Add D-branes at angles and doubling trick
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
BIN
img/branchcuts.pdf
Normal file
BIN
img/branchcuts.pdf
Normal file
Binary file not shown.
65
img/branchcuts.pdf_tex
Normal file
65
img/branchcuts.pdf_tex
Normal file
@@ -0,0 +1,65 @@
|
||||
%% Creator: Inkscape 1.0 (4035a4fb49, 2020-05-01), www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'branchcuts.pdf' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{238.15880963bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.76153711)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{branchcuts.pdf}}%
|
||||
\put(0.96250584,0.22924726){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$x$\end{tabular}}}}%
|
||||
\put(0.26509366,0.76435918){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$y$\end{tabular}}}}%
|
||||
\put(0.63886437,0.19725284){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}%
|
||||
\put(0.37615789,0.37851589){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}%
|
||||
\put(0.1552996,0.19562747){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(4)}$\end{tabular}}}}%
|
||||
\put(0.8804906,0.32528402){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}%
|
||||
\put(-0.0034854,0.32147455){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
||||
176
sec/app/isomorphism.tex
Normal file
176
sec/app/isomorphism.tex
Normal file
@@ -0,0 +1,176 @@
|
||||
In this appendix we explain the conventions used for \SU{2} and show the details of the isomorphism between \SO{4} and a class of equivalence of $\SU{2} \times \SU{2}$.
|
||||
|
||||
|
||||
\subsection{Conventions}
|
||||
|
||||
We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that:
|
||||
\begin{equation}
|
||||
U(\vb{n})
|
||||
=
|
||||
\cos(2 \pi n)\, \1_2
|
||||
+
|
||||
i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n),
|
||||
\label{eq:su2parametrisation}
|
||||
\end{equation}
|
||||
where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$.
|
||||
We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$.
|
||||
The parametrisation is such that:
|
||||
\begin{eqnarray}
|
||||
U^*(\vb{n})
|
||||
& = &
|
||||
\sigma^2\, U(\vb{n})\, \sigma^2
|
||||
=
|
||||
U(\widetilde{\vb{n}}),
|
||||
\\
|
||||
U^{\dagger}(\vb{n})
|
||||
& = &
|
||||
U^T(\widetilde{\vb{n}})
|
||||
=
|
||||
U(-\vb{n}),
|
||||
\\
|
||||
-U(\vb{n})
|
||||
& = &
|
||||
U(\widehat{\vb{n}})
|
||||
\label{eq:U_props}
|
||||
\end{eqnarray}
|
||||
where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \left( -n^1, n^2, -n^3 \right)$ and $\widehat{\vb{n}} = - \left(\frac{1}{2} -n \right)\, \frac{\vb{n}}{n}$.
|
||||
|
||||
The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\, U(\vb{m})$ has an explicit realisation as:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\cos(2 \pi \norm{\vb{n} \circ \vb{m}})
|
||||
& =
|
||||
\cos(2 \pi n)\, \cos(2 \pi m)
|
||||
-
|
||||
\sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m},
|
||||
\\
|
||||
\sin(2 \pi \norm{\vb{n} \circ \vb{m}})\,
|
||||
\frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}}
|
||||
& =
|
||||
\cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m}
|
||||
+
|
||||
\sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}.
|
||||
\end{split}
|
||||
\label{eq:product_in_SU2}
|
||||
\end{equation}
|
||||
|
||||
\subsection{The Isomorphism}
|
||||
|
||||
Let $I = 1,\, 2,\, 3,\, 4$ and define:
|
||||
\begin{equation}
|
||||
\tau_I = \left( i\, \1_2,\, \vb{\sigma} \right),
|
||||
\end{equation}
|
||||
where $\vb{\sigma} = \left( \sigma^1,\, \sigma^2,\, \sigma^3 \right)$ are the Pauli matrices.
|
||||
It is possible to show that:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\left( \tau_I \right)^{\dagger}
|
||||
& =
|
||||
\eta_{IJ}\, {\tau}^I,
|
||||
\\
|
||||
\left( \tau^I \right)^*
|
||||
& =
|
||||
-\sigma_2\, \tau_I\, \sigma_2,
|
||||
\end{split}
|
||||
\label{eq:tau_props}
|
||||
\end{equation}
|
||||
where $\eta_{IJ} = \mathrm{diag}(-1,1,1,1)$.
|
||||
The following relations are then a natural consequence:
|
||||
\begin{eqnarray}
|
||||
\tr(\tau_I)
|
||||
& = &
|
||||
2\, i\, \delta_{I1},
|
||||
\\
|
||||
\tr(\tau_I \tau_J)
|
||||
& = &
|
||||
2\, \eta_{IJ},
|
||||
\\
|
||||
\tr(\tau_I \left( \tau_J \right)^{\dagger})
|
||||
& = &
|
||||
2\, \delta_{IJ}.
