Some additions on cosmology
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -4,6 +4,7 @@
|
||||
\RequirePackage{amsmath} %--------------------- math mode
|
||||
\RequirePackage{amssymb} %--------------------- math symbols
|
||||
\RequirePackage{amsfonts} %-------------------- math fonts
|
||||
\RequirePackage{bm} %-------------------------- boldsymbols
|
||||
\RequirePackage{mathtools} %------------------- mathematical tools
|
||||
\RequirePackage{mathrsfs} %-------------------- better cal
|
||||
\RequirePackage{slashed} %--------------------- slashed characters
|
||||
|
||||
@@ -3,53 +3,53 @@ In this appendix we explain the conventions used for \SU{2} and show the details
|
||||
|
||||
\subsection{Conventions}
|
||||
|
||||
We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that:
|
||||
We parameterise \SU{2} matrices $U$ with a vector $\vec{n} \in \R^3$ such that:
|
||||
\begin{equation}
|
||||
U(\vb{n})
|
||||
U(\vec{n})
|
||||
=
|
||||
\cos(2 \pi n)\, \1_2
|
||||
+
|
||||
i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n),
|
||||
i\, \frac{\vec{n} \cdot \vec{\sigma}}{n}\, \sin(2 \pi n),
|
||||
\label{eq:su2parametrisation}
|
||||
\end{equation}
|
||||
where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$.
|
||||
We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$.
|
||||
where $n = \norm{\vec{n}}$ and $0 \le n \le \frac{1}{2}$.
|
||||
We also identify all $\vec{n}$ when $n=\frac{1}{2}$ since in this case $U(\vec{n})= -\1_2$.
|
||||
The parametrisation is such that:
|
||||
\begin{eqnarray}
|
||||
U^*(\vb{n})
|
||||
U^*(\vec{n})
|
||||
& = &
|
||||
\sigma^2\, U(\vb{n})\, \sigma^2
|
||||
\sigma^2\, U(\vec{n})\, \sigma^2
|
||||
=
|
||||
U(\widetilde{\vb{n}}),
|
||||
U(\widetilde{\vec{n}}),
|
||||
\\
|
||||
U^{\dagger}(\vb{n})
|
||||
U^{\dagger}(\vec{n})
|
||||
& = &
|
||||
U^T(\widetilde{\vb{n}})
|
||||
U^T(\widetilde{\vec{n}})
|
||||
=
|
||||
U(-\vb{n}),
|
||||
U(-\vec{n}),
|
||||
\\
|
||||
-U(\vb{n})
|
||||
-U(\vec{n})
|
||||
& = &
|
||||
U(\widehat{\vb{n}})
|
||||
U(\widehat{\vec{n}})
|
||||
\label{eq:U_props}
|
||||
\end{eqnarray}
|
||||
where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vb{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vb{n}}{n}$.
|
||||
where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vec{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vec{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vec{n}}{n}$.
|
||||
|
||||
The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\, U(\vb{m})$ has an explicit realisation as:
|
||||
The group product of two elements $U(\vec{n} \circ \vec{m} ) = U(\vec{n})\, U(\vec{m})$ has an explicit realisation as:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\cos(2 \pi \norm{\vb{n} \circ \vb{m}})
|
||||
\cos(2 \pi \norm{\vec{n} \circ \vec{m}})
|
||||
& =
|
||||
\cos(2 \pi n)\, \cos(2 \pi m)
|
||||
-
|
||||
\sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m},
|
||||
\sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{n} \cdot \vec{m}}{n\, m},
|
||||
\\
|
||||
\sin(2 \pi \norm{\vb{n} \circ \vb{m}})\,
|
||||
\frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}}
|
||||
\sin(2 \pi \norm{\vec{n} \circ \vec{m}})\,
|
||||
\frac{\vec{n} \circ \vec{m}}{\norm{\vec{n} \circ \vec{m}}}
|
||||
& =
|
||||
\cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m}
|
||||
\cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{m}}{m}
|
||||
+
|
||||
\sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}.
|
||||
\sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vec{n}}{n}.
