||
\abs{\Delta u}\,
|
||||
\qty(\frac{l}{u})^2
|
||||
\finiteprod{i}{1}{3} \tphi_{k_-krN{i}}
|
||||
\finiteprod{i}{1}{3} \tphi_{\kmkrN{i}}
|
||||
\sim
|
||||
\int\limits_{u \sim 0} \dd{u}\,
|
||||
\qty(\frac{l^2}{\abs{u}^{\frac{5}{2}}})
|
||||
@@ -668,7 +668,7 @@ and
|
||||
\int \dd{u}\,
|
||||
\abs{\Delta u}\,
|
||||
\qty(\frac{1}{u})
|
||||
\finiteprod{i}{1}{3} \tphi_{k_-krN{i}}
|
||||
\finiteprod{i}{1}{3} \tphi_{\kmkrN{i}}
|
||||
\sim
|
||||
\int\limits_{u \sim 0} \dd{u}\,
|
||||
\qty(\frac{1}{u\, \abs{u}^{\frac{1}{2}}})
|
||||
@@ -720,7 +720,7 @@ and we get:\footnotemark{}
|
||||
\delta_{\finitesum{i}{1}{3} l_{\qty(i)},\, 0}\,
|
||||
\\
|
||||
& \times
|
||||
\qty(\cA_{\mkmkrN{2}})^*\, \cA_{k_-krN{3}}
|
||||
\qty(\cA_{\mkmkrN{2}})^*\, \cA_{\kmkrN{3}}
|
||||
\\
|
||||
& \times
|
||||
\Biggl\lbrace
|
||||
@@ -782,19 +782,19 @@ In the previous expressions we also defined for future use:
|
||||
\infinfint{u}\,
|
||||
\abs{\Delta u}\, u^{\nu}\,
|
||||
\finiteprod{i}{1}{N}
|
||||
\tphi_{k_-krN{i}}
|
||||
\tphi_{\kmkrN{i}}
|
||||
\\
|
||||
\cJ_{\qty{N}}^{\qty[\nu]}
|
||||
& = &
|
||||
\infinfint{u}\,
|
||||
\abs{\Delta}\, \abs{u}^{1 + \nu}
|
||||
\finiteprod{i}{1}{N} \tphi_{k_-krN{i}}.
|
||||
\finiteprod{i}{1}{N} \tphi_{\kmkrN{i}}.
|
||||
\end{eqnarray}
|
||||
For the sake of brevity from now on we use
|
||||
\begin{eqnarray}
|
||||
\tphi_{\qty(i)} & = & \tphi_{k_-krN{i}},
|
||||
\tphi_{\qty(i)} & = & \tphi_{\kmkrN{i}},
|
||||
\\
|
||||
\tphi_{\qty(i)} & = & \tphi_{k_-krN{i}}
|
||||
\tphi_{\qty(i)} & = & \tphi_{\kmkrN{i}}
|
||||
\end{eqnarray}
|
||||
when not causing confusion.
|
||||
|
||||
@@ -835,7 +835,7 @@ which can be expressed using the modes as:
|
||||
& \times
|
||||
\Biggl\lbrace
|
||||
e^2\,
|
||||
\qty(\cA_{\mkmkrN{3}})^* \cA_{k_-krN{4}}
|
||||
\qty(\cA_{\mkmkrN{3}})^* \cA_{\kmkrN{4}}
|
||||
\\
|
||||
& \times
|
||||
\Biggl[
|
||||
@@ -879,8 +879,8 @@ where
|
||||
\qty(\cA_{\mkmkrN{2}})^*\,
|
||||
\\
|
||||
& \times
|
||||
\cA_{k_-krN{3}}\,
|
||||
\cA_{k_-krN{4}}.
|
||||
\cA_{\kmkrN{3}}\,
|
||||
\cA_{\kmkrN{4}}.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
When setting $l_{\qty(*)} = 0$ all the surviving terms are divergent.