|
||||
\end{eqnarray}
|
||||
|
||||
Now consider a vector in the spinor representation:
|
||||
\begin{equation}
|
||||
X_{(s)} = X^I\, \tau_I.
|
||||
\end{equation}
|
||||
We can recover the components using the previous properties:
|
||||
\begin{equation}
|
||||
X^I
|
||||
=
|
||||
\frac{1}{2}\, \delta^{IJ}\,
|
||||
\tr(X_{(s)} \left( \tau_J \right)^{\dagger})
|
||||
=
|
||||
\frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J),
|
||||
\end{equation}
|
||||
where the trace acts on the space of the $\tau$ matrices.
|
||||
If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
X_{(s)}^{\dagger}
|
||||
& =
|
||||
X^I\, \eta_{IJ}\, \tau^J
|
||||
=
|
||||
\frac{1}{2} \tr(X_{(s)} \tau_I)\, \tau^I,
|
||||
\\
|
||||
X_{(s)}^*
|
||||
& =
|
||||
- \sigma_2\, X_{(s)}\, \sigma_2.
|
||||
\end{split}
|
||||
\label{eq:X_dagger}
|
||||
\end{equation}
|
||||
|
||||
A rotation in spinor representation is defined as:
|
||||
\begin{equation}
|
||||
X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m})
|
||||
\end{equation}
|
||||
and it is equivalent to:
|
||||
\begin{equation}
|
||||
\left( X' \right)^I
|
||||
=
|
||||
\tensor{R}{^I_J}\,
|
||||
X^J
|
||||
\end{equation}
|
||||
through
|
||||
\begin{equation}
|
||||
R_{IJ}
|
||||
=
|
||||
\frac{1}{2}
|
||||
\tr(
|
||||
\left( \tau_I \right)^{\dagger}\,
|
||||
U_{L}(\vb{n})\,
|
||||
\tau_J\,
|
||||
U_{R}^{\dagger}(\vb{m})
|
||||
).
|
||||
\end{equation}
|
||||
The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since:
|
||||
\begin{equation}
|
||||
\tr(X'_{(s)}\, (X')^{\dagger}_{(s)})
|
||||
=
|
||||
\tr(X_{(s)}\, X^{\dagger}_{(s)})
|
||||
\qquad
|
||||
\Rightarrow
|
||||
\qquad
|
||||
\finitesum{K}{1}{4} R_{IK} R^*_{JK} = \delta_{I \,J}.
|
||||
\end{equation}
|
||||
From the second equation in \eqref{eq:tau_props} and the first equation in \eqref{eq:U_props} we then get the reality condition on $R$:
|
||||
\begin{equation}
|
||||
R_{NM}
|
||||
=
|
||||
\frac{1}{2}\, \eta_{NI}\, \eta_{MJ}\,
|
||||
\tr(\tau_I ^{\dagger}\, U_{R}\, \tau_J\, U_{L}^{\dagger})
|
||||
=
|
||||
\frac{1}{2}
|
||||
\tr(\tau_N\, U_{R}\, \tau_M^\dagger\, U_{L}^{\dagger})
|
||||
=
|
||||
R_{NM}^*.
|
||||
\end{equation}
|
||||
Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$.
|
||||
Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$.
|
||||
Since $\left\lbrace U_{L},\, U_{R} \right\rbrace$ and $\left\lbrace -U_{L},\, -U_{R} \right\rbrace$ generate the same \SO{4} matrix then the correct isomorphism takes the form:
|
||||
\begin{equation}
|
||||
\SO{4}
|
||||
\cong
|
||||
\frac{\SU{2} \times \SU{2}}{\Z_2}.
|
||||
\end{equation}
|
||||
|
||||
@@ -142,4 +142,440 @@ The superscript $\parallel$ represents any of the coordinates parallel to the D-
|
||||
Notice that the additional $\Z_2$ factor in $\rS\left( \OO{2} \times \OO{2} \right)$ with respect to $\SO{2} \times \SO{2}$ can be used to set $g_{(t)}^{\perp} \ge 0$.
|
||||
|
||||
|
||||
\subsubsection{Boundary Conditions for Branes at Angles}
|
||||
|
||||
The peculiar embedding of the D-branes has natural consequences on the boundary conditions of the open strings.
|
||||
Let $\tau_E = i \tau$ be the Wick rotated time direction.
