Add D-branes at angles and doubling trick

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-09-10 22:39:27 +02:00
parent 7a8a32f64f
commit 624fcc8154
5 changed files with 685 additions and 0 deletions

BIN
img/branchcuts.pdf Normal file

Binary file not shown.

65
img/branchcuts.pdf_tex Normal file
View File

@@ -0,0 +1,65 @@
%% Creator: Inkscape 1.0 (4035a4fb49, 2020-05-01), www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'branchcuts.pdf' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{238.15880963bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.76153711)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength,page=1]{branchcuts.pdf}}%
\put(0.96250584,0.22924726){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$x$\end{tabular}}}}%
\put(0.26509366,0.76435918){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$y$\end{tabular}}}}%
\put(0.63886437,0.19725284){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}%
\put(0.37615789,0.37851589){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}%
\put(0.1552996,0.19562747){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(4)}$\end{tabular}}}}%
\put(0.8804906,0.32528402){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}%
\put(-0.0034854,0.32147455){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}%
\end{picture}%
\endgroup%

176
sec/app/isomorphism.tex Normal file
View File

@@ -0,0 +1,176 @@
In this appendix we explain the conventions used for \SU{2} and show the details of the isomorphism between \SO{4} and a class of equivalence of $\SU{2} \times \SU{2}$.
\subsection{Conventions}
We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that:
\begin{equation}
U(\vb{n})
=
\cos(2 \pi n)\, \1_2
+
i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n),
\label{eq:su2parametrisation}
\end{equation}
where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$.
We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$.
The parametrisation is such that:
\begin{eqnarray}
U^*(\vb{n})
& = &
\sigma^2\, U(\vb{n})\, \sigma^2
=
U(\widetilde{\vb{n}}),
\\
U^{\dagger}(\vb{n})
& = &
U^T(\widetilde{\vb{n}})
=
U(-\vb{n}),
\\
-U(\vb{n})
& = &
U(\widehat{\vb{n}})
\label{eq:U_props}
\end{eqnarray}
where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \left( -n^1, n^2, -n^3 \right)$ and $\widehat{\vb{n}} = - \left(\frac{1}{2} -n \right)\, \frac{\vb{n}}{n}$.
The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\, U(\vb{m})$ has an explicit realisation as:
\begin{equation}
\begin{split}
\cos(2 \pi \norm{\vb{n} \circ \vb{m}})
& =
\cos(2 \pi n)\, \cos(2 \pi m)
-
\sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m},
\\
\sin(2 \pi \norm{\vb{n} \circ \vb{m}})\,
\frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}}
& =
\cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m}
+
\sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}.
\end{split}
\label{eq:product_in_SU2}
\end{equation}
\subsection{The Isomorphism}
Let $I = 1,\, 2,\, 3,\, 4$ and define:
\begin{equation}
\tau_I = \left( i\, \1_2,\, \vb{\sigma} \right),
\end{equation}
where $\vb{\sigma} = \left( \sigma^1,\, \sigma^2,\, \sigma^3 \right)$ are the Pauli matrices.
It is possible to show that:
\begin{equation}
\begin{split}
\left( \tau_I \right)^{\dagger}
& =
\eta_{IJ}\, {\tau}^I,
\\
\left( \tau^I \right)^*
& =
-\sigma_2\, \tau_I\, \sigma_2,
\end{split}
\label{eq:tau_props}
\end{equation}
where $\eta_{IJ} = \mathrm{diag}(-1,1,1,1)$.
The following relations are then a natural consequence:
\begin{eqnarray}
\tr(\tau_I)
& = &
2\, i\, \delta_{I1},
\\
\tr(\tau_I \tau_J)
& = &
2\, \eta_{IJ},
\\
\tr(\tau_I \left( \tau_J \right)^{\dagger})
& = &
2\, \delta_{IJ}.
\end{eqnarray}
Now consider a vector in the spinor representation:
\begin{equation}
X_{(s)} = X^I\, \tau_I.
\end{equation}
We can recover the components using the previous properties:
\begin{equation}
X^I
=
\frac{1}{2}\, \delta^{IJ}\,
\tr(X_{(s)} \left( \tau_J \right)^{\dagger})
=
\frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J),
\end{equation}
where the trace acts on the space of the $\tau$ matrices.