|
||||
@@ -896,12 +896,12 @@ From the discussion in the previous section the origin of the divergences is the
|
||||
When $l = 0$ the highest order singularity of the Fourier transformed d'Alembertian equation vanishes.
|
||||
Explicitly we have:
|
||||
\begin{equation}
|
||||
A\, \ipd{u} \tphi_{k_-kr}
|
||||
A\, \ipd{u} \tphi_{\kmkr}
|
||||
+
|
||||
B(u)\, \tphi_{k_-kr}
|
||||
B(u)\, \tphi_{\kmkr}
|
||||
=
|
||||
A\, e^{-\int^u \frac{B(u)}{A} du}\,
|
||||
\ipd{u} \qty[ e^{+\int^u \frac{B(u)}{A} du} \tphi_{k_-kr} ]
|
||||
\ipd{u} \qty[ e^{+\int^u \frac{B(u)}{A} du} \tphi_{\kmkr} ]
|
||||
=
|
||||
0,
|
||||
\end{equation}
|
||||
@@ -1269,7 +1269,7 @@ to finally get:\footnotemark{}
|
||||
& =
|
||||
\cN\,
|
||||
\infinfsum{l}
|
||||
\phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
\phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
e^{i\, l\, \frac{k_2}{\Delta k_+}},
|
||||
\end{split}
|
||||
\label{eq:Psi_phi}
|
||||
@@ -1284,7 +1284,7 @@ when $k_+ \neq 0$ and where
|
||||
The fact that $\Psi$ depends only on the equivalence class $\qty[k_+\, k_-\, k_2\, k]$ allows us to restrict $0 \le \frac{k_2}{\Delta\, \abs{k_+}} < 2 \pi$ so that we can invert the previous expression and get:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
\phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
& =
|
||||
\frac{1}{\cN}\,
|
||||
\frac{1}{2 \pi \Delta \abs{k_+}}
|
||||
@@ -1336,7 +1336,7 @@ The explicit expression for the eigenfunction with constant $\epsilon_+$, $\epsi
|
||||
}
|
||||
\\
|
||||
& =
|
||||
\cN
|
||||
\cN\,
|
||||
\psi^{[1]}_{k_+\, k_-\, k_2;\, \epsilon_+\, \epsilon_-\, \epsilon_2}\qty(u,\, v,\, z),
|
||||
\end{split}
|
||||
\end{equation}
|
||||
@@ -1370,7 +1370,7 @@ Building the corresponding function on the orbifold amounts to summing the image
|
||||
\psi_{k}\qty( \cK^n x)
|
||||
=
|
||||
\infinfsum{n}
|
||||
\cK^{-n}
|
||||
\cK^{-n}\,
|
||||
\vec{\epsilon} \cdot \dd{x}~
|
||||
\psi_{\cK^{-n} k}\qty(x).
|
||||
\end{split}
|
||||
@@ -1508,7 +1508,7 @@ Then it follows that
|
||||
\label{eq:a_uvz_from_covering}
|
||||
\end{equation}
|
||||
Many coefficients of $\Psi$ or its derivatives contain $k_2$.
|
||||
They cannot be expressed using the quantum numbers $k_-kr$ of the orbifold but are invariant on it.
|
||||
They cannot be expressed using the quantum numbers $\kmkr$ of the orbifold but are invariant on it.
|
||||
They are new orbifold quantities we interpret as orbifold polarisations.