|
||||
We define the usual upper plane coordinates:
|
||||
\begin{eqnarray}
|
||||
u
|
||||
=
|
||||
x + i y
|
||||
=
|
||||
e^{\tau_E + i \sigma}
|
||||
& \in &
|
||||
\ccH \cup \left\lbrace z \in \C \mid \Im z = 0 \right\rbrace,
|
||||
\\
|
||||
\bu
|
||||
=
|
||||
x - i y
|
||||
=
|
||||
e^{\tau_E - i \sigma}
|
||||
& \in &
|
||||
\overline{\ccH} \cup \left\lbrace z \in \C \mid \Im z = 0 \right\rbrace,
|
||||
\end{eqnarray}
|
||||
where $\ccH = \left\lbrace z \in \C \mid \Im z > 0 \right\rbrace$ is the upper complex plane and $\overline{\ccH} = \left\lbrace z \in \C \mid \Im z < 0 \right\rbrace$ is the lower complex plane.
|
||||
In conformal coordinates $u$ and $\bu$, D-branes at $\sigma = 0$ and $\sigma = \pi$ are mapped onto the real axis $\Im z = 0$.
|
||||
We use the symbol $D_{(t)}$ to label both the brane and the interval representing it on the real axis of the upper half plane:
|
||||
\begin{equation}
|
||||
D_{(t)} = \left[ x_{(t)}, x_{(t-1)} \right],
|
||||
\qquad
|
||||
t = 2,\, 3,\, \dots,\, N_B,
|
||||
\qquad
|
||||
x_{(t)} < x_{(t-1)}.
|
||||
\end{equation}
|
||||
The points $x_{(t)}$ and $x_{(t-1)}$ represent the worldsheet intersection points of the brane $D_{(t)}$ with the branes $D_{(t+1)}$ and $D_{(t-1)}$ respectively.
|
||||
The choice of the intervals must be carefully considered: since the D-branes are defined modulo $N_B$, the shorthand for the interval $D_{(1)} = \left[ x_{(1)}, x_{(N_B)} \right]$ should actually be:
|
||||
\begin{equation}
|
||||
D_{(1)}
|
||||
=
|
||||
\left[ x_{(1)}, +\infty \right) \cup \left( -\infty, x_{(N_B)} \right].
|
||||
\end{equation}
|
||||
|
||||
In the global coordinates system associated to the subspace $\R^4 \subset \ccM^{1, d+4}$ where D-branes intersect, the relevant part of the action in conformal gauge is:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
S_{\R^4}
|
||||
& =
|
||||
\frac{1}{2 \pi \ap}
|
||||
\iint\limits_{\ccH}
|
||||
\dd{u} \dd{\bu}\,
|
||||
\ipd{u} X^I\, \ipd{\bu} X^J\,
|
||||
\eta_{IJ}
|
||||
\\
|
||||
& =
|
||||
\frac{1}{4 \pi \ap}
|
||||
\iint\limits_{\R \times \R^+}
|
||||
\dd{x}\dd{y}\,
|
||||
\left(
|
||||
\ipd{x} X^I\, \ipd{x} X^J
|
||||
+
|
||||
\ipd{y} X^I\, \ipd{y} X^J
|
||||
\right)\,
|
||||
\eta_{IJ},
|
||||
\end{split}
|
||||
\label{eq:string_action}
|
||||
\end{equation}
|
||||
where $2\, \ipd{u} = \ipd{x} - i\, \ipd{y}$ and $2\, \ipd{\bu} = \ipd{x} + i\, \ipd{y}$.
|
||||
The \eom in these coordinates are:
|
||||
\begin{equation}
|
||||
\ipd{u} \ipd{\bu} X^I( u, \bu )
|
||||
=
|
||||
\frac{1}{4}
|
||||
\left( \ipd{x}^2 + \ipd{y}^2 \right) X^I( x+iy, x-iy )
|
||||
=
|
||||
0.
|
||||
\label{eq:string_equation_of_motion}
|
||||
\end{equation}
|
||||
Their solution factorises as usual in holomorphic and anti-holomorphic components $X^I( u, \bu ) = X^I( u ) + \bX^I( \bu )$.
