\documentclass[10pt, aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[british]{babel} \usepackage{csquotes} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{dsfont} \usepackage{upgreek} \usepackage{physics} \usepackage{tensor} \usepackage{graphicx} \usepackage{transparent} \usepackage{tikz} \usepackage{import} \usepackage{booktabs} \usepackage{multicol} \usepackage{multirow} \usepackage{bookmark} \usepackage{xspace} \usetheme{Singapore} \usecolortheme{crane} \usefonttheme{structurebold} \setbeamertemplate{navigation symbols}{} \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \author[Finotello]{Riccardo Finotello} \title[D-branes and Deep Learning]{D-branes and Deep Learning} \subtitle{Theoretical and Computational Aspects in String Theory} \institute[UniTO]{% Scuola di Dottorato in Fisica e Astrofisica \\[0.5em] Università degli Studi di Torino \\ and \\ I.N.F.N.\ -- sezione di Torino } \date{15th December 2020} \usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.pathmorphing} \usetikzlibrary{decorations.pathreplacing} \usetikzlibrary{arrows} \usetikzlibrary{patterns} \newenvironment{equationblock}[1]{% \begin{block}{#1} \vspace*{-0.75\baselineskip}\setlength\belowdisplayshortskip{0.25\baselineskip} }{% \end{block} } \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} \newcommand{\firstlogo}{img/unito} \newcommand{\thefirstlogo}{% \begin{figure} \centering \includegraphics[width=7em]{\firstlogo} \end{figure} } \newcommand{\secondlogo}{img/infn} \newcommand{\thesecondlogo}{% \begin{figure} \centering \includegraphics[width=7em]{\secondlogo} \end{figure} } \setbeamertemplate{title page}{% \begin{center} {% \usebeamercolor{title} \usebeamerfont{title} \colorbox{bg}{% {\Huge \inserttitle}\xspace } \vspace{0.5em} }\par {% \usebeamercolor{subtitle} \usebeamerfont{subtitle} {\large \it \insertsubtitle}\xspace \vspace{2em} }\par {% \usebeamercolor{author} \usebeamerfont{author} {\Large \insertauthor}\xspace \vspace{1em} }\par {% \begin{columns} \centering \begin{column}{0.3\linewidth} \centering \thefirstlogo \end{column} \begin{column}{0.4\linewidth} \centering \usebeamercolor{institute} \usebeamerfont{institute} \insertinstitute{} \\[1em] \insertdate{} \end{column} \begin{column}{0.3\linewidth} \centering \thesecondlogo \end{column} \end{columns} }\par \end{center} } % \setbeamertemplate{footline}{% % \usebeamerfont{footnote} % \usebeamercolor{footnote} % \hfill % \insertframenumber{}~/~\inserttotalframenumber{} % \hspace{1em} % \vspace{1em} % \par % } % \AtBeginSection[] % {% % {% % \setbeamertemplate{footline}{} % \usebackgroundtemplate{% % \transparent{0.1} % \includegraphics[width=\paperwidth]{img/torino.png} % } % \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} % \begin{frame}[noframenumbering]{\contentsname} % \tableofcontents[currentsection] % \end{frame} % } % } \begin{document} {% \usebackgroundtemplate{% \transparent{0.1} \includegraphics[width=\paperwidth]{img/torino.png} } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering, plain] \titlepage{} \end{frame} } {% % \setbeamertemplate{footline}{} \usebackgroundtemplate{% \transparent{0.1} \includegraphics[width=\paperwidth]{img/torino.png} } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering]{\contentsname} \tableofcontents{} \end{frame} } \section[CFT]{Conformal Symmetry and Geometry of the Worldsheet} \subsection[Preliminary]{Preliminary Concepts and Tools} \begin{frame}{Action Principle and Conformal Symmetry} \begin{equationblock}{Polyakov's Action} \begin{equation*} S_P\qty[ \upgamma,\, X,\, \uppsi ] = -\frac{1}{4\uppi} \int\limits_{-\infty}^{+\infty} \dd{\uptau} \int\limits_0^{\ell} \dd{\upsigma} \sqrt{-\det \upgamma}\, \upgamma^{\upalpha \upbeta}\, \qty(% \frac{2}{\upalpha'}\, \partial_{\upalpha} X^{\upmu}\, \partial_{\upbeta} X^{\upnu} + \uppsi^{\upmu}\, \uprho_{\upalpha} \partial_{\upbeta} \uppsi^{\upnu} )\, \upeta_{\upmu\upnu} \end{equation*} \end{equationblock} \pause \begin{columns} \begin{column}[t]{0.5\linewidth} \highlight{Symmetries:} \begin{itemize} \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ \item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$ \item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$ \end{itemize} \end{column} \pause \begin{column}[t]{0.5\linewidth} \highlight{Conformal symmetry:} \begin{itemize} \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ \item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$ \item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$ \end{itemize} \end{column} \end{columns} \end{frame} % \begin{frame}{Action Principle and Conformal Symmetry} % \begin{columns} % \begin{column}{0.6\linewidth} % \highlight{% % Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: % } % \begin{equation*} % \mathcal{T}( z )\, \Upphi_h( w ) % \stackrel{z \to w}{\sim} % \frac{h}{(z - w)^2} \Upphi_h( w ) % + % \frac{1}{z - w} \partial_w \Upphi_h( w ) % \end{equation*} % \begin{equation*} % \mathcal{T}( z )\, \mathcal{T}( w ) % \stackrel{z \to w}{\sim} % \frac{\frac{c}{2}}{(z - w)^4} % + % \order{(z - w)^{-2}} % \end{equation*} % \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} % \begin{eqnarray*} % \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ] % & = & % (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} % \\ % \qty[ L_n,\, \overline{L}_m ] % & = & % 0 % \end{eqnarray*} % \end{equationblock} % \end{column} % \begin{column}{0.4\linewidth} % \begin{figure}[h] % \centering % \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}} % \end{figure} % \end{column} % \end{columns} % \end{frame} \begin{frame}{Action Principle and Conformal Symmetry} \highlight{Superstrings in $D$ dimensions:} \begin{equation*} \mathcal{T}( z ) = -\frac{1}{\upalpha'} \partial X( z ) \cdot \partial X( z ) -\frac{1}{2} \uppsi( z ) \cdot \partial \uppsi( z ) \quad \Rightarrow \quad c = \frac{3}{2} D \end{equation*} \pause \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System} Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields: \begin{equation*} S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ] = \frac{1}{2\uppi} \iint \dd{z} \dd{\overline{z}} \qty(% b( z )\, \overline{\partial} c( z ) + \upbeta( z )\, \overline{\partial} \upgamma( z ) ) \end{equation*} where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$. \end{block} \pause \highlight{Consequence:} \begin{equation*} c_{\text{full}} = c + c_{\text{ghost}} = 0 \quad \Leftrightarrow \quad D = 10. \end{equation*} \end{frame} \begin{frame}{Extra Dimensions and Compactification} \begin{block}{Compactification} \begin{columns} \begin{column}{0.7\linewidth} \begin{equation*} \mathscr{M}^{1,\, 9} = \mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6 \end{equation*} \begin{itemize} \item $\mathscr{X}_6$ is a \textbf{compact} manifold \item $N = 1$ \textbf{supersymmetry} is preserved in 4D \item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ in arising \textbf{gauge group} \end{itemize} \end{column} \begin{tikzpicture}[remember picture, overlay] \node[anchor=base] at (3em,-3.75em) {\includegraphics[width=0.3\linewidth]{img/cy}}; \end{tikzpicture} \begin{column}{0.3\linewidth} % \centering % \includegraphics[width=0.9\columnwidth]{img/cy} \end{column} \end{columns} \end{block} \pause \begin{columns} \begin{column}[t]{0.5\linewidth} \highlight{Kähler manifolds} $\qty( M,\, g )$ such that \begin{itemize} \item $\dim\limits_{\mathds{C}} M = m$ \item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$ \item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes) \end{itemize} \end{column} \pause \begin{column}[t]{0.5\linewidth} Characterised by \highlight{Hodge numbers} \begin{equation*} h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} ) \end{equation*} counting the no.\ of harmonic $(r,\,s)$-forms. \end{column} \end{columns} \end{frame} \begin{frame}{D-branes and Open Strings} Polyakov's action naturally introduces \highlight{Neumann b.c.:} \begin{equation*} \eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \end{equation*} satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$. \pause \begin{equationblock}{T-duality} \begin{equation*} X( z, \overline{z} ) = X( z ) + \overline{X}( \overline{z} ) \quad \stackrel{T}{\Rightarrow} \quad X( z ) - \overline{X}( \overline{z} ) = Y( z, \overline{z} ) = Y( z ) + \overline{Y}( \overline{z} ) \end{equation*} \end{equationblock} \pause Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:} \begin{equation*} \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \quad \stackrel{T}{\Rightarrow} \quad \eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \quad \forall i = 1, 2,\, \dots,\, p \end{equation*} thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.} \end{frame} \begin{frame}{D-branes and Open Strings} Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.} \pause \begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$} \begin{equation*} \mathcal{A}^{\upmu} \quad \leftrightarrow \quad \upalpha_{-1}^{\upmu} \ket{0} \qquad \longrightarrow \qquad \begin{tabular}{@{}llll@{}} $\mathcal{A}^A$ & $\leftrightarrow$ & $\upalpha_{-1}^A \ket{0},$ & $A = 0,\, 1,\, \dots,\, p$ \\ $\mathcal{A}^a$ & $\leftrightarrow$ & $\upalpha_{-1}^a \ket{0},$ & $a = 1,\, 2,\, \dots,\, D - p - 1$ \end{tabular} \end{equation*} \end{equationblock} \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}} \end{column} \begin{column}{0.5\linewidth} Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}: \begin{equation*} \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) \quad \longrightarrow \quad \mathrm{U}( N ) \end{equation*} \pause \highlight{Build gauge bosons, fermions and scalars.} \end{column} \end{columns} \end{frame} \begin{frame}{Standard Model-like Scenarios} \centering \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}} \end{frame} \subsection[D-branes at Angles]{D-branes Intersecting at Angles} \begin{frame}{Intersecting D-branes} Consider \highlight{$N$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$ \begin{equationblock}{Twist Fields Correlators} \begin{equation*} \left\langle \prod\limits_{t = 1}^{N_B} \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle = \mathcal{N}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) e^{- S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )} \end{equation*} \end{equationblock} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (29.5em,3.5em) ellipse (2cm and 1cm); \end{tikzpicture} \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \resizebox{0.5\columnwidth}{!