From 334b7613c579df5a7c1f6900338b9db575b2ac09 Mon Sep 17 00:00:00 2001 From: Riccardo Finotello Date: Fri, 6 Nov 2020 19:40:31 +0100 Subject: [PATCH] Correction of typos in sez. 2 Signed-off-by: Riccardo Finotello --- sec/part1/dbranes.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/sec/part1/dbranes.tex b/sec/part1/dbranes.tex index ff4f342..c054ed3 100644 --- a/sec/part1/dbranes.tex +++ b/sec/part1/dbranes.tex @@ -349,16 +349,16 @@ One way to deal with them is to introduce the \emph{doubling trick} by gluing th Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\tcU_{(t,\, t+1)} = U_{(\bart)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bart)}$. The boundary conditions in terms of the doubling field are: \begin{eqnarray} - \ipd{z} \cX( x_t + e^{2 \pi i}( \eta + i\, 0^+ ) ) + \ipd{z} \cX( x_{(t)} + e^{2 \pi i}( \eta + i\, 0^+ ) ) & = & - \cU_{(t,\, t+1)} - \ipd{z} \cX( x_t + \eta + i\, 0^+ ), + \cU_{(t,\, t+1)}\, + \ipd{z} \cX( x_{(t)} + \eta + i\, 0^+ ), \label{eq:top_monodromy} \\ - \partial \cX( x_t + e^{2 \pi i}( \eta - i\, 0^+ ) ) + \ipd{z} \cX( x_{(t)} + e^{2 \pi i}( \eta - i\, 0^+ ) ) & = & - \tcU_{(t,\, t+1)} - \ipd{z} \cX( x_t + \eta - i\, 0^+ ), + \tcU_{(t,\, t+1)}\, + \ipd{z} \cX( x_{(t)} + \eta - i\, 0^+ ), \label{eq:bottom_monodromy} \end{eqnarray} for $0 < \eta < \min\qty( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} )$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$.