|
||||
|
||||
In the well adapted frame~\eqref{eq:well-adapt-embed} we describe an open string with one of the endpoints on $D_{(t)}$ through the relations:
|
||||
\begin{eqnarray}
|
||||
\eval{\ipd{\sigma} X^i_{(t)}( \tau, \sigma )}_{\sigma = 0}
|
||||
=
|
||||
\eval{\ipd{y} X^i_{(t)}( u, \bu )}_{y = 0}
|
||||
& = &
|
||||
0,
|
||||
\qquad
|
||||
i = 1,\, 2,
|
||||
\label{eq:neumann_bc}
|
||||
\\
|
||||
X^m_{(t)}( \tau, 0 )
|
||||
=
|
||||
X^m_{(t)}( x, x )
|
||||
& = &
|
||||
0,
|
||||
\qquad
|
||||
m = 3,\, 4,
|
||||
\label{eq:dirichlet_bc}
|
||||
\end{eqnarray}
|
||||
where $x \in D_{(t)} = \left[ x_t, x_{t-1} \right]$ and the index $i$ labels the Neumann boundary conditions while $m$ labels the Dirichlet coordinates associated to the direction orthogonal to the D-branes.
|
||||
|
||||
As the presence of $g_{(t)}^m$ in \eqref{eq:brane_rotation} and \eqref{eq:dirichlet_bc} may complicate the analysis, we consider the derivative along the boundary direction of \eqref{eq:dirichlet_bc} to remove the dependence on the translation vector.
|
||||
This procedure produces simpler boundary conditions which are nevertheless not equivalent to the original~\eqref{eq:neumann_bc} and \eqref{eq:dirichlet_bc}: they will be recovered later by adding further constraints.
|
||||
The simpler boundary conditions we consider in the global coordinates are:
|
||||
\begin{eqnarray}
|
||||
\tensor{\left( R_{(t)} \right)}{^i_J}
|
||||
\eval{\ipd{\sigma} X^J( \tau, \sigma )}_{\sigma = 0}
|
||||
& = &
|
||||
i\, \tensor{\left( R_{(t)} \right)}{^i_J}
|
||||
\left(
|
||||
\ipd{u} X^J( x + i\, 0^+ ) - \ipd{\bu} \bX^J( x - i\, 0^+ )
|
||||
\right)
|
||||
=
|
||||
0,
|
||||
\\
|
||||
\tensor{\left( R_{(t)} \right)}{^m_J}
|
||||
\eval{\ipd{\tau} X^J( \tau, \sigma )}_{\sigma = 0}
|
||||
& = &
|
||||
i\, \tensor{\left( R_{(t)} \right)}{^m_J}
|
||||
\left(
|
||||
\ipd{u} X^J( x + i\, 0^+ ) + \ipd{\bu} \bX^J( x - i\, 0^+ )
|
||||
\right)
|
||||
=
|
||||
0,
|
||||
\end{eqnarray}
|
||||
where $i = 1,\, 2$, $m = 3,\, 4$ and $x \in D_{(t)}$.
|
||||
|
||||
With the introduction of the target space embedding of the worldsheet interaction point between D-branes $D_{(t)}$ and $D_{(t+1)}$, $f_{(t)}$, we recover the full boundary conditions in terms of discontinuities on the real axis:
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
\ipd{u} X^I( x + i\, 0^+ )
|
||||
& =
|
||||
\tensor{\left( U_{(t)} \right)}{^I_J}
|
||||
\ipd{\bu} \bX^J( x - i\, 0^+ ),
|
||||
\qquad
|
||||
x \in D_{(t)}
|
||||
\\
|
||||
X^I( x_{(t)}, x_{(t)} )
|
||||
& =
|
||||
f_{(t)}
|
||||
\end{cases}.
|
||||
\label{eq:discontinuity_bc}
|
||||
\end{equation}
|
||||
In the last expression we introduced the matrix
|
||||
\begin{equation}
|
||||
U_{(t)}
|
||||
=
|
||||
\left( R_{(t)} \right)^{-1}\,
|
||||
\cS\,
|
||||
R_{(t)}
|
||||
\in
|
||||
\frac{\SO{4}}{\rS\left( \OO{2} \times \OO{2} \right)},
|
||||
\label{eq:Umatrices}
|
||||
\end{equation}
|
||||
where
|
||||
\begin{equation}
|
||||
\cS
|
||||
=
|
||||
\mqty( \dmat{ 1, 1, -1, -1 } )
|
||||
\label{eq:reflection_S}
|
||||
\end{equation}
|
||||
embeds the difference between Neumann and Dirichlet conditions.
|
||||
Given its definition $U_{(t)}$ is such that $U_{(t)} = \left( U_{(t)} \right)^{-1} = \left( U_{(t)} \right)^T$.
|
||||
|
||||
The target space vector $f_{(t)}$ recovers the apparent loss of information suffered when losing $g_{(t)}$.
|
||||
Consider for instance the embedding equations~\eqref{eq:dirichlet_bc} for any two intersecting D-branes $D_{(t)}$ and $D_{(t+1)}$.