If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have:
\begin{equation}
\begin{split}
X_{(s)}^{\dagger}
& =
X^I\, \eta_{IJ}\, \tau^J
=
\frac{1}{2} \tr(X_{(s)} \tau_I)\, \tau^I,
\\
X_{(s)}^*
& =
- \sigma_2\, X_{(s)}\, \sigma_2.
\end{split}
\label{eq:X_dagger}
\end{equation}
A rotation in spinor representation is defined as:
\begin{equation}
X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m})
\end{equation}
and it is equivalent to:
\begin{equation}
\left( X' \right)^I
=
\tensor{R}{^I_J}\,
X^J
\end{equation}
through
\begin{equation}
R_{IJ}
=
\frac{1}{2}
\tr(
\left( \tau_I \right)^{\dagger}\,
U_{L}(\vb{n})\,
\tau_J\,
U_{R}^{\dagger}(\vb{m})
).
\end{equation}
The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since:
\begin{equation}
\tr(X'_{(s)}\, (X')^{\dagger}_{(s)})
=
\tr(X_{(s)}\, X^{\dagger}_{(s)})
\qquad
\Rightarrow
\qquad
\finitesum{K}{1}{4} R_{IK} R^*_{JK} = \delta_{I \,J}.
\end{equation}
From the second equation in \eqref{eq:tau_props} and the first equation in \eqref{eq:U_props} we then get the reality condition on $R$:
\begin{equation}
R_{NM}
=
\frac{1}{2}\, \eta_{NI}\, \eta_{MJ}\,
\tr(\tau_I ^{\dagger}\, U_{R}\, \tau_J\, U_{L}^{\dagger})
=
\frac{1}{2}
\tr(\tau_N\, U_{R}\, \tau_M^\dagger\, U_{L}^{\dagger})
=
R_{NM}^*.
\end{equation}
Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$.
Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$.
Since $\left\lbrace U_{L},\, U_{R} \right\rbrace$ and $\left\lbrace -U_{L},\, -U_{R} \right\rbrace$ generate the same \SO{4} matrix then the correct isomorphism takes the form:
\begin{equation}
\SO{4}
\cong
\frac{\SU{2} \times \SU{2}}{\Z_2}.
\end{equation}

View File

@@ -142,4 +142,440 @@ The superscript $\parallel$ represents any of the coordinates parallel to the D-
Notice that the additional $\Z_2$ factor in $\rS\left( \OO{2} \times \OO{2} \right)$ with respect to $\SO{2} \times \SO{2}$ can be used to set $g_{(t)}^{\perp} \ge 0$.
\subsubsection{Boundary Conditions for Branes at Angles}
The peculiar embedding of the D-branes has natural consequences on the boundary conditions of the open strings.
Let $\tau_E = i \tau$ be the Wick rotated time direction.
We define the usual upper plane coordinates:
\begin{eqnarray}
u
=
x + i y
=
e^{\tau_E + i \sigma}
& \in &
\ccH \cup \left\lbrace z \in \C \mid \Im z = 0 \right\rbrace,
\\
\bu
=
x - i y
=
e^{\tau_E - i \sigma}
& \in &
\overline{\ccH} \cup \left\lbrace z \in \C \mid \Im z = 0 \right\rbrace,
\end{eqnarray}
where $\ccH = \left\lbrace z \in \C \mid \Im z > 0 \right\rbrace$ is the upper complex plane and $\overline{\ccH} = \left\lbrace z \in \C \mid \Im z < 0 \right\rbrace$ is the lower complex plane.
In conformal coordinates $u$ and $\bu$, D-branes at $\sigma = 0$ and $\sigma = \pi$ are mapped onto the real axis $\Im z = 0$.
We use the symbol $D_{(t)}$ to label both the brane and the interval representing it on the real axis of the upper half plane:
\begin{equation}
D_{(t)} = \left[ x_{(t)}, x_{(t-1)} \right],
\qquad
t = 2,\, 3,\, \dots,\, N_B,
\qquad
x_{(t)} < x_{(t-1)}.