|
||||
\end{split}
|
||||
\label{eq:product_in_SU2}
|
||||
\end{equation}
|
||||
@@ -58,9 +58,9 @@ The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\, U(\vb{
|
||||
|
||||
Let $I = 1,\, 2,\, 3,\, 4$ and define:
|
||||
\begin{equation}
|
||||
\tau_I = \qty( i\, \1_2,\, \vb{\sigma} ),
|
||||
\tau_I = \qty( i\, \1_2,\, \vec{\sigma} ),
|
||||
\end{equation}
|
||||
where $\vb{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices.
|
||||
where $\vec{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices.
|
||||
It is possible to show that:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
@@ -122,7 +122,7 @@ If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have:
|
||||
|
||||
A rotation in spinor representation is defined as:
|
||||
\begin{equation}
|
||||
X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m})
|
||||
X'_{(s)} = U_{L}(\vec{n})\, X_{(s)}\, U_{R}^{\dagger}(\vec{m})
|
||||
\end{equation}
|
||||
and it is equivalent to:
|
||||
\begin{equation}
|
||||
@@ -138,9 +138,9 @@ through
|
||||
\frac{1}{2}
|
||||
\tr(
|
||||
\qty( \tau_I )^{\dagger}\,
|
||||
U_{L}(\vb{n})\,
|
||||
U_{L}(\vec{n})\,
|
||||
\tau_J\,
|
||||
U_{R}^{\dagger}(\vb{m})
|
||||
U_{R}^{\dagger}(\vec{m})
|
||||
).
|
||||
\end{equation}
|
||||
The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since:
|
||||
|
||||
@@ -6,28 +6,28 @@ In this appendix we show the computation of the parameters of the hypergeometric
|
||||
In the main text we set
|
||||
\begin{equation}
|
||||
D~
|
||||
\rM_{\vb{\infty}}~
|
||||
\rM_{\infty}~
|
||||
D^{-1}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}}\,
|
||||
\cL(\vb{n}_{\vb{\infty}}),
|
||||
e^{-2\pi i \delta_{\infty}}\,
|
||||
\cL(\vec{n}_{\infty}),
|
||||
\end{equation}
|
||||
where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$.
|
||||
where $\cL(\vec{n}_{\infty}) \in \SU{2}$.
|
||||
The previous equation implies
|
||||
\begin{equation}
|
||||
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^\dagger
|
||||
\qty( D\, \rM_{\infty}\, D^{-1} )^\dagger
|
||||
=
|
||||
\qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^{-1},
|
||||
\qty( D\, \rM_{\infty}\, D^{-1} )^{-1},
|
||||
\end{equation}
|
||||
which can be rewritten as
|
||||
\begin{equation}
|
||||
\widetilde{\rM}_{\vb{\infty}}^{-1}~
|
||||
\widetilde{\rM}_{\infty}^{-1}~
|
||||
\cC^{\dagger}\, D^{\dagger}\, D\, \cC
|
||||
=
|
||||
\cC^{\dagger}\, D^{\dagger}\, D\, \cC~
|
||||
\widetilde{\rM}_{\vb{\infty}}^{-1}.
|
||||
\widetilde{\rM}_{\infty}^{-1}.
|
||||
\end{equation}
|
||||
As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish.
|
||||
As $\widetilde{\rM}_{\infty}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish.
|
||||
We therefore have
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
@@ -76,71 +76,71 @@ This would then imply
|
||||
We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text.
|
||||
The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes.
|
||||
|
||||
The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal.
|
||||
The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vec{n}_{0})$ and $\cR(\widetilde{\vec{m}}_{0})$ to be diagonal.
|
||||
We impose:
|
||||
\begin{eqnarray}
|
||||
\mqty( \dmat{1, e^{-2\pi i c^{(L)}}} )
|
||||
& = &
|
||||
e^{-2\pi i \delta_{\vb{0}}^{(L)}}\,
|
||||
\mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ),
|
||||
e^{-2\pi i \delta_{0}^{(L)}}\,
|
||||
\mqty( \dmat{e^{2\pi i n_{0}}, e^{-2\pi i n_{0}}} ),
|
||||
\\
|
||||
\mqty( \dmat{1, e^{-2\pi i c^{(R)}}} )
|
||||
& = &
|
||||
e^{-2\pi i \delta_{\vb{0}}^{(R)}}\,
|
||||
\mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ),
|
||||
e^{-2\pi i \delta_{0}^{(R)}}\,
|
||||
\mqty( \dmat{e^{-2\pi i m_{0}}, e^{2\pi i m_{0}}} ),
|
||||
\end{eqnarray}
|
||||
where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}.
