352 lines
10 KiB
TeX
352 lines
10 KiB
TeX
In this appendix we show the computation of the parameters of the hypergeometric functions and their relation with the rotation parameters.
|
|
|
|
|
|
\subsection{Consistency Conditions of the Monodromy Matrices}
|
|
|
|
In the main text we set
|
|
\begin{equation}
|
|
D~
|
|
\rM_{\vb{\infty}}~
|
|
D^{-1}
|
|
=
|
|
e^{-2\pi i \delta_{\vb{\infty}}}\,
|
|
\cL(\vb{n}_{\vb{\infty}}),
|
|
\end{equation}
|
|
where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$.
|
|
The previous equation implies
|
|
\begin{equation}
|
|
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^\dagger
|
|
=
|
|
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^{-1},
|
|
\end{equation}
|
|
which can be rewritten as
|
|
\begin{equation}
|
|
\widetilde{\rM}_{\vb{\infty}}^{-1}~
|
|
\cC^{\dagger}\, D^{\dagger}\, D\, \cC
|
|
=
|
|
\cC^{\dagger}\, D^{\dagger}\, D\, \cC~
|
|
\widetilde{\rM}_{\vb{\infty}}^{-1}.
|
|
\end{equation}
|
|
As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish.
|
|
We therefore have
|
|
\begin{equation}
|
|
\begin{split}
|
|
\abs{K}^{-2}
|
|
& =
|
|
-\frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}
|
|
\\
|
|
& =
|
|
-\frac{1}{\pi^4}\,
|
|
\abs{\gfun{a} \gfun{b} \gfun{c-a} \gfun{c-b}}^2 \times
|
|
\\
|
|
& \times
|
|
\sin(\pi a)\, \sin^*(\pi (c-a))\, (\sin(\pi b)\, \sin^*(\pi (c-b)))^*.
|
|
\end{split}
|
|
\end{equation}
|
|
When $a,\, b,\, c \in \R$ this ultimately means that
|
|
\begin{equation}
|
|
\sin(\pi a)\, \sin(\pi (c-a))\, \sin(\pi b)\, \sin(\pi (c-b)) < 0.
|
|
\label{eq:constraint_from_K^2}
|
|
\end{equation}
|
|
Since the previous equation is invariant under integer shift of any of its parameters, we can consider just the fractional parts $0 \le \{a\},\, \{b\},\, \{c\} < 1$.
|
|
In order to have \U{2} monodromies finally requires
|
|
\begin{equation}
|
|
0 \le \{b\} < \{c\} < \{a\} < 1
|
|
\qq{or}
|
|
0 \le \{a\} < \{c\} < \{b\} <1.
|
|
\label{eq:K_consistency_condition}
|
|
\end{equation}
|
|
|
|
Should we request \U{1,1} monodromies as in moving rotated branes then we get:
|
|
\begin{equation}
|
|
\abs{K}^{-2}
|
|
=
|
|
\frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}.
|
|
\end{equation}
|
|
This would then imply
|
|
\begin{equation}
|
|
0 \le \{c\} < \{a\},\, \{b\} < 1
|
|
\qq{or}
|
|
0 \le \{a\},\, \{b\} < \{c\} < 1.
|
|
\end{equation}
|
|
|
|
|
|
\subsection{Fixing the Parameters}
|
|
|
|
We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text.
|
|
The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes.
|
|
|
|
The monodromy in $\omega_{\bt-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal.
|
|
We impose:
|
|
\begin{eqnarray}
|
|
\mqty( \dmat{1, e^{-2\pi i c^{(L)}}} )
|
|
& = &
|
|
e^{-2\pi i \delta_{\vb{0}}^{(L)}}\,
|
|
\mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ),
|
|
\\
|
|
\mqty( \dmat{1, e^{-2\pi i c^{(R)}}} )
|
|
& = &
|
|
e^{-2\pi i \delta_{\vb{0}}^{(R)}}\,
|
|
\mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ),
|
|
\end{eqnarray}
|
|
where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}.
|
|
We thus have:
|
|
\begin{equation}
|
|
\begin{split}
|
|
\delta_{\vb{0}}^{(L)}
|
|
& =
|
|
n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}},
|
|
\qquad
|
|
k_{\delta^{(L)}_{\vb{0}}} \in \Z,
|
|
\\
|
|
c^{(L)}
|
|
& =
|
|
2 n_{\vb{0}} + k_c,
|
|
\qquad
|
|
k_c \in \Z.