\end{equation}
The points $x_{(t)}$ and $x_{(t-1)}$ represent the worldsheet intersection points of the brane $D_{(t)}$ with the branes $D_{(t+1)}$ and $D_{(t-1)}$ respectively.
The choice of the intervals must be carefully considered: since the D-branes are defined modulo $N_B$, the shorthand for the interval $D_{(1)} = \left[ x_{(1)}, x_{(N_B)} \right]$ should actually be:
\begin{equation}
D_{(1)}
=
\left[ x_{(1)}, +\infty \right) \cup \left( -\infty, x_{(N_B)} \right].
\end{equation}
In the global coordinates system associated to the subspace $\R^4 \subset \ccM^{1, d+4}$ where D-branes intersect, the relevant part of the action in conformal gauge is:
\begin{equation}
\begin{split}
S_{\R^4}
& =
\frac{1}{2 \pi \ap}
\iint\limits_{\ccH}
\dd{u} \dd{\bu}\,
\ipd{u} X^I\, \ipd{\bu} X^J\,
\eta_{IJ}
\\
& =
\frac{1}{4 \pi \ap}
\iint\limits_{\R \times \R^+}
\dd{x}\dd{y}\,
\left(
\ipd{x} X^I\, \ipd{x} X^J
+
\ipd{y} X^I\, \ipd{y} X^J
\right)\,
\eta_{IJ},
\end{split}
\label{eq:string_action}
\end{equation}
where $2\, \ipd{u} = \ipd{x} - i\, \ipd{y}$ and $2\, \ipd{\bu} = \ipd{x} + i\, \ipd{y}$.
The \eom in these coordinates are:
\begin{equation}
\ipd{u} \ipd{\bu} X^I( u, \bu )
=
\frac{1}{4}
\left( \ipd{x}^2 + \ipd{y}^2 \right) X^I( x+iy, x-iy )
=
0.
\label{eq:string_equation_of_motion}
\end{equation}
Their solution factorises as usual in holomorphic and anti-holomorphic components $X^I( u, \bu ) = X^I( u ) + \bX^I( \bu )$.
In the well adapted frame~\eqref{eq:well-adapt-embed} we describe an open string with one of the endpoints on $D_{(t)}$ through the relations:
\begin{eqnarray}
\eval{\ipd{\sigma} X^i_{(t)}( \tau, \sigma )}_{\sigma = 0}
=
\eval{\ipd{y} X^i_{(t)}( u, \bu )}_{y = 0}
& = &
0,
\qquad
i = 1,\, 2,
\label{eq:neumann_bc}
\\
X^m_{(t)}( \tau, 0 )
=
X^m_{(t)}( x, x )
& = &
0,
\qquad
m = 3,\, 4,
\label{eq:dirichlet_bc}
\end{eqnarray}
where $x \in D_{(t)} = \left[ x_t, x_{t-1} \right]$ and the index $i$ labels the Neumann boundary conditions while $m$ labels the Dirichlet coordinates associated to the direction orthogonal to the D-branes.
As the presence of $g_{(t)}^m$ in \eqref{eq:brane_rotation} and \eqref{eq:dirichlet_bc} may complicate the analysis, we consider the derivative along the boundary direction of \eqref{eq:dirichlet_bc} to remove the dependence on the translation vector.
This procedure produces simpler boundary conditions which are nevertheless not equivalent to the original~\eqref{eq:neumann_bc} and \eqref{eq:dirichlet_bc}: they will be recovered later by adding further constraints.
The simpler boundary conditions we consider in the global coordinates are:
\begin{eqnarray}
\tensor{\left( R_{(t)} \right)}{^i_J}
\eval{\ipd{\sigma} X^J( \tau, \sigma )}_{\sigma = 0}
& = &
i\, \tensor{\left( R_{(t)} \right)}{^i_J}
\left(
\ipd{u} X^J( x + i\, 0^+ ) - \ipd{\bu} \bX^J( x - i\, 0^+ )
\right)
=
0,
\\
\tensor{\left( R_{(t)} \right)}{^m_J}
\eval{\ipd{\tau} X^J( \tau, \sigma )}_{\sigma = 0}
& = &
i\, \tensor{\left( R_{(t)} \right)}{^m_J}
\left(
\ipd{u} X^J( x + i\, 0^+ ) + \ipd{\bu} \bX^J( x - i\, 0^+ )
\right)
=
0,
\end{eqnarray}
where $i = 1,\, 2$, $m = 3,\, 4$ and $x \in D_{(t)}$.