}{\import{img}{branesangles.pgf}} \end{column} \begin{column}{0.5\linewidth} D-branes in \textbf{factorised} internal space: \begin{itemize} \item \textbf{embedded as lines} in $\mathds{R}^2 \times \mathds{R}^2 \times \mathds{R}^2$ \item \textbf{relative rotations} are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements \item $S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$ \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{$\mathrm{SO}(4)$ Rotations} Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$): \pause \begin{columns} \begin{column}{0.4\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}} \end{column} \begin{column}{0.6\linewidth} \begin{equation*} \qty( X_{(t)} )^I = \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I \end{equation*} \pause where \begin{equation*} R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )} \end{equation*} \pause that is \begin{equation*} \qty[ R_{(t)} ] = \qty{ R_{(t)} \sim \mathcal{O}_{(t)} R_{(t)} } \end{equation*} \end{column} \end{columns} \end{frame} \begin{frame}{Boundary Conditions} What are the consequences for \highlight{open strings?} \pause \begin{columns} \begin{column}{0.6\linewidth} \begin{itemize} \item consider $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$ \item let $x_{(t)} < x_{(t-1)}$ be the \textbf{worldsheet intersection points} on \textbf{real axis} \item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet} \end{itemize} \end{column} \begin{column}{0.4\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{branchcuts.pgf}} \end{column} \end{columns} \pause \begin{equationblock}{Branch Cuts and Discontinuities for $x \in D_{(t)}$} \begin{equation*} \begin{cases} \partial_u X( x + i 0^+ ) & = U_{(t)} \cdot \partial_{\overline{u}} \overline{X}( x - i 0^+ ) = \qty[% R_{(t)}^{-1} \cdot \qty( \upsigma_3 \otimes \mathds{1}_2 ) \cdot R_{(t)} ] \cdot \partial_{\overline{u}} \overline{X}( x - i 0^+ ) \\ X( x_{(t)},\, x_{(t)} ) & = f_{(t)} \end{cases} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{Doubling Trick and Spinor Representation} \begin{block}{Doubling Trick} \begin{equation*} \partial_z \mathcal{X}( z ) = \begin{cases} \partial_u X( u ) & \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})} \\ U_{(\overline{t})}\, \partial_{\overline{u}} \overline{X}( \overline{u} ) & \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases} \quad \Rightarrow \quad \mqty{% \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_+ ) = \mathcal{U}_{(t,\, t+1)}\, \partial_{z} \mathcal{X}( x_{(t)} + \updelta_+ ), \\ \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_- ) = \widetilde{\mathcal{U}}_{(t,\, t+1)}\, \partial_{z} \mathcal{X}( x_{(t)} + \updelta_- ), } \end{equation*} where $\mathscr{H}_{\gtrless}^{(t)} = \qty{z \in \mathds{C} \mid \Im z \gtrless 0~\text{or}~z \in D_{(t)} }$ and $\updelta_{\pm} = \upeta \pm i 0^+$. \end{block} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (31em,6em) ellipse (0.8cm and 1.2cm); \end{tikzpicture} \pause Use \highlight{Pauli matrices} $\uptau = \qty( i\, \mathds{1}_2, \vec{\upsigma} )$: \begin{equation*} \partial_z \mathcal{X}_{(s)}( z ) = \partial_z \mathcal{X}^I( z )\, \uptau_I \quad \Rightarrow \quad \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i}\, \updelta_{\pm} ) = \overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)}\, \partial_{z} \mathcal{X}( x_{(t)} + \updelta_{\pm} )\, \overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)}\, \end{equation*} where \begin{equation*} \overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)} \in \mathrm{SU}(2)_L \quad \text{and} \quad \overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)} \in \mathrm{SU}(2)_R \end{equation*} \end{frame} \begin{frame}{Hypergeometric