|
|
\end{split}
|
|
\label{eq:cL}
|
|
\end{equation}
|
|
Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le \alpha + \frac{1}{2}$.
|
|
Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$.
|
|
Analogous results hold in the right sector.
|
|
Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict:
|
|
\begin{equation}
|
|
n_{\vb{0}} + m_{\vb{0}} - A \in \Z.
|
|
\end{equation}
|
|
|
|
We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$.
|
|
After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$.
|
|
The equations follow from~\eqref{eq:parameters_equality_infty}.
|
|
The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}:
|
|
\begin{equation}
|
|
e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) )
|
|
=
|
|
e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}),
|
|
\end{equation}
|
|
which is satisfied by:
|
|
\begin{equation}
|
|
\begin{split}
|
|
\delta^{(L)}_{\vb{\infty}}
|
|
& =
|
|
-
|
|
\frac{1}{2}(a^{(L)} + b^{(L)})
|
|
+
|
|
\frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}},
|
|
\qquad
|
|
k_{\delta_{\vb{\infty}}} \in \Z,
|
|
\\
|
|
a^{(L)} - b^{(L)}
|
|
& =
|
|
2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}}
|
|
+
|
|
(-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}}
|
|
+
|
|
2\, k'_{a b},
|
|
\qquad
|
|
k'_{ab} \in \Z,
|
|
\end{split}
|
|
\end{equation}
|
|
where $p^{(L)},\, q^{(L)} \in \qty{ 0, 1 }$.
|
|
Notice that changing the value of $p^{(L)}$ corresponds to swapping $a$ and $b$: since the hypergeometric function is symmetric in those parameters we can fix $p^{(L)}=0$.
|
|
Redefining $k'$ we can always set $q^{(L)}=0$.
|
|
We therefore have:
|
|
\begin{equation}
|
|
a^{(L)} - b^{(L)}
|
|
=
|
|
2\, n_{\vb{\infty}}
|
|
+
|
|
k_{\delta^{(L)}_{\vb{\infty}}}
|
|
+
|
|
2 k_{ab},
|
|
\qquad
|
|
k_{a b}\in \Z.
|
|
\label{eq:aL-bL}
|
|
\end{equation}
|
|
The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bt-1} = 0$.
|
|
The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$ may a priori take values in an interval of width $1$.
|
|
As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
|
|
We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
|
|
|
|
We find a third relation by considering the entry
|
|
\begin{equation}
|
|
\Im\qty(
|
|
e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
|
D^{(L)}\,
|
|
\rM_{\vb{\infty}}^{(L)}\,
|
|
\qty( D^{(L)} )^{-1}
|
|
)_{11}
|
|
=
|
|
\Im\qty(
|
|
\cL(n_{\vb{\infty}})
|
|
)_{11}.
|
|
\end{equation}
|
|
Using
|
|
\begin{equation}
|
|
\det \cC
|
|
=
|
|
\frac{\sin(\pi c^{(L)})}{\sin(\pi(a^{(L)}-b^{(L)}))},
|
|
\end{equation}
|
|
and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to:
|
|
\begin{equation}
|
|
\cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} ))
|
|
=
|
|
(-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}),
|
|
\end{equation}
|
|
where
|
|
\begin{equation}
|
|
\cos(2\pi \cA^{(L)})
|
|
=
|
|
\cos(2\pi n_{\vb{0}})\,
|
|
\cos(2\pi n_{\vb{\infty}})
|
|
-
|
|
\sin(2\pi n_{\vb{0}})\,
|
|
\sin(2\pi n_{\vb{\infty}})\,
|
|
\frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}.
|
|
\label{eq:cos_n1}
|
|
\end{equation}
|
|
This expression is connected with rotation parameter in the third interaction point $\omega_{\bt+1} = 1$.
|
|
In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$.
|
|
We then write
|
|
\begin{equation}
|
|
a^{(L)} + b^{(L)} - c^{(L)}
|
|
=
|
|
2\, (-1)^{f^{(L)}}\, n_{\vb{1}}
|
|
+
|
|
k_c
|
|
+
|
|
k_{\delta^{(L)}_{\vb{\infty}}}
|
|
+
|
|
2\, k_{abc},
|
|
\qquad
|
|
k_{abc}\in \Z,
|
|
\end{equation}
|
|
with $f^{(L)} \in \qty{ 0, 1 }$.