|
||||
where $n^3_{0} = \norm{\vec{n}_{0}} = n_{0}$ and $m^3_{0} = \norm{\vec{m}_{0}} = m_{0}$ with $0 \le n_{0},\, m_{0} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}.
|
||||
We thus have:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\delta_{\vb{0}}^{(L)}
|
||||
\delta_{0}^{(L)}
|
||||
& =
|
||||
n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}},
|
||||
n_{0} + k_{\delta^{(L)}_{0}},
|
||||
\qquad
|
||||
k_{\delta^{(L)}_{\vb{0}}} \in \Z,
|
||||
k_{\delta^{(L)}_{0}} \in \Z,
|
||||
\\
|
||||
c^{(L)}
|
||||
& =
|
||||
2 n_{\vb{0}} + k_c,
|
||||
2 n_{0} + k_c,
|
||||
\qquad
|
||||
k_c \in \Z.
|
||||
\end{split}
|
||||
\label{eq:cL}
|
||||
\end{equation}
|
||||
Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le \alpha + \frac{1}{2}$.
|
||||
Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$.
|
||||
Since the determinant of the right hand side is $e^{-4 \pi i \delta_{0}^{(L)}}$, the range of definition of $\delta_{0}^{(L)}$ is $\alpha \le \delta_{0}^{(L)} \le \alpha + \frac{1}{2}$.
|
||||
Given that $0 \le n_{0} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{0}^{(L)} = n_{0}$.
|
||||
Analogous results hold in the right sector.
|
||||
Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict:
|
||||
\begin{equation}
|
||||
n_{\vb{0}} + m_{\vb{0}} - A \in \Z.
|
||||
n_{0} + m_{0} - A \in \Z.
|
||||
\end{equation}
|
||||
|
||||
We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$.
|
||||
We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$.
|
||||
After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$.
|
||||
The equations follow from~\eqref{eq:parameters_equality_infty}.
|
||||
The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}:
|
||||
The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}:
|
||||
\begin{equation}
|
||||
e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) )
|
||||
=
|
||||
e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}),
|
||||
e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\infty}),
|
||||
\end{equation}
|
||||
which is satisfied by:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\delta^{(L)}_{\vb{\infty}}
|
||||
\delta^{(L)}_{\infty}
|
||||
& =
|
||||
-
|
||||
\frac{1}{2}(a^{(L)} + b^{(L)})
|
||||
+
|
||||
\frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}},
|
||||
\frac{1}{2} k_{\delta^{(L)}_{\infty}},
|
||||
\qquad
|
||||
k_{\delta_{\vb{\infty}}} \in \Z,
|
||||
k_{\delta_{\infty}} \in \Z,
|
||||
\\
|
||||
a^{(L)} - b^{(L)}
|
||||
& =
|
||||
2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}}
|
||||
2\, (-1)^{p^{(L)}}\, n_{\infty}
|
||||
+
|
||||
(-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}}
|
||||
(-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\infty}}
|
||||
+
|
||||
2\, k'_{a b},
|
||||
\qquad
|
||||
@@ -154,31 +154,31 @@ We therefore have:
|
||||
\begin{equation}
|
||||
a^{(L)} - b^{(L)}
|
||||
=
|
||||
2\, n_{\vb{\infty}}
|
||||
2\, n_{\infty}
|
||||
+
|
||||
k_{\delta^{(L)}_{\vb{\infty}}}
|
||||
k_{\delta^{(L)}_{\infty}}
|
||||
+
|
||||
2 k_{ab},
|
||||
\qquad
|
||||
k_{a b}\in \Z.