Basis} \begin{columns} \begin{column}{0.3\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{threebranes_plane.pgf}} \end{column} \hfill \begin{column}{0.7\linewidth} Sum over \highlight{all contributions:} \begin{equation*} \begin{split} \partial_z \mathcal{X}( z ) & = \sum\limits_{l,\, r} c_{lr}\, \qty( - \upomega_z )^{A_{lr}}\, \qty( 1 - \upomega_z )^{B_{lr}}\, B_{0,\, l}^{(L)}( \omega_z )\, \qty( B_{0,\, r}^{(R)}( \omega_z ) )^T \end{split} \end{equation*} \end{column} \end{columns} \pause \begin{equationblock}{Basis of Solutions} \begin{equation*} B_{0,\, n}( \upomega_z ) = \mqty(% 1 & 0 \\ 0 & K_n ) \mqty(% \frac{1}{\Upgamma( c_n )}\, \tensor[_2]{F}{_1}( a_n,\, b_n;\, c_n;\, \upomega_z ) \\ \qty( -\upomega_z )^{1 - c_n}\, \frac{1}{\Upgamma( 2 - c_n )}\, \tensor[_2]{F}{_1}( a_n + 1 - c_n,\, b_n + 1 - c_n;\, 2 - c_n;\, \upomega_z ) ) \end{equation*} \end{equationblock} \end{frame} \begin{frame}{The Solution} \highlight{Operations sequence:} \begin{enumerate} \item rotation matrix $=$ monodromy matrix \pause \item contiguity relations $\Rightarrow$ independent hypergeometrics \pause \item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated) \pause \item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$ \end{enumerate} \pause \begin{block}{Physical Interpretation} \only<5>{% \begin{columns} \begin{column}{0.4\linewidth} \centering \resizebox{0.607\columnwidth}{!}{\import{img}{branesangles.pgf}} \end{column} \hfill \begin{column}{0.6\linewidth} \begin{equation*} \begin{split} \eval{S_{\mathds{R}^4}}_{\text{on-shell}} & = \frac{1}{2\uppi \upalpha'} \sum\limits_{t = 1}^3 \qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} ) \\ & = \text{Area}\qty( \qty{ f_{(t)} } ) \end{split} \end{equation*} \end{column} \end{columns} \vfill } \only<6->{% \centering \resizebox{0.25\columnwidth}{!}{\import{img}{brane3d.pgf}} } \end{block} \end{frame} \subsection[Fermions]{Fermions and Point-like Defect CFT} \begin{frame}{Fermions on the Strip} \begin{columns} \begin{column}{0.4\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{defects.pgf}} \end{column} \hfill \begin{column}{0.6\linewidth} \begin{equationblock}{Action of Boundary Changing Operators} \begin{equation*} \begin{cases} \uppsi_-^i( \uptau, 0 ) & = \tensor{\qty( R_{(t)} )}{^I_J}\, \uppsi_+^J( \uptau, 0 ) \quad \text{for}~ \uptau \in \qty( \hat{\uptau}_{(t)},\, \hat{\uptau}_{(t-1)} ) \\ \uppsi_-^I( \uptau, \uppi ) & = - \uppsi_+^I( \uptau, \uppi ) \quad \text{for}~ \uptau \in \mathds{R} \end{cases} \end{equation*} \end{equationblock} \end{column} \end{columns} \pause \begin{block}{Stress-energy Tensor} \begin{equation*} \mathcal{T}_{\pm\pm}( \upxi_{\pm} ) = -i\, \frac{T}{4}\, \uppsi^*_{\pm,\, I}( \upxi_{\pm} )\, \overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} ) \quad \Rightarrow \quad \begin{cases} \dot{\mathrm{H}}( \uptau ) & % = % \partial_{\uptau} % \qty(% % \int\limits_0^{\uppi} \dd{\upsigma} % \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma ) % ) = 0 \Leftrightarrow \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} ) \\ \dot{\mathrm{P}}( \uptau ) & % = % \partial_{\uptau} % \qty(% % \int\limits_0^{\uppi} \dd{\upsigma} % \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma ) % ) \neq 0 \end{cases} \end{equation*} \end{block} \end{frame} \begin{frame}{Conserved Product and Operators} Expand on a \highlight{basis of solutions} \begin{equation*} \uppsi_{\pm}( \upxi_{\pm} ) = \sum\limits_{n = -\infty}^{+\infty} b_n\, \uppsi_n( \upxi_{\pm} ) \qquad \Rightarrow \qquad \Uppsi( z ) = \begin{cases} \uppsi_{E,\, +}( u ) \quad \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})} \\ \uppsi_{E,\, -}( u ) \quad \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases} \end{equation*} \pause \begin{equationblock}{Conserved Product and Dual Basis} \begin{equation*} \left\langle\!