Up to NS fermions
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -15,9 +15,9 @@ In the main text we set
|
||||
where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$.
|
||||
The previous equation implies
|
||||
\begin{equation}
|
||||
\left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^\dagger
|
||||
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^\dagger
|
||||
=
|
||||
\left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^{-1},
|
||||
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^{-1},
|
||||
\end{equation}
|
||||
which can be rewritten as
|
||||
\begin{equation}
|
||||
@@ -147,7 +147,7 @@ which is satisfied by:
|
||||
k'_{ab} \in \Z,
|
||||
\end{split}
|
||||
\end{equation}
|
||||
where $p^{(L)},\, q^{(L)} \in \left\lbrace 0, 1 \right\rbrace$.
|
||||
where $p^{(L)},\, q^{(L)} \in \qty{ 0, 1 }$.
|
||||
Notice that changing the value of $p^{(L)}$ corresponds to swapping $a$ and $b$: since the hypergeometric function is symmetric in those parameters we can fix $p^{(L)}=0$.
|
||||
Redefining $k'$ we can always set $q^{(L)}=0$.
|
||||
We therefore have:
|
||||
@@ -170,16 +170,16 @@ We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have t
|
||||
|
||||
We find a third relation by considering the entry
|
||||
\begin{equation}
|
||||
\Im\left(
|
||||
\Im\qty(
|
||||
e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
D^{(L)}\,
|
||||
\rM_{\vb{\infty}}^{(L)}\,
|
||||
\left( D^{(L)} \right)^{-1}
|
||||
\right)_{11}
|
||||
\qty( D^{(L)} )^{-1}
|
||||
)_{11}
|
||||
=
|
||||
\Im\left(
|
||||
\Im\qty(
|
||||
\cL(n_{\vb{\infty}})
|
||||
\right)_{11}.
|
||||
)_{11}.
|
||||
\end{equation}
|
||||
Using
|
||||
\begin{equation}
|
||||
@@ -221,7 +221,7 @@ We then write
|
||||
\qquad
|
||||
k_{abc}\in \Z,
|
||||
\end{equation}
|
||||
with $f^{(L)} \in \left\lbrace 0, 1 \right\rbrace$.
|
||||
with $f^{(L)} \in \qty{ 0, 1 }$.
|
||||
The request
|
||||
\begin{equation}
|
||||
A
|
||||
@@ -284,10 +284,10 @@ So far we can summarise the results in
|
||||
|
||||
$K^{(L)}$ is finally determined from
|
||||
\begin{equation}
|
||||
\left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{21}
|
||||
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{21}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
\left( \cL(n_{\vb{\infty}}) \right)_{21},
|
||||
\qty( \cL(n_{\vb{\infty}}) )_{21},
|
||||
\label{eq:fixing_K_21}
|
||||
\end{equation}
|
||||
and get:
|
||||
@@ -310,7 +310,7 @@ We check the consistency condition \eqref{eq:K_consistency_condition} using~\eqr
|
||||
The result is
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\left( K^{(L)} \right)^{-1}
|
||||
\qty( K^{(L)} )^{-1}
|
||||
& =
|
||||
\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
|
||||
\cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\,
|
||||
@@ -341,10 +341,10 @@ We can then rewrite~\eqref{eq:cos_n1} as
|
||||
It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$.
|
||||
The same consistency check can also be performed by computing $K^{(L)}$ from
|
||||
\begin{equation}
|
||||
\left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{12}
|
||||
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{12}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
\left( \cL(n_{\vb{\infty}}) \right)_{12},
|
||||
\qty( \cL(n_{\vb{\infty}}) )_{12},
|
||||
\end{equation}
|
||||
instead of \eqref{eq:fixing_K_21}.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user