Correction of typos in sez. 2
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -349,16 +349,16 @@ One way to deal with them is to introduce the \emph{doubling trick} by gluing th
|
|||||||
Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\tcU_{(t,\, t+1)} = U_{(\bart)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bart)}$.
|
Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\tcU_{(t,\, t+1)} = U_{(\bart)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bart)}$.
|
||||||
The boundary conditions in terms of the doubling field are:
|
The boundary conditions in terms of the doubling field are:
|
||||||
\begin{eqnarray}
|
\begin{eqnarray}
|
||||||
\ipd{z} \cX( x_t + e^{2 \pi i}( \eta + i\, 0^+ ) )
|
\ipd{z} \cX( x_{(t)} + e^{2 \pi i}( \eta + i\, 0^+ ) )
|
||||||
& = &
|
& = &
|
||||||
\cU_{(t,\, t+1)}
|
\cU_{(t,\, t+1)}\,
|
||||||
\ipd{z} \cX( x_t + \eta + i\, 0^+ ),
|
\ipd{z} \cX( x_{(t)} + \eta + i\, 0^+ ),
|
||||||
\label{eq:top_monodromy}
|
\label{eq:top_monodromy}
|
||||||
\\
|
\\
|
||||||
\partial \cX( x_t + e^{2 \pi i}( \eta - i\, 0^+ ) )
|
\ipd{z} \cX( x_{(t)} + e^{2 \pi i}( \eta - i\, 0^+ ) )
|
||||||
& = &
|
& = &
|
||||||
\tcU_{(t,\, t+1)}
|
\tcU_{(t,\, t+1)}\,
|
||||||
\ipd{z} \cX( x_t + \eta - i\, 0^+ ),
|
\ipd{z} \cX( x_{(t)} + \eta - i\, 0^+ ),
|
||||||
\label{eq:bottom_monodromy}
|
\label{eq:bottom_monodromy}
|
||||||
\end{eqnarray}
|
\end{eqnarray}
|
||||||
for $0 < \eta < \min\qty( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} )$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$.
|
for $0 < \eta < \min\qty( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} )$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$.
|
||||||
|
|||||||
Reference in New Issue
Block a user