|
||||
Introducing the auxiliary quantities
|
||||
\begin{eqnarray}
|
||||
\cR_{(t,\, t+1)}
|
||||
=
|
||||
\mqty( R_{(t)}^m \\ R_{(t+1)}^n )
|
||||
& \in &
|
||||
\GL{4}{\R},
|
||||
\qquad
|
||||
m, n = 3, 4,
|
||||
\\
|
||||
\cG_{(t,\, t+1)}
|
||||
=
|
||||
\mqty( g_{(t)}^m \\ g_{(t+1)}^n )
|
||||
& \in &
|
||||
\R^4,
|
||||
\qquad
|
||||
m, n = 3, 4,
|
||||
\end{eqnarray}
|
||||
we can compute the intersection point as:
|
||||
\begin{equation}
|
||||
f_{(t)}
|
||||
=
|
||||
\left( \cR_{(t,\, t+1)} \right)^{-1}\,
|
||||
\cG_{(t,\, t+1)}.
|
||||
\end{equation}
|
||||
Information on $g_{(t)}$ is thus recovered through the global boundary conditions in the second equation in \eqref{eq:discontinuity_bc}.
|
||||
|
||||
|
||||
\subsubsection{Doubling Trick and Branch Cut Structure}
|
||||
|
||||
In conformal coordinates we thus introduced the discontinuities~\eqref{eq:discontinuity_bc} across each D-brane which define a non trivial cut structure on the plane.
|
||||
One way to deal with them is to introduce the \emph{doubling trick} by gluing the relations along an arbitrary but fixed D-brane $D_{(\bt)}$:
|
||||
\begin{equation}
|
||||
\ipd{z} \cX(z) =
|
||||
\begin{cases}
|
||||
\ipd{u} X(u)
|
||||
&
|
||||
\qif
|
||||
z = u \qand \Im z > 0 \qor z \in D_{(\bt)}
|
||||
\\
|
||||
U_{(\bt)}\,
|
||||
\ipd{\bu} \bX(\bu)
|
||||
& \qif z = \bu \qand \Im z < 0 \qor z \in D_{(\bt)}
|
||||
\end{cases}.
|
||||
\label{eq:real_doubling_trick}
|
||||
\end{equation}
|
||||
Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\widetilde{\cU}_{(t,\, t+1)} = U_{(\bt)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bt)}$.
|
||||
The boundary conditions in terms of the doubling field are:
|
||||
\begin{eqnarray}
|
||||
\ipd{z} \cX( x_t + e^{2 \pi i}( \eta + i\, 0^+ ) )
|
||||
& = &
|
||||
\cU_{(t,\, t+1)}
|
||||
\ipd{z} \cX( x_t + \eta + i\, 0^+ ),
|
||||
\label{eq:top_monodromy}
|
||||
\\
|
||||
\partial \cX( x_t + e^{2 \pi i}( \eta - i\, 0^+ ) )
|
||||
& = &
|
||||
\widetilde{\cU}_{(t,\, t+1)}
|
||||
\ipd{z} \cX( x_t + \eta - i\, 0^+ ),
|
||||
\label{eq:bottom_monodromy}
|
||||
\end{eqnarray}
|
||||
for $0 < \eta < \min\left( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} \right)$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$.
|
||||
Matrices $\cU_{(t,\, t+1)}$ and $\widetilde{\cU}_{(t,\, t+1)}$ are the non trivial monodromies arising from the rotation of the D-branes.
|
||||
|
||||
Since the relative rotations between consecutive D-branes are non Abelian, for each interaction point there are two monodromies \cU and $\widetilde{\cU}$ depending on the location of the base point of the closed loop: one for paths starting in the upper plane \ccH and one for paths starting in $\overline{\ccH}$.
|
||||
As a consequence of the geometry of the rotations of the D-branes, a path on the complex plane enclosing all of them does not present a monodromy:
|
||||
\begin{equation}
|
||||
\finiteprod{t}{1}{N_B}\,
|
||||
\cU_{(\bt - t, \bt + 1 - t)}
|
||||
=
|
||||
\finiteprod{t}{1}{N_B}\,
|
||||
\widetilde{\cU}_{(\bt + t, \bt + 1 + t)}
|
||||
=
|
||||
\1_4.
|
||||
\end{equation}
|
||||
The complex plane has therefore branch cuts running between the D-branes at finite as shown in \Cref{fig:finite_cuts}.
|
||||
We thus translated the rotations of the D-branes encoded in the matrices $R_{(t)}$ in terms of $\cU_{(t,\, t+1)}$ and $\widetilde{\cU}_{(t,\, t+1)}$ which are matrix representations of the homotopy group of the complex plane with the described branch cut structure.
