Correction of an error on central charges

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-18 10:59:50 +01:00
parent 77cfab8f41
commit 5633827f49

View File

@@ -572,19 +572,21 @@ which show that $c_{\text{ghost}} = - 26$.
The central charge is therefore cancelled in the full theory (bosonic string and reparametrisation ghosts) when the spacetime dimensions are $D = 26$.
In fact let $\cT_{\text{full}} = \cT + \cT_{\text{ghost}}$ and $\overline{\cT}_{\text{full}} = \overline{\cT} + \overline{\cT}_{\text{ghost}}$, then:
\begin{equation}
\eval{\cT_{\text{full}}( z )}_{\order{(z - w)^{-4}}}
=
\eval{\overline{\cT}_{\text{full}}( \barz )}_{\order{(\barz - \barw)^{-4}}}
=
c + c_{\text{ghost}}
=
\frac{D}{2} - 13
=
0
\quad
\Leftrightarrow
\quad
D = 26.
\begin{split}
\eval{\cT_{\text{full}}( z ) \cT_{\text{full}}( z )}_{\order{(z - w)^{-4}}}
=
\eval{\overline{\cT}_{\text{full}}( \barz ) \overline{\cT}_{\text{full}}( \barz )}_{\order{(\barz - \barw)^{-4}}}
& =
\frac{c + c_{\text{ghost}}}{2}
\\
& =
\frac{D}{2} - 13
=
0
\\
& \Leftrightarrow
D = 26.
\end{split}
\end{equation}
$\cT_{\text{full}}$ and $\overline{\cT}_{\text{full}}$ are then primary fields with conformal weight $-2$.
@@ -695,19 +697,21 @@ These are conformal fields with conformal weights $\qty( \frac{3}{2},\, 0 )$ and
Their central charge becomes $c_{\text{ghost}} = c_{bc} + c_{\beta\gamma} = -26 + 11 = -15$ (see \cref{note:conf:ghosts} for the general computation).
When considering the full theory $\cT_{\text{full}} = \cT + \cT_{\text{ghost}}$ and $\overline{\cT}_{\text{full}} = \overline{\cT} + \overline{\cT}_{\text{ghost}}$ the central charge vanishes only in 10-dimensional spacetime:
\begin{equation}
\eval{\cT_{\text{full}}( z )}_{\order{(z - w)^{-4}}}
=
\eval{\overline{\cT}_{\text{full}}( \barz )}_{\order{(\barz - \barw)^{-4}}}
=
c + c_{\text{ghost}}
=
\frac{3}{2}\, D - 15
=
0
\quad
\Leftrightarrow
\quad
D = 10.
\begin{split}
\eval{\cT_{\text{full}}( z ) \cT_{\text{full}}( z )}_{\order{(z - w)^{-4}}}
=
\eval{\overline{\cT}_{\text{full}}( \barz ) \overline{\cT}_{\text{full}}( \barz )}_{\order{(\barz - \barw)^{-4}}}
& =
\frac{c + c_{\text{ghost}}}{2}
\\
& =
\frac{3}{4}\, D - \frac{15}{2}
=
0
\\
& \Leftrightarrow
D = 10.
\end{split}
\label{eq:super:dimensions}
\end{equation}