|
||||
Using~\eqref{eq:Psi_phi} we can finally write
|
||||
\begin{equation}
|
||||
@@ -1516,7 +1516,7 @@ Using~\eqref{eq:Psi_phi} we can finally write
|
||||
\Psi^{[1]}_{[k,\, \epsilon]}\qty(\qty[x])
|
||||
& =
|
||||
\infinfsum{l}
|
||||
\phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
\phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
e^{i\, l \frac{k_2}{\Delta k_+}}
|
||||
\\
|
||||
& \times
|
||||
@@ -1931,7 +1931,7 @@ The final expression for the orbifold symmetric tensor is
|
||||
\Psi^{[2]}_{\qty[\vec{k},\, S]}\qty(\qty[x])
|
||||
& =
|
||||
\infinfsum{l}
|
||||
\phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
\phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})
|
||||
e^{i\, l \frac{k_2}{\Delta k_+}}
|
||||
\\
|
||||
& \times
|
||||
@@ -2870,26 +2870,29 @@ We therefore need solve:
|
||||
\end{equation}
|
||||
To this purpose, we introduce a Fourier transformation over $v,\, w,\, z,\, \vec{x}$:
|
||||
\begin{equation}
|
||||
\phi_r\qty( u,\, v,\, w,\, z,\, \vec{x})
|
||||
=
|
||||
\infinfsum{l}\,
|
||||
\int\limits_{\R^{D-4}} \dd[D-4]{\vec{k}}
|
||||
\infinfint{k_+}
|
||||
\infinfint{p}\,
|
||||
e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )}
|
||||
\tphi_{k_-krgen}(u),
|
||||
\begin{split}
|
||||
& \phi_r\qty( u,\, v,\, w,\, z,\, \vec{x})
|
||||
\\
|
||||
& =
|
||||
\infinfsum{l}\,
|
||||
\int\limits_{\R^{D-4}} \dd[D-4]{\vec{k}}
|
||||
\infinfint{k_+}
|
||||
\infinfint{p}\,
|
||||
e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )}
|
||||
\tphi_{\kmkrgen}(u),
|
||||
\end{split}
|
||||
\end{equation}
|
||||
where we defined $k_+,\, p,\, l,\, \vec{k}$ as associated momenta to $v,\, w,\, z,\, \vec{x}$ respectively.
|
||||
We find:
|
||||
\begin{equation}
|
||||
\phi_{k_-krgen}\qty( u,\, v,\, w,\, z,\, \vec{x} )
|
||||
\phi_{\kmkrgen}\qty( u,\, v,\, w,\, z,\, \vec{x} )
|
||||
=
|
||||
e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )}
|
||||
\tphi_{k_-krgen}( u ).
|
||||
\tphi_{\kmkrgen}( u ).
|
||||
\end{equation}
|
||||
where
|
||||
\begin{equation}
|
||||
\tphi_{k_-krgen}( u )
|
||||
\tphi_{\kmkrgen}( u )
|
||||
=
|
||||
\frac{1}{2 \sqrt{\qty(2 \pi)^D \abs{\Delta_2 \Delta_3 k_+}}}\,
|
||||
\frac{1}{\abs{u}}
|
||||
@@ -2906,7 +2909,7 @@ where
|
||||
These solutions present the right normalisation, as we can verify through the product:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
& \left( \phi_{k_-krgenN{1}},\, \phi_{k_-krgenN{2}} \right)
|
||||
& \left( \phi_{\kmkrgenN{1}},\, \phi_{\kmkrgenN{2}} \right)
|
||||
\\
|
||||
& =
|
||||
\int\limits_{\R^{D-4}} \dd[D-4]{\vec{x}}
|
||||
@@ -2917,8 +2920,8 @@ These solutions present the right normalisation, as we can verify through the pr
|
||||
2 \abs{\Delta_2 \Delta_3} u^2
|
||||
\\
|
||||
& \times
|
||||
\phi_{k_-krgenN{1}}~
|
||||
\phi_{k_-krgenN{2}}
|
||||
\phi_{\kmkrgenN{1}}~
|
||||
\phi_{\kmkrgenN{2}}
|
||||
\\
|
||||
& =
|
||||
\delta^{D - 4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\,
|
||||
@@ -2942,7 +2945,7 @@ Then we have the off-shell expansion:
|
||||
\infinfint{r}
|
||||
\\
|
||||
& \times
|
||||
\frac{\cA_{k_-krgen}}{\abs{u}}
|
||||
\frac{\cA_{\kmkrgen}}{\abs{u}}
|
||||
e^{%
|
||||
i\, \qty(%
|
||||
k_+ v + p w + l z + \vec{k} \cdot \vec{x}
|
||||
@@ -3115,15 +3118,15 @@ These equations can be solved using standard techniques through a Fourier transf
|
||||
\\
|
||||
& \times
|
||||
e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )}
|
||||
\tildea_{k_-krgen\, \alpha}(u).