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\def\svgwidth{0.5\textwidth}
|
||||
\import{img/}{branchcuts.pdf_tex}
|
||||
\caption{%
|
||||
Branch cut structure of the complex plane with $N_B = 4$.
|
||||
Cuts are pictured as solid coloured blocks running from one intersection point to another at finite.
|
||||
}
|
||||
\label{fig:finite_cuts}
|
||||
\end{figure}
|
||||
|
||||
As a consistency check, the action~\eqref{eq:string_action} can be computed in terms of the doubling field \cX.
|
||||
The map
|
||||
\begin{equation}
|
||||
x_{(t)} + \eta \pm i\, 0^+
|
||||
\quad
|
||||
\mapsto
|
||||
\quad
|
||||
x_{(t)} + e^{2 \pi i}( \eta \pm i\, 0^+)
|
||||
\end{equation}
|
||||
must leave the action untouched since it does not depend on the branch cut structure.
|
||||
In fact we can show that
|
||||
\begin{equation}
|
||||
S_{\R^4}
|
||||
=
|
||||
\frac{1}{4 \pi \ap}
|
||||
\iint\limits_{\C}
|
||||
\dd{z} \dd{\bz}\,
|
||||
\ipd{z} \cX^T(z)\,
|
||||
U_{(\bt)}\,
|
||||
\ipd{\bz} \cX(\bz).
|
||||
\end{equation}
|
||||
As a matter of fact the action does not depend on the branch structure of the complex plane.
|
||||
|
||||
|
||||
\subsection{D-branes at Angles in Spinor Representation}
|
||||
|
||||
In the previous section we showed that it is possible to map the information on the rotations of the D-branes to non trivial monodromies of the doubling field.
|
||||
We thus recast the issue of solving the \eom of the string in the presence of rotated boundary conditions to the search for an explicit solution $\ipd{z} \cX( z )$ reproducing the non trivial monodromies in~\eqref{eq:top_monodromy} and \eqref{eq:bottom_monodromy}.
|
||||
|
||||
The field $\ipd{z} \cX( z )$ is technically a $4$-dimensional \emph{real} vector which has $N_B$ non trivial monodromy factors represented by $4
|
||||
\times 4$ real matrices, one for each interaction point $x_{(t)}$.
|
||||
A solution of the \eom is encoded in four linearly independent functions with $N_B$ branch points.
|
||||
In principle we could try to write it as a solution to fourth order differential equations with $N_B$ finite Fuchsian points.
|
||||
This is however an open mathematical debate.
|
||||
In fact the basis of such functions around each branch point are usually complicated and defined up to several free parameters.
|
||||
Moreover the explicit connection formulae between any two of them is an unsolved mathematical problem.
|
||||
Using contour integrals and writing the functions as Mellin--Barnes integrals it might be possible to solve the issue in the case $N_B = 3$ but it is certainly not the best course of action.
|
||||
|
||||
On the other hand $N_B = 3$ is exactly the case we are investigating.
|
||||
In what follows we use the isomorphism
|
||||
\begin{equation}
|
||||
\SO{4}
|
||||
\cong
|
||||
\frac{\SU{2} \times \SU{2}}{\Z_2}
|
||||
\label{eq:su2isomorphism}
|
||||
\end{equation}
|
||||
to map the problem of finding a $4$-dimensional real solution to the \eom to a quest for a $2 \times 2$ complex matrix.
|
||||
Such matrix is a linear superposition of tensor products of vectors in the fundamental representation of two different \SU{2} groups.
|
||||
These vectors are solutions to second order differential equations with three Fuchsian points, that is the hypergeometric equation.
|
||||
The task is then to find the parameters of the hypergeometric functions producing the spinor representation of the monodromies in~\eqref{eq:top_monodromy} and \eqref{eq:bottom_monodromy}.
|
||||
|
||||
|
||||
\subsubsection{Doubling Trick and Rotations in Spinor Representation}
|
||||
|
||||
We recall some of the properties of the isomorphism~\eqref{eq:su2isomorphism} in~\Cref{sec:isomorphism}.
|
||||
We define the spinor representation of $X$ as:
|
||||
\begin{equation}
|
||||
X_{(s)}( u, \bu ) = X^I( u, \bu )\, \tau_I,
|
||||
\end{equation}
|
||||
where $\tau = \left( i\, \1_2,\, \vb{\sigma} \right)$ and $\vb{\sigma}$ is the vector of the Pauli matrices.