|
|
The request
|
|
\begin{equation}
|
|
A
|
|
+
|
|
B
|
|
-
|
|
n_{\vb{0}}
|
|
-
|
|
m_{\vb{0}}
|
|
-
|
|
(-1)^{f^{(L)}}\, n_{\vb{1}}
|
|
-
|
|
(-1)^{f^{(R)}}\, m_{\vb{1}}
|
|
\in \Z
|
|
\end{equation}
|
|
finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}.
|
|
|
|
So far we can summarise the results in
|
|
\begin{eqnarray}
|
|
a
|
|
=
|
|
n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a,
|
|
& \qquad &
|
|
m_a \in \Z,
|
|
\\
|
|
b
|
|
=
|
|
n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b,
|
|
& \qquad &
|
|
m_b \in \Z,
|
|
\\
|
|
c
|
|
=
|
|
2\, n_{\vb{0}} + m_c,
|
|
& \qquad &
|
|
m_c \in \Z,
|
|
\\
|
|
\delta_{\vb{0}}^{(L)}
|
|
=
|
|
n_{\vb{0}},
|
|
\\
|
|
\delta_{\vb{\infty}}^{(L)}
|
|
=
|
|
- n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta,
|
|
& \qquad &
|
|
m_{\delta} \in \Z,
|
|
\\
|
|
A
|
|
=
|
|
n_{\vb{0}} + m_{\vb{0}} + m_A,
|
|
& \qquad &
|
|
m_A \in \Z,
|
|
\\
|
|
B
|
|
=
|
|
(-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B,
|
|
& \qquad &
|
|
m_B \in \Z.
|
|
\end{eqnarray}
|
|
|
|
$K^{(L)}$ is finally determined from
|
|
\begin{equation}
|
|
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{21}
|
|
=
|
|
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
|
\qty( \cL(n_{\vb{\infty}}) )_{21},
|
|
\label{eq:fixing_K_21}
|
|
\end{equation}
|
|
and get:
|
|
\begin{equation}
|
|
K^{(L)}
|
|
=
|
|
-\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
|
|
\cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\,
|
|
\sin(2 \pi n_{\vb{0}})
|
|
\sin(2 \pi n_{\vb{\infty}})
|
|
\frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
|
|
\label{eq:app_B_K21}
|
|
\end{equation}
|
|
where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$.
|
|
|
|
|
|
\subsection{Checking the Consistency of the Solution}
|
|
|
|
We check the consistency condition \eqref{eq:K_consistency_condition} using~\eqref{eq:product_in_SU2}.
|
|
The result is
|
|
\begin{equation}
|
|
\begin{split}
|
|
\qty( K^{(L)} )^{-1}
|
|
& =
|
|
\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
|
|
\cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\,
|
|
\\
|
|
& \times
|
|
\sin(2 \pi n_{\vb{0}})\,
|
|
\sin(2 \pi n_{\vb{\infty}})\,
|
|
\frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
|
|
\end{split}
|
|
\label{eq:app_B_K12}
|
|
\end{equation}
|
|
where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section.
|
|
Compatibility with~\eqref{eq:app_B_K21} requires
|
|
\begin{equation}
|
|
\frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
|
|
=
|
|
-4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))}
|
|
{\sin^2(\pi c) \sin^2(\pi(a-b))}.
|
|
\label{eq:n12+n22}
|
|
\end{equation}
|
|
We can then rewrite~\eqref{eq:cos_n1} as
|
|
\begin{equation}
|
|
\frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
|
|
=
|
|
\frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2}
|
|
{\sin^2(\pi c) \sin^2(\pi(a-b))}.
|
|
\end{equation}
|
|
It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$.
|
|
The same consistency check can also be performed by computing $K^{(L)}$ from
|
|
\begin{equation}
|
|
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{12}
|
|
=
|
|
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
|
\qty( \cL(n_{\vb{\infty}}) )_{12},
|
|
\end{equation}
|
|
instead of \eqref{eq:fixing_K_21}.
|
|
|
|
% vim: ft=tex
|