|
||||
\tildea_{\kmkrgen\, \alpha}(u).
|
||||
\end{split}
|
||||
\end{equation}
|
||||
We first solve the equations for $\tildea_{k_-krgen\, v}$ and $\tildea_{k_-krgen\, i}$ since they are identical to the scalar equation~\eqref{eq:scalar_eom}.
|
||||
We then insert their solutions as sources for the equations for $\tildea_{k_-krgen\, u}$, $\tildea_{k_-krgen\, w}$ and $\tildea_{k_-krgen\, z}$.
|
||||
We first solve the equations for $\tildea_{\kmkrgen\, v}$ and $\tildea_{\kmkrgen\, i}$ since they are identical to the scalar equation~\eqref{eq:scalar_eom}.
|
||||
We then insert their solutions as sources for the equations for $\tildea_{\kmkrgen\, u}$, $\tildea_{\kmkrgen\, w}$ and $\tildea_{\kmkrgen\, z}$.
|
||||
The solutions can be written as the expansion:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\norm{\tildea_{k_-krgen\, \alpha}(u)}
|
||||
\norm{\tildea_{\kmkrgen\, \alpha}(u)}
|
||||
& =
|
||||
\mqty(%
|
||||
\tildea_u
|
||||
@@ -3139,16 +3142,16 @@ The solutions can be written as the expansion:
|
||||
\\
|
||||
& =
|
||||
\sum\limits_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}}
|
||||
\cE_{k_-krgen\, \ualpha}\,
|
||||
\norm{\tildea^{\ualpha}_{k_-krgen\, \alpha}(u)}
|
||||
\cE_{\kmkrgen\, \ualpha}\,
|
||||
\norm{\tildea^{\ualpha}_{\kmkrgen\, \alpha}(u)}
|
||||
\\
|
||||
& =
|
||||
\cE_{k_-krgen\, \underu}\,
|
||||
\cE_{\kmkrgen\, \underu}\,
|
||||
\mqty( 1 \\ 0 \\ 0 \\ 0 \\ 0 )\,
|
||||
\tphi_{k_-krgen}
|
||||
\tphi_{\kmkrgen}
|
||||
\\
|
||||
& +
|
||||
\cE_{k_-krgen\, \underv}\,
|
||||
\cE_{\kmkrgen\, \underv}\,
|
||||
\mqty(%
|
||||
\frac{i}{2 k_+ u}
|
||||
+
|
||||
@@ -3163,10 +3166,10 @@ The solutions can be written as the expansion:
|
||||
\\
|
||||
0
|
||||
)\,
|
||||
\tphi_{k_-krgen}
|
||||
\tphi_{\kmkrgen}
|
||||
\\
|
||||
& +
|
||||
\cE_{k_-krgen\, \underw}\,
|
||||
\cE_{\kmkrgen\, \underw}\,
|
||||
\mqty(
|
||||
\frac{1}{4 k_+ \abs{u}}
|
||||
\qty( \frac{l + p}{\Delta_2^2} - \frac{l - p}{\Delta_3^2} )
|
||||
@@ -3179,10 +3182,10 @@ The solutions can be written as the expansion:
|
||||
\\
|
||||
0
|
||||
)\,
|
||||
\tphi_{k_-krgen}
|
||||
\tphi_{\kmkrgen}
|
||||
\\
|
||||
& +
|
||||
\cE_{k_-krgen\, \underz}\,
|
||||
\cE_{\kmkrgen\, \underz}\,
|
||||
\mqty(
|
||||
\frac{1}{4 k_+ \abs{u}}
|
||||
\qty( \frac{l + p}{\Delta_2^2} + \frac{l - p}{\Delta_3^2} )
|
||||
@@ -3195,20 +3198,20 @@ The solutions can be written as the expansion:
|
||||
\\
|
||||
0
|
||||
)\,
|
||||
\tphi_{k_-krgen}
