Some additions on cosmology
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -6,28 +6,28 @@ In this appendix we show the computation of the parameters of the hypergeometric
|
||||
In the main text we set
|
||||
\begin{equation}
|
||||
D~
|
||||
\rM_{\vb{\infty}}~
|
||||
\rM_{\infty}~
|
||||
D^{-1}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}}\,
|
||||
\cL(\vb{n}_{\vb{\infty}}),
|
||||
e^{-2\pi i \delta_{\infty}}\,
|
||||
\cL(\vec{n}_{\infty}),
|
||||
\end{equation}
|
||||
where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$.
|
||||
where $\cL(\vec{n}_{\infty}) \in \SU{2}$.
|
||||
The previous equation implies
|
||||
\begin{equation}
|
||||
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^\dagger
|
||||
\qty( D\, \rM_{\infty}\, D^{-1} )^\dagger
|
||||
=
|
||||
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^{-1},
|
||||
\qty( D\, \rM_{\infty}\, D^{-1} )^{-1},
|
||||
\end{equation}
|
||||
which can be rewritten as
|
||||
\begin{equation}
|
||||
\widetilde{\rM}_{\vb{\infty}}^{-1}~
|
||||
\widetilde{\rM}_{\infty}^{-1}~
|
||||
\cC^{\dagger}\, D^{\dagger}\, D\, \cC
|
||||
=
|
||||
\cC^{\dagger}\, D^{\dagger}\, D\, \cC~
|
||||
\widetilde{\rM}_{\vb{\infty}}^{-1}.
|
||||
\widetilde{\rM}_{\infty}^{-1}.
|
||||
\end{equation}
|
||||
As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish.
|
||||
As $\widetilde{\rM}_{\infty}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish.
|
||||
We therefore have
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
@@ -76,71 +76,71 @@ This would then imply
|
||||
We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text.
|
||||
The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes.
|
||||
|
||||
The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal.
|
||||
The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vec{n}_{0})$ and $\cR(\widetilde{\vec{m}}_{0})$ to be diagonal.
|
||||
We impose:
|
||||
\begin{eqnarray}
|
||||
\mqty( \dmat{1, e^{-2\pi i c^{(L)}}} )
|
||||
& = &
|
||||
e^{-2\pi i \delta_{\vb{0}}^{(L)}}\,
|
||||
\mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ),
|
||||
e^{-2\pi i \delta_{0}^{(L)}}\,
|
||||
\mqty( \dmat{e^{2\pi i n_{0}}, e^{-2\pi i n_{0}}} ),
|
||||
\\
|
||||
\mqty( \dmat{1, e^{-2\pi i c^{(R)}}} )
|
||||
& = &
|
||||
e^{-2\pi i \delta_{\vb{0}}^{(R)}}\,
|
||||
\mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ),
|
||||
e^{-2\pi i \delta_{0}^{(R)}}\,
|
||||
\mqty( \dmat{e^{-2\pi i m_{0}}, e^{2\pi i m_{0}}} ),
|
||||
\end{eqnarray}
|
||||
where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}.
|
||||
where $n^3_{0} = \norm{\vec{n}_{0}} = n_{0}$ and $m^3_{0} = \norm{\vec{m}_{0}} = m_{0}$ with $0 \le n_{0},\, m_{0} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}.
|
||||
We thus have:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\delta_{\vb{0}}^{(L)}
|
||||
\delta_{0}^{(L)}
|
||||
& =
|
||||
n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}},
|
||||
n_{0} + k_{\delta^{(L)}_{0}},
|
||||
\qquad
|
||||
k_{\delta^{(L)}_{\vb{0}}} \in \Z,
|
||||
k_{\delta^{(L)}_{0}} \in \Z,
|
||||
\\
|
||||
c^{(L)}
|
||||
& =
|
||||
2 n_{\vb{0}} + k_c,
|
||||
2 n_{0} + k_c,
|
||||
\qquad
|
||||
k_c \in \Z.