With the introduction of the target space embedding of the worldsheet interaction point between D-branes $D_{(t)}$ and $D_{(t+1)}$, $f_{(t)}$, we recover the full boundary conditions in terms of discontinuities on the real axis:
\begin{equation}
\begin{cases}
\ipd{u} X^I( x + i\, 0^+ )
& =
\tensor{\left( U_{(t)} \right)}{^I_J}
\ipd{\bu} \bX^J( x - i\, 0^+ ),
\qquad
x \in D_{(t)}
\\
X^I( x_{(t)}, x_{(t)} )
& =
f_{(t)}
\end{cases}.
\label{eq:discontinuity_bc}
\end{equation}
In the last expression we introduced the matrix
\begin{equation}
U_{(t)}
=
\left( R_{(t)} \right)^{-1}\,
\cS\,
R_{(t)}
\in
\frac{\SO{4}}{\rS\left( \OO{2} \times \OO{2} \right)},
\label{eq:Umatrices}
\end{equation}
where
\begin{equation}
\cS
=
\mqty( \dmat{ 1, 1, -1, -1 } )
\label{eq:reflection_S}
\end{equation}
embeds the difference between Neumann and Dirichlet conditions.
Given its definition $U_{(t)}$ is such that $U_{(t)} = \left( U_{(t)} \right)^{-1} = \left( U_{(t)} \right)^T$.
The target space vector $f_{(t)}$ recovers the apparent loss of information suffered when losing $g_{(t)}$.
Consider for instance the embedding equations~\eqref{eq:dirichlet_bc} for any two intersecting D-branes $D_{(t)}$ and $D_{(t+1)}$.
Introducing the auxiliary quantities
\begin{eqnarray}
\cR_{(t,\, t+1)}
=
\mqty( R_{(t)}^m \\ R_{(t+1)}^n )
& \in &
\GL{4}{\R},
\qquad
m, n = 3, 4,
\\
\cG_{(t,\, t+1)}
=
\mqty( g_{(t)}^m \\ g_{(t+1)}^n )
& \in &
\R^4,
\qquad
m, n = 3, 4,
\end{eqnarray}
we can compute the intersection point as:
\begin{equation}
f_{(t)}
=
\left( \cR_{(t,\, t+1)} \right)^{-1}\,
\cG_{(t,\, t+1)}.
\end{equation}
Information on $g_{(t)}$ is thus recovered through the global boundary conditions in the second equation in \eqref{eq:discontinuity_bc}.
\subsubsection{Doubling Trick and Branch Cut Structure}
In conformal coordinates we thus introduced the discontinuities~\eqref{eq:discontinuity_bc} across each D-brane which define a non trivial cut structure on the plane.
One way to deal with them is to introduce the \emph{doubling trick} by gluing the relations along an arbitrary but fixed D-brane $D_{(\bt)}$:
\begin{equation}
\ipd{z} \cX(z) =
\begin{cases}
\ipd{u} X(u)
&
\qif
z = u \qand \Im z > 0 \qor z \in D_{(\bt)}
\\
U_{(\bt)}\,
\ipd{\bu} \bX(\bu)
& \qif z = \bu \qand \Im z < 0 \qor z \in D_{(\bt)}
\end{cases}.
\label{eq:real_doubling_trick}
\end{equation}
Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\widetilde{\cU}_{(t,\, t+1)} = U_{(\bt)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bt)}$.
The boundary conditions in terms of the doubling field are:
\begin{eqnarray}
\ipd{z} \cX( x_t + e^{2 \pi i}( \eta + i\, 0^+ ) )
& = &
\cU_{(t,\, t+1)}
\ipd{z} \cX( x_t + \eta + i\, 0^+ ),
\label{eq:top_monodromy}
\\
\partial \cX( x_t + e^{2 \pi i}( \eta - i\, 0^+ ) )
& = &
\widetilde{\cU}_{(t,\, t+1)}
\ipd{z} \cX( x_t + \eta - i\, 0^+ ),
\label{eq:bottom_monodromy}
\end{eqnarray}
for $0 < \eta < \min\left( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} \right)$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$.