|
||||
\tphi_{\kmkrgen}
|
||||
\\
|
||||
& +
|
||||
\cE_{k_-krgen\, \underj}\,
|
||||
\cE_{\kmkrgen\, \underj}\,
|
||||
\mqty( 0 \\ 0 \\ 0 \\ 0 \\ \delta_{\underline{i j}} )\,
|
||||
\tphi_{k_-krgen}
|
||||
\tphi_{\kmkrgen}
|
||||
\end{split}
|
||||
\end{equation}
|
||||
Consider the Fourier transformed functions:
|
||||
\begin{equation}
|
||||
a^{\ualpha}_{k_-krgen\, \alpha}\qty( u,\, v,\, w,\, z,\, \vec{x} )
|
||||
a^{\ualpha}_{\kmkrgen\, \alpha}\qty( u,\, v,\, w,\, z,\, \vec{x} )
|
||||
=
|
||||
e^{i\, \qty(k_+ v + p w + l z + \vec{k} \cdot \vec{x})}
|
||||
\tildea^{\ualpha}_{k_-krgen\, \alpha}( u ),
|
||||
\tildea^{\ualpha}_{\kmkrgen\, \alpha}( u ),
|
||||
\end{equation}
|
||||
then we can expand the off shell fields as
|
||||
\begin{equation}
|
||||
@@ -3223,8 +3226,8 @@ then we can expand the off shell fields as
|
||||
\\
|
||||
& \times
|
||||
\sum_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}}
|
||||
\cE_{k_-krgen\, \alpha}\,
|
||||
a^{\ualpha}_{k_-krgen\, \alpha}(x).
|
||||
\cE_{\kmkrgen\, \alpha}\,
|
||||
a^{\ualpha}_{\kmkrgen\, \alpha}(x).
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
@@ -3241,7 +3244,7 @@ We can compute the normalisation as:
|
||||
2 \abs{\Delta_2 \Delta_3} u^2
|
||||
\\
|
||||
& \times
|
||||
\qty(g^{\alpha\beta}\, a_{k_-krgenN{1}\, \alpha}\, a_{k_-krgenN{2}\, \beta})
|
||||
\qty(g^{\alpha\beta}\, a_{\kmkrgenN{1}\, \alpha}\, a_{\kmkrgenN{2}\, \beta})
|
||||
\\
|
||||
& =
|
||||
\delta^{D-4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\,
|
||||
@@ -3251,7 +3254,7 @@ We can compute the normalisation as:
|
||||
\delta\qty( r_1 - r_2 )
|
||||
\\
|
||||
& \times
|
||||
\cE_{k_-krgenN{1}} \circ \cE_{k_-krgenN{2}},
|
||||
\cE_{\kmkrgenN{1}} \circ \cE_{\kmkrgenN{2}},
|
||||
\end{split}
|
||||
\end{equation}
|
||||
where
|
||||
@@ -3285,16 +3288,16 @@ where
|
||||
is independent of the coordinates.
|
||||
The Lorenz gauge now reads:
|
||||
\begin{equation}
|
||||
\eta^{i\underj}\, k_i \, \cE_{{k_-krgen} \underj}
|
||||
\eta^{i\underj}\, k_i \, \cE_{{\kmkrgen} \underj}
|
||||
-
|
||||
k_+
|
||||
\cE_{k_-krgen\, \underu}
|
||||
\cE_{\kmkrgen\, \underu}
|
||||
-
|
||||
\frac{\vec{k}^2 + r}{2 k_+}
|
||||
\cE_{k_-krgen\, \underv}
|
||||
\cE_{\kmkrgen\, \underv}
|
||||
= 0.
|
||||
\end{equation}
|
||||
As in the previous case, the constraint equation does not pose any condition on the transverse polarisations $\cE_{k_-krgen\, \underw}$ and $\cE_{k_-krgen\, \underz}$.
