Continuing with fermions
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -2188,57 +2188,65 @@ From the usual definition of the stress-energy tensor in terms of the Virasoro g
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
We already hinted to the fact that the vacua state involved are not in general \SL{2}{R} invariant.
|
||||
In particular we can see that that the excited vacua \eexcvacket is a primary field
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
L_{(\rE)\, k} \eexcvacket
|
||||
& =
|
||||
0,
|
||||
\qquad
|
||||
k > 0,
|
||||
\\
|
||||
L_{(\rE)\, 0} \eexcvacket
|
||||
& =
|
||||
\frac{\rE^2}{2} \eexcvacket,
|
||||
\end{split}
|
||||
\end{equation}
|
||||
with non trivial conformal dimensions $\Delta\qty( \eexcvacket ) = \frac{\rE^2}{2}$.
|
||||
This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$ inserted at $x = 0$.
|
||||
Its equivalent expression using bosonisation is:
|
||||
\begin{equation}
|
||||
\rS_{\rE}\qty( x ) = e^{i \rE \phi( x )},
|
||||
\end{equation}
|
||||
where $\phi$ is such that
|
||||
\begin{equation}
|
||||
\left\langle \phi( z ) \phi( w ) \right\rangle
|
||||
=
|
||||
-\frac{1}{( z - w)^2}.
|
||||
\end{equation}
|
||||
The minimal conformal dimension is achieved for $n_{\rE}=n_{\brE}=0$, i.e.\ $\Delta\qty( \twsvacket ) = \frac{\epsilon^2}{8}$, and identifies a plain spin field.
|
||||
We can further check this idea by showing that the conformal dimensions are consistent.
|
||||
Using~\eqref{eq:usual-twisted-fermion-conformal-twisted} we get:
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
L_{(\rE)\, 0} \twsvacket
|
||||
& =
|
||||
L_0\,
|
||||
\qty(%
|
||||
b^{*\, ( \brE )}_0\,
|
||||
b^{*\, ( \brE )}_{-1}\,
|
||||
\dots\,
|
||||
b^{*\, ( \brE )}_{2-n_{\rE}}
|
||||
\eexcvacket
|
||||
)
|
||||
\\
|
||||
& =
|
||||
\left[%
|
||||
\finitesum{n}{1}{n_{\rE}}
|
||||
\qty( n - \frac{\rE + 1}{2} )
|
||||
+
|
||||
\frac{\rE^2}{2}
|
||||
\right]
|
||||
\twsvacket
|
||||
=
|
||||
\frac{\epsilon^2}{8} \twsvacket.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
|
||||
%%% TODO %%%
|
||||
|
||||
Looking back at the analysis of the excited and twisted vacua, we already
|
||||
hinted to the fact that they are not in general \SL{2}{R} invariant.
|
||||
In particular we can see that that the excited vacua $\eexcvacket$
|
||||
is a primary field
|
||||
\begin{equation}
|
||||
L_{(\rE) k > 0} \eexcvacket =0,
|
||||
\qquad
|
||||
L_{(\rE) 0} \eexcvacket = \frac{\rE^2}{2} \eexcvacket
|
||||
,
|
||||
\end{equation}
|
||||
with non trivial conformal dimensions
|
||||
$\Delta\qty( \eexcvacket ) = \frac{\rE^2}{2}$.
|
||||
This operator is an excited spin field $\rS_{\rE_{(t)}}\qty( x )$
|
||||
inserted at $x=0$ whose bosonized expression is given by
|
||||
\begin{equation}
|
||||
\rS_{\rE}\qty( x ) = e^{i \rE \phi( x )},
|
||||
\end{equation}
|
||||
where $\phi$ is such that
|
||||
\begin{equation}
|
||||
\left\langle \phi( z ) \phi( w ) \right\rangle = -\frac{1}{( z -
|
||||
w)^2}
|
||||
.
|
||||
\end{equation}
|
||||
|
||||
In fact the minimal conformal dimension is achieved
|
||||
for $n_{\rE}=n_{\brE}=0$, i.e.
|
||||
$
|
||||
\Delta\qty( \twsvacket ) = \frac{\epsilon^2}{8}
|
||||
$
|
||||
and we know this is the basic spin field.
|
||||
We can further check this idea
|
||||
by showing that the conformal dimensions are consistent.
|
||||
Using \eqref{eq:usual-twisted-fermion-conformal-twisted} we get
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
L_{(\rE) 0}\twsvacket
|
||||
& =
|
||||
L_0
|
||||
\qty( b^{*\, ( \brE )}_0 b^{*\, ( \brE )}_{-1} \dots b^{*\, ( \brE )}_{2-n_{\rE}} \eexcvacket)
|
||||
\\
|
||||
& =
|
||||
\left[ \sum\limits^{n_{\rE}}_{n = 1} ( n - \frac{\rE + 1}{2} )
|
||||
+\frac{\rE^2}{2}
|
||||
\right] \twsvacket
|
||||
= +\frac{1}{8} \epsilon^2\twsvacket .
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\subsection{Generic Case With Defects}
|
||||
|
||||
We will now apply the same procedure to the generic case of one complex
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
\usepackage{import}
|
||||
|
||||
\author{Riccardo Finotello}
|
||||
\title{Theoretical and Computational Aspects of String Theory and Their Phenomenological Implications}
|
||||
\title{Theoretical and Computational Aspects for Phenomenology in String Theory}
|
||||
\advisor{Igor Pesando}
|
||||
\institution{Università degli Studi di Torino}
|
||||
\school{Scuola di Dottorato}
|
||||
|
||||
Reference in New Issue
Block a user