|
||||
\label{eq:aL-bL}
|
||||
\end{equation}
|
||||
The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$.
|
||||
The allowed values for $k_{\delta^{(L)}_{\infty}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$.
|
||||
The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$ may a priori take values in an interval of width $1$.
|
||||
As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
|
||||
We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
|
||||
As in the previous case we have $\alpha \le \delta_{\infty}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
|
||||
We cannot thus choose a vanishing $k_{\delta^{(L)}_{\infty}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
|
||||
|
||||
We find a third relation by considering the entry
|
||||
\begin{equation}
|
||||
\Im\qty(
|
||||
e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
e^{+2\pi i \delta_{\infty}^{(L)}}\,
|
||||
D^{(L)}\,
|
||||
\rM_{\vb{\infty}}^{(L)}\,
|
||||
\rM_{\infty}^{(L)}\,
|
||||
\qty( D^{(L)} )^{-1}
|
||||
)_{11}
|
||||
=
|
||||
\Im\qty(
|
||||
\cL(n_{\vb{\infty}})
|
||||
\cL(n_{\infty})
|
||||
)_{11}.
|
||||
\end{equation}
|
||||
Using
|
||||
@@ -191,31 +191,31 @@ and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to:
|
||||
\begin{equation}
|
||||
\cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} ))
|
||||
=
|
||||
(-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}),
|
||||
(-1)^{k_c+k_{\delta^{(L)}_{\infty}} }\, \cos(2\pi \cA^{(L)}),
|
||||
\end{equation}
|
||||
where
|
||||
\begin{equation}
|
||||
\cos(2\pi \cA^{(L)})
|
||||
=
|
||||
\cos(2\pi n_{\vb{0}})\,
|
||||
\cos(2\pi n_{\vb{\infty}})
|
||||
\cos(2\pi n_{0})\,
|
||||
\cos(2\pi n_{\infty})
|
||||
-
|
||||
\sin(2\pi n_{\vb{0}})\,
|
||||
\sin(2\pi n_{\vb{\infty}})\,
|
||||
\frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}.
|
||||
\sin(2\pi n_{0})\,
|
||||
\sin(2\pi n_{\infty})\,
|
||||
\frac{n_{\infty}^3}{n_{\infty}}.
|
||||
\label{eq:cos_n1}
|
||||
\end{equation}
|
||||
This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$.
|
||||
In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$.
|
||||
In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{1})$.
|
||||
We then write
|
||||
\begin{equation}
|
||||
a^{(L)} + b^{(L)} - c^{(L)}
|
||||
=
|
||||
2\, (-1)^{f^{(L)}}\, n_{\vb{1}}
|
||||
2\, (-1)^{f^{(L)}}\, n_{1}
|
||||
+
|
||||
k_c
|
||||
+
|
||||
k_{\delta^{(L)}_{\vb{\infty}}}
|
||||
k_{\delta^{(L)}_{\infty}}
|
||||
+
|
||||
2\, k_{abc},
|
||||
\qquad
|
||||
@@ -228,13 +228,13 @@ The request
|
||||
+
|
||||
B
|
||||
-
|
||||
n_{\vb{0}}
|
||||
n_{0}
|
||||
-
|
||||
m_{\vb{0}}
|
||||
m_{0}
|
||||
-
|
||||
(-1)^{f^{(L)}}\, n_{\vb{1}}
|
||||
(-1)^{f^{(L)}}\, n_{1}
|
||||
-
|
||||
(-1)^{f^{(R)}}\, m_{\vb{1}}
|
||||
(-1)^{f^{(R)}}\, m_{1}
|
||||
\in \Z
|
||||
\end{equation}
|
||||
finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}.