|
||||
\end{split}
|
||||
\label{eq:cL}
|
||||
\end{equation}
|
||||
Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le \alpha + \frac{1}{2}$.
|
||||
Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$.
|
||||
Since the determinant of the right hand side is $e^{-4 \pi i \delta_{0}^{(L)}}$, the range of definition of $\delta_{0}^{(L)}$ is $\alpha \le \delta_{0}^{(L)} \le \alpha + \frac{1}{2}$.
|
||||
Given that $0 \le n_{0} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{0}^{(L)} = n_{0}$.
|
||||
Analogous results hold in the right sector.
|
||||
Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict:
|
||||
\begin{equation}
|
||||
n_{\vb{0}} + m_{\vb{0}} - A \in \Z.
|
||||
n_{0} + m_{0} - A \in \Z.
|
||||
\end{equation}
|
||||
|
||||
We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$.
|
||||
We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$.
|
||||
After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$.
|
||||
The equations follow from~\eqref{eq:parameters_equality_infty}.
|
||||
The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}:
|
||||
The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}:
|
||||
\begin{equation}
|
||||
e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) )
|
||||
=
|
||||
e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}),
|
||||
e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\infty}),
|
||||
\end{equation}
|
||||
which is satisfied by:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\delta^{(L)}_{\vb{\infty}}
|
||||
\delta^{(L)}_{\infty}
|
||||
& =
|
||||
-
|
||||
\frac{1}{2}(a^{(L)} + b^{(L)})
|
||||
+
|
||||
\frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}},
|
||||
\frac{1}{2} k_{\delta^{(L)}_{\infty}},
|
||||
\qquad
|
||||
k_{\delta_{\vb{\infty}}} \in \Z,
|
||||
k_{\delta_{\infty}} \in \Z,
|
||||
\\
|
||||
a^{(L)} - b^{(L)}
|
||||
& =
|
||||
2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}}
|
||||
2\, (-1)^{p^{(L)}}\, n_{\infty}
|
||||
+
|
||||
(-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}}
|
||||
(-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\infty}}
|
||||
+
|
||||
2\, k'_{a b},
|
||||
\qquad
|
||||
@@ -154,31 +154,31 @@ We therefore have:
|
||||
\begin{equation}
|
||||
a^{(L)} - b^{(L)}
|
||||
=
|
||||
2\, n_{\vb{\infty}}
|
||||
2\, n_{\infty}
|
||||
+
|
||||
k_{\delta^{(L)}_{\vb{\infty}}}
|
||||
k_{\delta^{(L)}_{\infty}}
|
||||
+
|
||||
2 k_{ab},
|
||||
\qquad
|
||||
k_{a b}\in \Z.
|
||||
\label{eq:aL-bL}
|
||||
\end{equation}
|
||||
The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$.
|
||||
The allowed values for $k_{\delta^{(L)}_{\infty}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$.
|
||||
The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$ may a priori take values in an interval of width $1$.
|
||||
As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
|
||||
We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
|
||||
As in the previous case we have $\alpha \le \delta_{\infty}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
|
||||
We cannot thus choose a vanishing $k_{\delta^{(L)}_{\infty}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
|
||||
|
||||
We find a third relation by considering the entry
|
||||
\begin{equation}
|
||||
\Im\qty(
|
||||
e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
e^{+2\pi i \delta_{\infty}^{(L)}}\,
|
||||
D^{(L)}\,
|
||||
\rM_{\vb{\infty}}^{(L)}\,
|
||||
\rM_{\infty}^{(L)}\,
|
||||
\qty( D^{(L)} )^{-1}
|
||||
)_{11}
|
||||
=
|
||||
\Im\qty(
|
||||
\cL(n_{\vb{\infty}})
|
||||
\cL(n_{\infty})
|
||||
)_{11}.