|
||||
Consider then:
|
||||
\begin{equation}
|
||||
\ipd{z} \cX_{(s)}( z )
|
||||
=
|
||||
\begin{cases}
|
||||
\ipd{u} X_{(s)}(u)
|
||||
& \qif
|
||||
z \in \ccH \qor z \in D_{(\bt)}
|
||||
\\
|
||||
U_{L}(\vb{n}_{(\bt)})\,
|
||||
\ipd{\bu} X_{(s)}(\bu)\,
|
||||
U_{R}^{\dagger}(\vb{m}_{(\bt)})
|
||||
& \qif z \in \overline{\ccH} \qor z \in D_{(\bt)}
|
||||
\end{cases}.
|
||||
\label{eq:spinor_doubling_trick}
|
||||
\end{equation}
|
||||
|
||||
As in the real representation the discontinuities on the D-branes can be cast into monodromy factors with respect to the D-brane $D_{(\bt)}$. Branch cut structure and considerations on the homotopy group are left unchanged as long as we consider both left and right sectors of $\SU{2}_L \times \SU{2}_R$ at the same time.
|
||||
Let $0 < \eta < \min\left( \abs{x_{(t)} - x_{(t-1)}}, \abs{x_{(t+1)} - x_{(t)}} \right)$.
|
||||
We find:
|
||||
\begin{eqnarray}
|
||||
\ipd{z} \cX_{(s)}( x_t + e^{2 \pi i}( \eta + i\, 0^+) )
|
||||
& = &
|
||||
\cL_{(t,\, t+1)} \ipd{z}\,
|
||||
\cX_{(s)}( x_t + \eta + i\, 0^+ )\,
|
||||
\cR_{(t,\, t+1)}^{\dagger},
|
||||
\label{eq:top_spinor_monodromy}
|
||||
\\
|
||||
\ipd{z} \cX_{(s)}( x_t + e^{2 \pi i}( \eta - i\, 0^+) )
|
||||
& = &
|
||||
\widetilde{\cL}_{(t,\, t+1)}\,
|
||||
\ipd{z} \cX_{(s)}( x_t + \eta - i\, 0^+ )\,
|
||||
\widetilde{\cR}_{(t,\, t+1)}^{\dagger},
|
||||
\label{eq:bottom_spinor_monodromy}
|
||||
\end{eqnarray}
|
||||
where:
|
||||
\begin{eqnarray}
|
||||
\cL_{(t,\, t+1)}
|
||||
& = &
|
||||
U_{L}(\vb{n}_{(t+1)})\,
|
||||
U_{L}^{\dagger}(\vb{n}_{(t)}),
|
||||
\\
|
||||
\widetilde{\cL}_{(t,\, t+1)}
|
||||
& = &
|
||||
U_{L}(\vb{n}_{(\bt)})\,
|
||||
U_{L}^{\dagger}(\vb{n}_{(t)})\,
|
||||
U_{L}(\vb{n}_{(t+1)})\,
|
||||
U_{L}^{\dagger}(\vb{n}_{(\bt)}),
|
||||
\\
|
||||
\cR_{(t,\, t+1)}
|
||||
& = &
|
||||
U_{R}(\vb{m}_{(t+1)})\,
|
||||
U_{R}^{\dagger}(\vb{m}_{(t)}),
|
||||
\\
|
||||
\widetilde{\cR}_{(t,\, t+1)}
|
||||
& = &
|
||||
U_{R}(\vb{m}_{(\bt)})\,
|
||||
U_{R}^{\dagger}(\vb{m}_{(t)})\,
|
||||
U_{R}(\vb{m}_{(t+1)})\,
|
||||
U_{R}^{\dagger}(\vb{m}_{(\bt)}).
|
||||
\end{eqnarray}
|
||||
|
||||
In spinor representation the action~\eqref{eq:string_action} becomes
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
S_{\R^4}
|
||||
& =
|
||||
\frac{1}{4 \pi \ap}
|
||||
\iint\limits_{\ccH}
|
||||
\dd{u} \dd{\bu}\,
|
||||
\tr(\ipd{u} X_{(s)}(u, \bu) \cdot \ipd{\bu} X^{\dagger}_{(s)}(u, \bu))
|
||||
\\
|
||||
& =
|
||||
\frac{1}{8 \pi \ap}
|
||||
\iint\limits_{\C}
|
||||
\dd{z} \dd{\bz}\,
|
||||
\tr(
|
||||
U_{L}(\vb{n}_{(\bt)})\,
|
||||
\ipd{z} \cX_{(s)}(z, \bz)\,
|
||||
U_{R}^{\dagger}(\vb{m}_{(\bt)})\,
|
||||
\ipd{\bz} \cX_{(s)}^{\dagger}(z, \bz)
|
||||
).