|
||||
@@ -243,51 +243,51 @@ So far we can summarise the results in
|
||||
\begin{eqnarray}
|
||||
a
|
||||
=
|
||||
n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a,
|
||||
n_{0} + (-1)^{f^{(L)}} n_{1} + n_{\infty} + m_a,
|
||||
& \qquad &
|
||||
m_a \in \Z,
|
||||
\\
|
||||
b
|
||||
=
|
||||
n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b,
|
||||
n_{0} + (-1)^{f^{(L)}} n_{1} - n_{\infty} + m_b,
|
||||
& \qquad &
|
||||
m_b \in \Z,
|
||||
\\
|
||||
c
|
||||
=
|
||||
2\, n_{\vb{0}} + m_c,
|
||||
2\, n_{0} + m_c,
|
||||
& \qquad &
|
||||
m_c \in \Z,
|
||||
\\
|
||||
\delta_{\vb{0}}^{(L)}
|
||||
\delta_{0}^{(L)}
|
||||
=
|
||||
n_{\vb{0}},
|
||||
n_{0},
|
||||
\\
|
||||
\delta_{\vb{\infty}}^{(L)}
|
||||
\delta_{\infty}^{(L)}
|
||||
=
|
||||
- n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta,
|
||||
- n_{0} - (-1)^{f^{(L)}} n_{1} + m_c + 2\, m_\delta,
|
||||
& \qquad &
|
||||
m_{\delta} \in \Z,
|
||||
\\
|
||||
A
|
||||
=
|
||||
n_{\vb{0}} + m_{\vb{0}} + m_A,
|
||||
n_{0} + m_{0} + m_A,
|
||||
& \qquad &
|
||||
m_A \in \Z,
|
||||
\\
|
||||
B
|
||||
=
|
||||
(-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B,
|
||||
(-1)^{f^{(L)}}\, n_{1} + (-1)^{f^{(R)}}\, m_{1} + m_B,
|
||||
& \qquad &
|
||||
m_B \in \Z.
|
||||
\end{eqnarray}
|
||||
|
||||
$K^{(L)}$ is finally determined from
|
||||
\begin{equation}
|
||||
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{21}
|
||||
\qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{21}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
\qty( \cL(n_{\vb{\infty}}) )_{21},
|
||||
e^{-2\pi i \delta_{\infty}^{(L)}}\,
|
||||
\qty( \cL(n_{\infty}) )_{21},
|
||||
\label{eq:fixing_K_21}
|
||||
\end{equation}
|
||||
and get:
|
||||
@@ -296,9 +296,9 @@ and get:
|
||||
=
|
||||
-\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
|
||||
\cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\,
|
||||
\sin(2 \pi n_{\vb{0}})
|
||||
\sin(2 \pi n_{\vb{\infty}})
|
||||
\frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
|
||||
\sin(2 \pi n_{0})
|
||||
\sin(2 \pi n_{\infty})
|
||||
\frac{n^1_{\infty} + i\, n^2_{\infty}}{n_{\infty}},
|
||||
\label{eq:app_B_K21}
|
||||
\end{equation}
|
||||
where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$.
|
||||
@@ -316,16 +316,16 @@ The result is
|
||||
\cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\,
|
||||
\\
|
||||
& \times
|
||||
\sin(2 \pi n_{\vb{0}})\,
|
||||
\sin(2 \pi n_{\vb{\infty}})\,
|
||||
\frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
|
||||
\sin(2 \pi n_{0})\,
|
||||
\sin(2 \pi n_{\infty})\,
|
||||
\frac{n^1_{\infty} -i n^2_{\infty}}{n_{\infty}},
|
||||
\end{split}
|
||||
\label{eq:app_B_K12}
|
||||
\end{equation}
|
||||
where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section.
|
||||
Compatibility with~\eqref{eq:app_B_K21} requires
|
||||
\begin{equation}
|
||||
\frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
|
||||
\frac{(n^1_{\infty})^2 + (n^2_{\infty})^2}{n^2_{\infty}}
|
||||
=
|
||||
-4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))}
|
||||
{\sin^2(\pi c) \sin^2(\pi(a-b))}.
|
||||
@@ -333,7 +333,7 @@ Compatibility with~\eqref{eq:app_B_K21} requires
|
||||
\end{equation}
|
||||
We can then rewrite~\eqref{eq:cos_n1} as
|
||||
\begin{equation}
|
||||
\frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
|
||||
\frac{(n^3_{\infty})^2}{n^2_{\infty}}
|
||||
=
|
||||
\frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2}
|
||||
{\sin^2(\pi c) \sin^2(\pi(a-b))}.