Matrices $\cU_{(t,\, t+1)}$ and $\widetilde{\cU}_{(t,\, t+1)}$ are the non trivial monodromies arising from the rotation of the D-branes.
Since the relative rotations between consecutive D-branes are non Abelian, for each interaction point there are two monodromies \cU and $\widetilde{\cU}$ depending on the location of the base point of the closed loop: one for paths starting in the upper plane \ccH and one for paths starting in $\overline{\ccH}$.
As a consequence of the geometry of the rotations of the D-branes, a path on the complex plane enclosing all of them does not present a monodromy:
\begin{equation}
\finiteprod{t}{1}{N_B}\,
\cU_{(\bt - t, \bt + 1 - t)}
=
\finiteprod{t}{1}{N_B}\,
\widetilde{\cU}_{(\bt + t, \bt + 1 + t)}
=
\1_4.
\end{equation}
The complex plane has therefore branch cuts running between the D-branes at finite as shown in \Cref{fig:finite_cuts}.
We thus translated the rotations of the D-branes encoded in the matrices $R_{(t)}$ in terms of $\cU_{(t,\, t+1)}$ and $\widetilde{\cU}_{(t,\, t+1)}$ which are matrix representations of the homotopy group of the complex plane with the described branch cut structure.
\begin{figure}[tbp]
\centering
\def\svgwidth{0.5\textwidth}
\import{img/}{branchcuts.pdf_tex}
\caption{%
Branch cut structure of the complex plane with $N_B = 4$.
Cuts are pictured as solid coloured blocks running from one intersection point to another at finite.
}
\label{fig:finite_cuts}
\end{figure}
As a consistency check, the action~\eqref{eq:string_action} can be computed in terms of the doubling field \cX.
The map
\begin{equation}
x_{(t)} + \eta \pm i\, 0^+
\quad
\mapsto
\quad
x_{(t)} + e^{2 \pi i}( \eta \pm i\, 0^+)
\end{equation}
must leave the action untouched since it does not depend on the branch cut structure.
In fact we can show that
\begin{equation}
S_{\R^4}
=
\frac{1}{4 \pi \ap}
\iint\limits_{\C}
\dd{z} \dd{\bz}\,
\ipd{z} \cX^T(z)\,
U_{(\bt)}\,
\ipd{\bz} \cX(\bz).
\end{equation}
As a matter of fact the action does not depend on the branch structure of the complex plane.
\subsection{D-branes at Angles in Spinor Representation}
In the previous section we showed that it is possible to map the information on the rotations of the D-branes to non trivial monodromies of the doubling field.
We thus recast the issue of solving the \eom of the string in the presence of rotated boundary conditions to the search for an explicit solution $\ipd{z} \cX( z )$ reproducing the non trivial monodromies in~\eqref{eq:top_monodromy} and \eqref{eq:bottom_monodromy}.
The field $\ipd{z} \cX( z )$ is technically a $4$-dimensional \emph{real} vector which has $N_B$ non trivial monodromy factors represented by $4
\times 4$ real matrices, one for each interaction point $x_{(t)}$.
A solution of the \eom is encoded in four linearly independent functions with $N_B$ branch points.
In principle we could try to write it as a solution to fourth order differential equations with $N_B$ finite Fuchsian points.
This is however an open mathematical debate.
In fact the basis of such functions around each branch point are usually complicated and defined up to several free parameters.
Moreover the explicit connection formulae between any two of them is an unsolved mathematical problem.
Using contour integrals and writing the functions as Mellin--Barnes integrals it might be possible to solve the issue in the case $N_B = 3$ but it is certainly not the best course of action.
On the other hand $N_B = 3$ is exactly the case we are investigating.
In what follows we use the isomorphism
\begin{equation}
\SO{4}
\cong
\frac{\SU{2} \times \SU{2}}{\Z_2}
\label{eq:su2isomorphism}
\end{equation}
to map the problem of finding a $4$-dimensional real solution to the \eom to a quest for a $2 \times 2$ complex matrix.
Such matrix is a linear superposition of tensor products of vectors in the fundamental representation of two different \SU{2} groups.