\left\langle \tensor[^*]{\uppsi}{_n},\, \uppsi_m \right. \right\rangle = 2\uppi \mathcal{N}\, \oint \frac{\dd{z}}{2\uppi i}\, \tensor[^*]{\Uppsi}{_n^*}\, \tensor{\Uppsi}{_m} = \updelta_{n,\, m} \quad \Rightarrow \quad \left\langle\!\left\langle \tensor[^*]{\Uppsi}{_n^{(*)}},\, \Uppsi^{(*)} \right. \right\rangle = b_n^{(\dagger)} \end{equation*} \end{equationblock} \pause Derive the \highlight{algebra of operators:} \begin{equation*} \qty[ b_n,\, b_m^{\dagger} ]_+ = \frac{2 \mathcal{N}}{T}\, \left\langle\!\left\langle \tensor[^*]{\Uppsi}{_n^*},\, \Uppsi_m^* \right. \right\rangle \end{equation*} \end{frame} \begin{frame}{Twisted Complex Fermions} Consider the case $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$: \begin{equation*} \Uppsi( x_{(t)} + e^{2\uppi i} \updelta ) = e^{i \uppi \upepsilon_{(t)}}\, \Uppsi( x_{(t)} + \updelta ) \end{equation*} where \begin{equation*} \upepsilon_{(t)} = \upalpha_{(t+1)} - \upalpha_{(t)} + \uptheta\qty( \upalpha_{(t)} - \upalpha_{(t+1)} - 1 ) - \uptheta\qty( \upalpha_{(t+1)} - \upalpha_{(t)} - 1 ) \end{equation*} \pause \begin{equationblock}{Basis of Solutions} \begin{equation*} \begin{split} \Uppsi_n\qty( z;\, \qty{ x_{(t)} } ) & = \mathcal{N}_{\Uppsi}\, z^{-n}\, \prod\limits_{t = 1}^N \qty( 1 - \frac{z}{x_{(t)}} )^{n_{(t)} + \frac{\upepsilon_{(t)}}{2}} \\ \tensor[^*]{\Uppsi}{_n}\qty( z;\, \qty{ x_{(t)} } ) & = \frac{1}{2\uppi \mathcal{N} \mathcal{N}_{\Uppsi}}\, z^{n - 1}\, \prod\limits_{t = 1}^N \qty( 1 - \frac{z}{x_{(t)}} )^{-\widetilde{n}_{(t)} + \frac{\upepsilon_{(t)}}{2}} \end{split} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{Vacua} Define the \textbf{vacuum} with respect to $b_n$: \begin{equation*} \begin{split} b_n \ket{\qty{ x_{(t)} }} = 0 &\quad \text{for} \quad n \ge 1 \\ b_n \ket{\widetilde{0}} = 0 &\quad \text{for} \quad n \ge n_{(t)} + \frac{\upepsilon_{(t)}}{2} + \frac{1}{2} \end{split} \end{equation*} \pause Theories are subject to \highlight{consistency conditions:} \begin{columns} \begin{column}{0.6\linewidth} \begin{equation*} \mathrm{L} = n_{(t)} + \widetilde{n}_{(t)} \uncover<3->{% \alert{= 0} } \end{equation*} \end{column} \hfill \begin{column}{0.4\linewidth} \centering \resizebox{\columnwidth}{!}{\import{img}{inconsistent_theories.pgf}} \end{column} \end{columns} \end{frame} \begin{frame}{Stress-energy Tensor and CFT Approach} Compute the OPEs leading to the \highlight{stress-energy tensor:} \begin{equation*} \mathcal{T}( z ) = \frac{\uppi T}{2} \mathcal{N}_{\Uppsi}^2 \sum\limits_{n,\, m = -\infty}^{+\infty} \colon b_n\, b_m^* \colon\, z^{-n -m}\, \qty[% \frac{m - n}{2} + 2 \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} ] + \frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2 \end{equation*} \pause \begin{equationblock}{Invariant Vacuum and Spin Fields} \begin{equation*} \ket{\qty{ x_{(t)} }} = \mathcal{N}\qty( \qty{ x_{(t)} } )\, \mathrm{R}\qty[ \prod\limits_{t = 1}^M S_{(t)}( x_{(t)} ) ]\, \ket{0}_{\mathrm{SL}_2( \mathds{R} )} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{Spin Fields Amplitudes} \begin{equationblock}{Equivalence with Bosonization} \begin{equation*} \begin{split} \partial_{x_{(t)}} \braket{\qty{x_{(t)}}} & = \oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i} \frac{% \bra{\qty{x_{(t)}}} \mathcal{T}( z ) \ket{\qty{x_{(t)}}} }{% \braket{\qty{x_{(t)}}} } \\ \Rightarrow \quad \braket{\qty{x_{(t)}}} & = \mathcal{N}\qty( \qty{ \upepsilon_{(t)} } ) \prod\limits_{\substack{t = 1 \\ t > u}}^N \qty( x_{(u)} - x_{(t)} )^{\qty( n_{(u)} + \frac{\upepsilon_{(u)}}{2} )\qty( n_{(t)} + \frac{\upepsilon_{(t)}}{2} )} \end{split} \end{equation*} \end{equationblock} \pause \begin{itemize} \item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings} \pause \item general framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes} \pause \item leading contribution for \textbf{twist fields} \pause \item \textbf{spin fields} as \textbf{boundary changing operators} on \textbf{defects} \pause \item alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?) \end{itemize} \end{frame} \section[Time Divergences]{Cosmological Backgrounds and Divergences} \subsection[Orbifold]{Orbifolds and Cosmological Toy Models} \begin{frame}{A Few Words on a Theory of Everything} \begin{center} string theory = theory of everything = nuclear forces + gravity \end{center} \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \includegraphics[width=0.9\columnwidth]{img/cone} \end{column} \hfill \begin{column}{0.5\linewidth} From the phenomenological point of view: \begin{itemize} \item cosmological implications \pause \item Big Bang(-like) singularities \pause \item toy models of \textbf{space-like singularities} \end{itemize} \pause \begin{center} $\Downarrow$ \highlight{time-dependent orbifold models} \end{center} \end{column} \end{columns} \end{frame} \begin{frame}{Orbifolds} \begin{columns}[c] \begin{column}{0.475\linewidth} \begin{center} \textbf{Mathematics} \begin{itemize} \item manifold $M$ \item (Lie) group $G$ \item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$ \item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$ \item charts $\upphi = \uppi \circ \mathscr{P}$ where: \begin{itemize} \item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$ \item $\uppi\colon U / G \to M$ \end{itemize} \end{itemize} \end{center} \end{column} \begin{column}{0.05\linewidth} \centering $\Rightarrow$ \end{column} \begin{column}{0.475\linewidth} \begin{center} \textbf{Physics} \begin{itemize} \item global orbit space $M / G$ \item $G$ group of isometries \item fixed points \item additional d.o.f.\ (\emph{twisted states}) \item singular limits of CY manifolds \end{itemize} \end{center} \end{column} \end{columns} \pause \begin{center} time-dependent orbifolds \end{center} \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (13em,3.5em) rectangle (27em, 1em); \end{tikzpicture} \end{frame} \begin{frame}{Cosmological Singularities} Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}: \begin{center} divergent \highlight{closed string} aplitudes $\Rightarrow$ gravitational backreaction? \end{center} \pause \begin{block}{Divergences} Even in simple models (e.g.\ NBO, more on this later) the $4$ tachyons amplitude is divergent \textbf{at tree level}: \begin{equation*} A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \mathscr{A}( q ) \end{equation*} where \begin{equation*} \mathscr{A}_{\text{closed}}( q ) \sim q^{4 - \upalpha' \norm{\vec{p}_{\perp}}^2} \qquad \text{and} \qquad \mathscr{A}_{\text{open}}( q ) \sim q^{1 - \upalpha' \norm{\vec{p}_{\perp}}^2} \trace(\qty[T_1,\, T_2]_+\, \qty[T_3,\, T_4]_+) \end{equation*} \end{block} \end{frame} \subsection[NBO]{Null Boost Orbifold} \begin{frame}{Null Boost Orbifold} \end{frame} \section[Deep Learning]{Deep Learning the Geometry of String Theory} \begin{frame}{CCC} c \end{frame} \end{document}