|
||||
@@ -341,10 +341,10 @@ We can then rewrite~\eqref{eq:cos_n1} as
|
||||
It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$.
|
||||
The same consistency check can also be performed by computing $K^{(L)}$ from
|
||||
\begin{equation}
|
||||
\qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{12}
|
||||
\qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{12}
|
||||
=
|
||||
e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
|
||||
\qty( \cL(n_{\vb{\infty}}) )_{12},
|
||||
e^{-2\pi i \delta_{\infty}^{(L)}}\,
|
||||
\qty( \cL(n_{\infty}) )_{12},
|
||||
\end{equation}
|
||||
instead of \eqref{eq:fixing_K_21}.
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1308,12 +1308,12 @@ These stacks would separately lead to a $\U{3} \times \U{2}$ gauge theory.
|
||||
It would however be theory of pure force, without matter content.
|
||||
Moreover we should also worry about the extra \U{1} groups appearing: these need careful consideration but go beyond the necessary analysis for what follows.
|
||||
|
||||
Matter fields are notoriously fermions transforming in the bi-fundamental representation $(\vb{N}, \vb{M})$ of the \sm gauge group~\eqref{eq:intro:smgroup}.
|
||||
For example left handed quarks in the \sm transform under the $(\vb{3}, \vb{2})$ representation of the group $\SU{3}_C \otimes \SU{2}_L$.
|
||||
Matter fields are notoriously fermions transforming in the bi-fundamental representation $(\vec{N}, \vec{M})$ of the \sm gauge group~\eqref{eq:intro:smgroup}.
|
||||
For example left handed quarks in the \sm transform under the $(\vec{3}, \vec{2})$ representation of the group $\SU{3}_C \otimes \SU{2}_L$.
|
||||
This is realised in string theory by a string stretched across two stacks of $3$ and $2$ D-branes as in the right of~\Cref{fig:dbranes:chanpaton}.
|
||||
The fermion would then be characterised by the charge under the gauge bosons living on the D-branes.
|
||||
The corresponding anti-particle would then simply be a string oriented in the opposite direction.
|
||||
Things get complicated when introducing also left handed leptons transforming in the $(\vb{1}, \vb{2})$ representation: they cannot have endpoints on the same stack of D-branes as quarks since they do not have colour charge.
|
||||
Things get complicated when introducing also left handed leptons transforming in the $(\vec{1}, \vec{2})$ representation: they cannot have endpoints on the same stack of D-branes as quarks since they do not have colour charge.
|
||||
We therefore need to introduce more D-branes to account for all the possible combinations.
|
||||
|
||||
An additional issue comes from the requirement of chirality.
|
||||
@@ -1338,7 +1338,7 @@ The light spectrum is thus composed of the desired matter content alongside with
|
||||
\end{figure}
|
||||
|
||||
It is therefore possible to recover a \sm-like construction using multiple D-branes at angles as in~\Cref{fig:dbranes:smbranes}, where the angles have been drawn perpendicular but can in principle be arbitrary~\cite{Ibanez:2001:GettingJustStandard,Grimm:2005:EffectiveActionType,Sheikh-Jabbari:1998:ClassificationDifferentBranes,Berkooz:1996:BranesIntersectingAngles}.
|
||||
For instance quarks are localised at the intersection of the \emph{baryonic} stack of D-branes, yielding the colour symmetry generators, with the \emph{left} and \emph{right} stacks, leading to the $( \vb{3}, \vb{2} )$ and $( \vb{3}, \vb{1})$ representations.
|
||||
For instance quarks are localised at the intersection of the \emph{baryonic} stack of D-branes, yielding the colour symmetry generators, with the \emph{left} and \emph{right} stacks, leading to the $( \vec{3}, \vec{2} )$ and $( \vec{3}, \vec{1})$ representations.
|
||||
The same applies to leptons created by strings attached to the \emph{leptonic} stack.
|
||||
Combinations of the additional \U{1} factors in the resulting gauge group finally lead to the definition of the hypercharge $Y$.
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user