|
||||
\end{split}
|
||||
\label{eq:action_doubling_fields_spinor_representation}
|
||||
\end{equation}
|
||||
It is possible to show that the closed loop $x_t + \eta \pm i\, 0^+ \mapsto x_t + e^{2 \pi i}( \eta \pm i\, 0^+ )$ does not generate additional contributions in the action.
|
||||
|
||||
|
||||
\subsubsection{Special Form of Matrices for D-Branes at Angles}
|
||||
\label{sect:special_SO4}
|
||||
|
||||
The $\SU{2}$ matrices involved in this scenario with D-branes intersecting at angles have a particular form.
|
||||
In the left sector (i.e.\ $\SU{2}_L$ matrices) we have:
|
||||
\begin{equation}
|
||||
\cL_{(t,\, t+1)}
|
||||
=
|
||||
U_{L}(\vb{n}_{(t+1)})\,
|
||||
U_{L}^{\dagger}(\vb{n}_{(t)})\,
|
||||
=
|
||||
-\vb{n}_{(t+1)} \cdot \vb{n}_{(t)}
|
||||
+
|
||||
i\, (\vb{n}_{(t+1)} \times \vb{n}_{(t)}) \cdot \vb{\sigma} ,
|
||||
\end{equation}
|
||||
with $\vb{n}_{(t)}^2 = 1$.
|
||||
This is a consequence of the peculiar properties of the \SO{4} matrices $U_{(t)}$ defined in \eqref{eq:Umatrices}.
|
||||
Hence the corresponding $\SU{2}_L \times \SU{2}_R$ element $(U_{L}(\vb{n}_{(t)}),\, U_{R}(\vb{m}_{(t)}))$ reflects such characteristics.
|
||||
In particular for the left part we have
|
||||
\begin{equation}
|
||||
U_{L}(\vb{n}_{(t)})
|
||||
=
|
||||
i\, \vb{n}_{(t)} \cdot \vb{\sigma},
|
||||
\qquad
|
||||
\vb{n}_{(t)}^2 = 1,
|
||||
\label{eq:special_UL_brane_t}
|
||||
\end{equation}
|
||||
since $U_{(t)}^2 = \1_4$ implies that $U_{L}^2 = \pm \1_2$.
|
||||
The right sector clearly follows the same discussion.
|
||||
|
||||
In fact \cS in~\eqref{eq:reflection_S} can be represented as $U_{L} = U_{R} = i\, \sigma_1$.
|
||||
Then any matrix $U_{L}(\vb{n}_{(t)})$ is of the form $U_{L}(\vb{n}_{(t)}) = i\, U(\vb{r}_{(t)}) \cdot \sigma_1 \cdot U^\dagger(\vb{r}_{(t)})$, for some $\vb{r}_{(t)}$ as follows from~\eqref{eq:Umatrices}.
|
||||
Such matrix has vanishing trace and squares to $-\1_2$ hence the term proportional to two-dimensional unit matrix in the expression of the generic $\mathrm{SU}(2)$ element given in \Cref{sec:isomorphism} vanishes.
|
||||
As a consequence $n_{(t)} = \frac{1}{4}$ such that \eqref{eq:special_UL_brane_t} follows.
|
||||
|
||||
% vim ft=tex
|
||||
|
||||
@@ -55,6 +55,8 @@
|
||||
\newcommand{\bxi}{\ensuremath{\overline{\xi}}}
|
||||
\newcommand{\bchi}{\ensuremath{\overline{\chi}}}
|
||||
\newcommand{\bz}{\ensuremath{\overline{z}}}
|
||||
\newcommand{\bu}{\ensuremath{\overline{u}}}
|
||||
\newcommand{\bt}{\ensuremath{\overline{t}}}
|
||||
\newcommand{\bw}{\ensuremath{\overline{w}}}
|
||||
\newcommand{\bomega}{\ensuremath{\overline{\omega}}}
|
||||
\newcommand{\bepsilon}{\ensuremath{\overline{\epsilon}}}
|
||||
@@ -111,10 +113,16 @@
|
||||
\input{sec/part3/introduction.tex}
|
||||
|
||||
%---- APPENDIX
|
||||
\cleardoubleplainpage{}
|
||||
\appendix
|
||||
\section{The Isomorphism in Details}
|
||||
\label{sec:isomorphism}
|
||||
\input{sec/app/isomorphism.tex}
|
||||
|
||||
|
||||
%---- BIBLIOGRAPHY
|
||||
\cleardoubleplainpage{}
|
||||
\small
|
||||
\printbibliography[heading=bibintoc]
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user