These vectors are solutions to second order differential equations with three Fuchsian points, that is the hypergeometric equation.
The task is then to find the parameters of the hypergeometric functions producing the spinor representation of the monodromies in~\eqref{eq:top_monodromy} and \eqref{eq:bottom_monodromy}.
\subsubsection{Doubling Trick and Rotations in Spinor Representation}
We recall some of the properties of the isomorphism~\eqref{eq:su2isomorphism} in~\Cref{sec:isomorphism}.
We define the spinor representation of $X$ as:
\begin{equation}
X_{(s)}( u, \bu ) = X^I( u, \bu )\, \tau_I,
\end{equation}
where $\tau = \left( i\, \1_2,\, \vb{\sigma} \right)$ and $\vb{\sigma}$ is the vector of the Pauli matrices.
Consider then:
\begin{equation}
\ipd{z} \cX_{(s)}( z )
=
\begin{cases}
\ipd{u} X_{(s)}(u)
& \qif
z \in \ccH \qor z \in D_{(\bt)}
\\
U_{L}(\vb{n}_{(\bt)})\,
\ipd{\bu} X_{(s)}(\bu)\,
U_{R}^{\dagger}(\vb{m}_{(\bt)})
& \qif z \in \overline{\ccH} \qor z \in D_{(\bt)}
\end{cases}.
\label{eq:spinor_doubling_trick}
\end{equation}
As in the real representation the discontinuities on the D-branes can be cast into monodromy factors with respect to the D-brane $D_{(\bt)}$. Branch cut structure and considerations on the homotopy group are left unchanged as long as we consider both left and right sectors of $\SU{2}_L \times \SU{2}_R$ at the same time.
Let $0 < \eta < \min\left( \abs{x_{(t)} - x_{(t-1)}}, \abs{x_{(t+1)} - x_{(t)}} \right)$.
We find:
\begin{eqnarray}
\ipd{z} \cX_{(s)}( x_t + e^{2 \pi i}( \eta + i\, 0^+) )
& = &
\cL_{(t,\, t+1)} \ipd{z}\,
\cX_{(s)}( x_t + \eta + i\, 0^+ )\,
\cR_{(t,\, t+1)}^{\dagger},
\label{eq:top_spinor_monodromy}
\\
\ipd{z} \cX_{(s)}( x_t + e^{2 \pi i}( \eta - i\, 0^+) )
& = &
\widetilde{\cL}_{(t,\, t+1)}\,
\ipd{z} \cX_{(s)}( x_t + \eta - i\, 0^+ )\,
\widetilde{\cR}_{(t,\, t+1)}^{\dagger},
\label{eq:bottom_spinor_monodromy}
\end{eqnarray}
where:
\begin{eqnarray}
\cL_{(t,\, t+1)}
& = &
U_{L}(\vb{n}_{(t+1)})\,
U_{L}^{\dagger}(\vb{n}_{(t)}),
\\
\widetilde{\cL}_{(t,\, t+1)}
& = &
U_{L}(\vb{n}_{(\bt)})\,
U_{L}^{\dagger}(\vb{n}_{(t)})\,
U_{L}(\vb{n}_{(t+1)})\,
U_{L}^{\dagger}(\vb{n}_{(\bt)}),
\\
\cR_{(t,\, t+1)}
& = &
U_{R}(\vb{m}_{(t+1)})\,
U_{R}^{\dagger}(\vb{m}_{(t)}),
\\
\widetilde{\cR}_{(t,\, t+1)}
& = &
U_{R}(\vb{m}_{(\bt)})\,
U_{R}^{\dagger}(\vb{m}_{(t)})\,
U_{R}(\vb{m}_{(t+1)})\,
U_{R}^{\dagger}(\vb{m}_{(\bt)}).