|
||||
As in the previous case, the constraint equation does not pose any condition on the transverse polarisations $\cE_{\kmkrgen\, \underw}$ and $\cE_{\kmkrgen\, \underz}$.
|
||||
|
||||
|
||||
\subsubsection{Cubic Interaction}
|
||||
@@ -3331,16 +3334,16 @@ In the case of the \gnbo we find:
|
||||
& \times
|
||||
e~
|
||||
\cA^*_{\mkmkrgenN{2}}
|
||||
\cA_{k_-krgenN{3}}
|
||||
\cA_{\kmkrgenN{3}}
|
||||
\\
|
||||
& \times
|
||||
\Biggl\lbrace
|
||||
\cE_{k_-krgenN{1}\, \underu}~
|
||||
\cE_{\kmkrgenN{1}\, \underu}~
|
||||
k_{\qty(2)\, +}~
|
||||
\cI_{\qty{3}}^{\qty[0]}
|
||||
\\
|
||||
& +
|
||||
\cE_{k_-krgenN{1}\, \underv}~
|
||||
\cE_{\kmkrgenN{1}\, \underv}~
|
||||
\Biggl[
|
||||
\qty( \frac{\vec{k}_{\qty(2)}^2 + r_{(2)}}{2 k_{\qty(2)\, +}} )\,
|
||||
\cI_{\qty{3}}^{\qty[0]}
|
||||
@@ -3370,7 +3373,7 @@ In the case of the \gnbo we find:
|
||||
\Biggr]
|
||||
\\
|
||||
& +
|
||||
\qty( \cE_{k_-krgenN{1}\, \underw} - \cE_{k_-krgenN{1}\, \underz} )
|
||||
\qty( \cE_{\kmkrgenN{1}\, \underw} - \cE_{\kmkrgenN{1}\, \underz} )
|
||||
\\
|
||||
& \times
|
||||
\Biggl[
|
||||
@@ -3402,18 +3405,18 @@ where we defined:
|
||||
\cI_{\qty{N}}^{\qty[\nu]}
|
||||
& =
|
||||
\infinfint{u}
|
||||
2\, \abs{\Delta_2 \Delta_3} u^2\, u^{\nu}\, \finiteprod{i}{1}{N} \tphi_{k_-krgenN{i}},
|
||||
2\, \abs{\Delta_2 \Delta_3} u^2\, u^{\nu}\, \finiteprod{i}{1}{N} \tphi_{\kmkrgenN{i}},
|
||||
\\
|
||||
\cJ_{\qty{N}}^{\qty[\nu]}
|
||||
& =
|
||||
\infinfint{u}
|
||||
2\, \abs{\Delta_2 \Delta_3} u^2\, \abs{u}^{\nu}\, \finiteprod{i}{1}{N} \tphi_{k_-krgenN{i}}.
|
||||
2\, \abs{\Delta_2 \Delta_3} u^2\, \abs{u}^{\nu}\, \finiteprod{i}{1}{N} \tphi_{\kmkrgenN{i}}.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
|
||||
While in the \nbo case we need to regularise the integrals at least taking their principal part when all $l_{(*)} = 0$ in~\eqref{eq:nbo_div_integral}, the \gnbo does not need any specific manipulation.
|
||||
In fact the form of $\tphi_{k_-krgenN{i}}$ in~\eqref{eq:GNBO_reg_wave_functions} prevents the formation of isolated zeros in the phase factor proportional to $u^{-1}$: the presence of the continuous momentum $p$, contrary to the \nbo where all momenta are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac $\delta$ function.
|
||||
In fact the form of $\tphi_{\kmkrgenN{i}}$ in~\eqref{eq:GNBO_reg_wave_functions} prevents the formation of isolated zeros in the phase factor proportional to $u^{-1}$: the presence of the continuous momentum $p$, contrary to the \nbo where all momenta are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac $\delta$ function.