|
||||
\end{equation}
|
||||
Using
|
||||
@@ -191,31 +191,31 @@ and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to:
|
||||
\begin{equation}
|
||||
\cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} ))
|
||||
=
|
||||
(-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}),
|
||||
(-1)^{k_c+k_{\delta^{(L)}_{\infty}} }\, \cos(2\pi \cA^{(L)}),
|
||||
\end{equation}
|
||||
where
|
||||
\begin{equation}
|
||||
\cos(2\pi \cA^{(L)})
|
||||
=
|
||||
\cos(2\pi n_{\vb{0}})\,
|
||||
\cos(2\pi n_{\vb{\infty}})
|
||||
\cos(2\pi n_{0})\,
|
||||
\cos(2\pi n_{\infty})
|
||||
-
|
||||
\sin(2\pi n_{\vb{0}})\,
|
||||
\sin(2\pi n_{\vb{\infty}})\,
|
||||
\frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}.
|
||||
\sin(2\pi n_{0})\,
|
||||
\sin(2\pi n_{\infty})\,
|
||||
\frac{n_{\infty}^3}{n_{\infty}}.
|
||||
\label{eq:cos_n1}
|
||||
\end{equation}
|
||||
This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$.
|
||||
In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$.
|
||||
In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{1})$.
|
||||
We then write
|
||||
\begin{equation}
|
||||
a^{(L)} + b^{(L)} - c^{(L)}
|
||||
=
|
||||
2\, (-1)^{f^{(L)}}\, n_{\vb{1}}
|
||||
2\, (-1)^{f^{(L)}}\, n_{1}
|
||||
+
|
||||
k_c
|
||||
+
|
||||
k_{\delta^{(L)}_{\vb{\infty}}}
|
||||
k_{\delta^{(L)}_{\infty}}
|
||||
+
|
||||
2\, k_{abc},
|
||||
\qquad
|
||||
@@ -228,13 +228,13 @@ The request
|
||||
+
|
||||
B
|
||||
-
|
||||
n_{\vb{0}}
|
||||
n_{0}
|
||||
-
|
||||
m_{\vb{0}}
|
||||
m_{0}
|
||||
-
|
||||
(-1)^{f^{(L)}}\, n_{\vb{1}}
|
||||
(-1)^{f^{(L)}}\, n_{1}
|
||||
-
|
||||
(-1)^{f^{(R)}}\, m_{\vb{1}}
|
||||
(-1)^{f^{(R)}}\, m_{1}
|
||||
\in \Z
|
||||
\end{equation}
|
||||
finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}.
|
||||
@@ -243,51 +243,51 @@ So far we can summarise the results in
|
||||
\begin{eqnarray}
|
||||
a
|
||||
=
|
||||
n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a,
|
||||
n_{0} + (-1)^{f^{(L)}} n_{1} + n_{\infty} + m_a,
|
||||
& \qquad &
|
||||
m_a \in \Z,
|
||||
\\
|
||||
b
|
||||
=
|
||||
n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b,
|
||||
n_{0} + (-1)^{f^{(L)}} n_{1} - n_{\infty} + m_b,
|
||||
& \qquad &
|
||||
m_b \in \Z,
|
||||
\\
|
||||
c
|
||||
=
|
||||
2\, n_{\vb{0}} + m_c,
|
||||
2\, n_{0} + m_c,
|
||||
& \qquad &
|
||||
m_c \in \Z,
|
||||
\\
|
||||
\delta_{\vb{0}}^{(L)}
|
||||
\delta_{0}^{(L)}
|
||||
=
|
||||
n_{\vb{0}},
|
||||
n_{0},
|
||||
\\
|
||||
\delta_{\vb{\infty}}^{(L)}
|
||||
\delta_{\infty}^{(L)}
|
||||
=
|
||||
- n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta,
|
||||
- n_{0} - (-1)^{f^{(L)}} n_{1} + m_c + 2\, m_\delta,
|
||||
& \qquad &
|
||||
m_{\delta} \in \Z,
|
||||
\\
|
||||
A
|
||||
=
|
||||
n_{\vb{0}} + m_{\vb{0}} + m_A,
|
||||
n_{0} + m_{0} + m_A,
|
||||
& \qquad &
|
||||
m_A \in \Z,
|
||||
\\
|
||||
B
|
||||
=
|
||||
(-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B,
|
||||
(-1)^{f^{(L)}}\, n_{1} + (-1)^{f^{(R)}}\, m_{1} + m_B,
|
||||
& \qquad &
|
||||
m_B \in \Z.