\end{eqnarray}
In spinor representation the action~\eqref{eq:string_action} becomes
\begin{equation}
\begin{split}
S_{\R^4}
& =
\frac{1}{4 \pi \ap}
\iint\limits_{\ccH}
\dd{u} \dd{\bu}\,
\tr(\ipd{u} X_{(s)}(u, \bu) \cdot \ipd{\bu} X^{\dagger}_{(s)}(u, \bu))
\\
& =
\frac{1}{8 \pi \ap}
\iint\limits_{\C}
\dd{z} \dd{\bz}\,
\tr(
U_{L}(\vb{n}_{(\bt)})\,
\ipd{z} \cX_{(s)}(z, \bz)\,
U_{R}^{\dagger}(\vb{m}_{(\bt)})\,
\ipd{\bz} \cX_{(s)}^{\dagger}(z, \bz)
).
\end{split}
\label{eq:action_doubling_fields_spinor_representation}
\end{equation}
It is possible to show that the closed loop $x_t + \eta \pm i\, 0^+ \mapsto x_t + e^{2 \pi i}( \eta \pm i\, 0^+ )$ does not generate additional contributions in the action.
\subsubsection{Special Form of Matrices for D-Branes at Angles}
\label{sect:special_SO4}
The $\SU{2}$ matrices involved in this scenario with D-branes intersecting at angles have a particular form.
In the left sector (i.e.\ $\SU{2}_L$ matrices) we have:
\begin{equation}
\cL_{(t,\, t+1)}
=
U_{L}(\vb{n}_{(t+1)})\,
U_{L}^{\dagger}(\vb{n}_{(t)})\,
=
-\vb{n}_{(t+1)} \cdot \vb{n}_{(t)}
+
i\, (\vb{n}_{(t+1)} \times \vb{n}_{(t)}) \cdot \vb{\sigma} ,
\end{equation}
with $\vb{n}_{(t)}^2 = 1$.
This is a consequence of the peculiar properties of the \SO{4} matrices $U_{(t)}$ defined in \eqref{eq:Umatrices}.
Hence the corresponding $\SU{2}_L \times \SU{2}_R$ element $(U_{L}(\vb{n}_{(t)}),\, U_{R}(\vb{m}_{(t)}))$ reflects such characteristics.
In particular for the left part we have
\begin{equation}
U_{L}(\vb{n}_{(t)})
=
i\, \vb{n}_{(t)} \cdot \vb{\sigma},
\qquad
\vb{n}_{(t)}^2 = 1,
\label{eq:special_UL_brane_t}
\end{equation}
since $U_{(t)}^2 = \1_4$ implies that $U_{L}^2 = \pm \1_2$.
The right sector clearly follows the same discussion.
In fact \cS in~\eqref{eq:reflection_S} can be represented as $U_{L} = U_{R} = i\, \sigma_1$.
Then any matrix $U_{L}(\vb{n}_{(t)})$ is of the form $U_{L}(\vb{n}_{(t)}) = i\, U(\vb{r}_{(t)}) \cdot \sigma_1 \cdot U^\dagger(\vb{r}_{(t)})$, for some $\vb{r}_{(t)}$ as follows from~\eqref{eq:Umatrices}.
Such matrix has vanishing trace and squares to $-\1_2$ hence the term proportional to two-dimensional unit matrix in the expression of the generic $\mathrm{SU}(2)$ element given in \Cref{sec:isomorphism} vanishes.
As a consequence $n_{(t)} = \frac{1}{4}$ such that \eqref{eq:special_UL_brane_t} follows.
% vim ft=tex

View File

@@ -55,6 +55,8 @@
\newcommand{\bxi}{\ensuremath{\overline{\xi}}}
\newcommand{\bchi}{\ensuremath{\overline{\chi}}}
\newcommand{\bz}{\ensuremath{\overline{z}}}
\newcommand{\bu}{\ensuremath{\overline{u}}}
\newcommand{\bt}{\ensuremath{\overline{t}}}
\newcommand{\bw}{\ensuremath{\overline{w}}}
\newcommand{\bomega}{\ensuremath{\overline{\omega}}}
\newcommand{\bepsilon}{\ensuremath{\overline{\epsilon}}}
@@ -111,10 +113,16 @@
\input{sec/part3/introduction.tex}
%---- APPENDIX
\cleardoubleplainpage{}
\appendix
\section{The Isomorphism in Details}
\label{sec:isomorphism}
\input{sec/app/isomorphism.tex}
%---- BIBLIOGRAPHY
\cleardoubleplainpage{}
\small
\printbibliography[heading=bibintoc]
\end{document}