|
||||
|
||||
|
||||
\subsubsection{Quartic Interactions}
|
||||
@@ -3454,16 +3457,16 @@ As for the \nbo, we consider the quartic interaction for the scalar \qed action:
|
||||
\Biggl\lbrace
|
||||
e^2
|
||||
\cA^*_{\mkmkrgenN{3}}
|
||||
\cA_{k_-krgenN{4}}
|
||||
\cA_{\kmkrgenN{4}}
|
||||
\\
|
||||
& \times
|
||||
\Biggl[
|
||||
\cE_{k_-krgenN{1}} \circ \cE_{k_-krgenN{2}}\,
|
||||
\cE_{\kmkrgenN{1}} \circ \cE_{\kmkrgenN{2}}\,
|
||||
\cI_{\qty{4}}^{\qty[0]}
|
||||
\\
|
||||
& - i
|
||||
\cE_{k_-krgenN{1}\, \underv}\,
|
||||
\cE_{k_-krgenN{2}\, \underv}
|
||||
\cE_{\kmkrgenN{1}\, \underv}\,
|
||||
\cE_{\kmkrgenN{2}\, \underv}
|
||||
\\
|
||||
& \times
|
||||
\Biggl(
|
||||
@@ -3497,8 +3500,8 @@ As for the \nbo, we consider the quartic interaction for the scalar \qed action:
|
||||
\cA^*_{\mkmkrgenN{2}}
|
||||
\\
|
||||
& \times
|
||||
\cA_{k_-krgenN{3}}
|
||||
\cA_{k_-krgenN{4}}
|
||||
\cA_{\kmkrgenN{3}}
|
||||
\cA_{\kmkrgenN{4}}
|
||||
\cI_{\qty{4}}^{\qty[0]}
|
||||
\Biggr\rbrace,
|
||||
\end{split}
|
||||
@@ -3514,16 +3517,16 @@ where we defined:
|
||||
\\
|
||||
\tilde{\cE}_{\pm\,\left( a, b \right)}
|
||||
& =
|
||||
\cE_{k_-krgenN{a}\, \underv}
|
||||
\cE_{\kmkrgenN{a}\, \underv}
|
||||
\\
|
||||
& \times
|
||||
\qty( \cE_{k_-krgenN{b}\, \underw} \pm \cE_{k_-krgenN{b}\, \underz} )
|
||||
\qty( \cE_{\kmkrgenN{b}\, \underw} \pm \cE_{\kmkrgenN{b}\, \underz} )
|
||||
\\
|
||||
& -
|
||||
\cE_{k_-krgenN{b}\, \underv}
|
||||
\cE_{\kmkrgenN{b}\, \underv}
|
||||
\\
|
||||
& \times
|
||||
\qty( \cE_{k_-krgenN{a}\, \underw} \pm \cE_{k_-krgenN{a}\, \underz} )
|
||||
\qty( \cE_{\kmkrgenN{a}\, \underw} \pm \cE_{\kmkrgenN{a}\, \underz} )
|
||||
\end{split}
|
||||
\end{equation}
|
||||
for simplicity.
|
||||
@@ -3931,6 +3934,8 @@ Now we use the basic trick used in Poisson resummation
|
||||
\abs{\frac{k_+ x^+}{k_- x^-}}^{-i \frac{l}{2 \Delta} }\,
|
||||
\infinfint{s}
|
||||
e^{i\, 2 \pi\, l\, s}
|
||||
\\
|
||||
& \times
|
||||
e^{i\, \sgn(k_+\, x^+) \sqrt{\abs{k_+ k_- x^+ x^-}}
|
||||
\qty{
|
||||
\Lambda^s
|
||||
@@ -3973,7 +3978,7 @@ Now we use the basic trick used in Poisson resummation
|
||||
\end{equation}
|
||||
where the last line represents the change of quantum number from $m\, \beta$ to $m\, l$ and allows us to identify
|
||||
\begin{equation}
|
||||
\cN_{\text{BO}}
|
||||
\cN_{\text{BO}}\,
|
||||
\tphi_{\lsi}(\tau)
|
||||
=
|
||||
\frac{1}{2\pi}\,
|
||||
|
||||
Reference in New Issue
Block a user