|
||||
\end{eqnarray}
|
||||
|
||||
$K^{(L)}$ is finally determined from
|
||||
\begin{equation}
|
||||
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{21}
|
||||
\qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{21}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
\qty( \cL(n_{\vb{\infty}}) )_{21},
|
||||
e^{-2\pi i \delta_{\infty}^{(L)}}\,
|
||||
\qty( \cL(n_{\infty}) )_{21},
|
||||
\label{eq:fixing_K_21}
|
||||
\end{equation}
|
||||
and get:
|
||||
@@ -296,9 +296,9 @@ and get:
|
||||
=
|
||||
-\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
|
||||
\cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\,
|
||||
\sin(2 \pi n_{\vb{0}})
|
||||
\sin(2 \pi n_{\vb{\infty}})
|
||||
\frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
|
||||
\sin(2 \pi n_{0})
|
||||
\sin(2 \pi n_{\infty})
|
||||
\frac{n^1_{\infty} + i\, n^2_{\infty}}{n_{\infty}},
|
||||
\label{eq:app_B_K21}
|
||||
\end{equation}
|
||||
where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$.
|
||||
@@ -316,16 +316,16 @@ The result is
|
||||
\cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\,
|
||||
\\
|
||||
& \times
|
||||
\sin(2 \pi n_{\vb{0}})\,
|
||||
\sin(2 \pi n_{\vb{\infty}})\,
|
||||
\frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
|
||||
\sin(2 \pi n_{0})\,
|
||||
\sin(2 \pi n_{\infty})\,
|
||||
\frac{n^1_{\infty} -i n^2_{\infty}}{n_{\infty}},
|
||||
\end{split}
|
||||
\label{eq:app_B_K12}
|
||||
\end{equation}
|
||||
where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section.
|
||||
Compatibility with~\eqref{eq:app_B_K21} requires
|
||||
\begin{equation}
|
||||
\frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
|
||||
\frac{(n^1_{\infty})^2 + (n^2_{\infty})^2}{n^2_{\infty}}
|
||||
=
|
||||
-4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))}
|
||||
{\sin^2(\pi c) \sin^2(\pi(a-b))}.
|
||||
@@ -333,7 +333,7 @@ Compatibility with~\eqref{eq:app_B_K21} requires
|
||||
\end{equation}
|
||||
We can then rewrite~\eqref{eq:cos_n1} as
|
||||
\begin{equation}
|
||||
\frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
|
||||
\frac{(n^3_{\infty})^2}{n^2_{\infty}}
|
||||
=
|
||||
\frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2}
|
||||
{\sin^2(\pi c) \sin^2(\pi(a-b))}.
|
||||
@@ -341,10 +341,10 @@ We can then rewrite~\eqref{eq:cos_n1} as
|
||||
It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$.
|
||||
The same consistency check can also be performed by computing $K^{(L)}$ from
|
||||
\begin{equation}
|
||||
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{12}
|
||||
\qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{12}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
\qty( \cL(n_{\vb{\infty}}) )_{12},
|
||||
e^{-2\pi i \delta_{\infty}^{(L)}}\,
|
||||
\qty( \cL(n_{\infty}) )_{12},
|
||||
\end{equation}
|
||||
instead of \eqref{eq:fixing_K_21}.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user