Change the structure and adjustments
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
164
thesis.tex
164
thesis.tex
@@ -41,11 +41,18 @@
|
||||
}
|
||||
\date{15th December 2020}
|
||||
|
||||
\newenvironment{equationblock}[1]{%
|
||||
\begin{block}{#1}
|
||||
\vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt}
|
||||
}{%
|
||||
\end{block}
|
||||
}
|
||||
|
||||
\newcommand{\firstlogo}{img/unito}
|
||||
\newcommand{\thefirstlogo}{%
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=5em]{\firstlogo}
|
||||
\includegraphics[width=7em]{\firstlogo}
|
||||
\end{figure}
|
||||
}
|
||||
|
||||
@@ -53,7 +60,7 @@
|
||||
\newcommand{\thesecondlogo}{%
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=5em]{\secondlogo}
|
||||
\includegraphics[width=7em]{\secondlogo}
|
||||
\end{figure}
|
||||
}
|
||||
|
||||
@@ -113,15 +120,15 @@
|
||||
\par
|
||||
}
|
||||
|
||||
\AtBeginSection[]
|
||||
{%
|
||||
{%
|
||||
\setbeamertemplate{footline}{}
|
||||
\begin{frame}[noframenumbering]{\contentsname}
|
||||
\tableofcontents[currentsection]
|
||||
\end{frame}
|
||||
}
|
||||
}
|
||||
% \AtBeginSection[]
|
||||
% {%
|
||||
% {%
|
||||
% \setbeamertemplate{footline}{}
|
||||
% \begin{frame}[noframenumbering]{\contentsname}
|
||||
% \tableofcontents[currentsection]
|
||||
% \end{frame}
|
||||
% }
|
||||
% }
|
||||
|
||||
|
||||
\begin{document}
|
||||
@@ -146,8 +153,11 @@
|
||||
|
||||
\section[CFT]{Conformal Symmetry and Geometry of the Worldsheet}
|
||||
|
||||
|
||||
\subsection[Preliminary]{Preliminary Concepts and Tools}
|
||||
|
||||
\begin{frame}{Action Principle and Conformal Symmetry}
|
||||
\begin{block}{Polyakov's Action}
|
||||
\begin{equationblock}{Polyakov's Action}
|
||||
\begin{equation*}
|
||||
S_P\qty[ \upgamma,\, X,\, \uppsi ]
|
||||
=
|
||||
@@ -157,7 +167,7 @@
|
||||
\sqrt{-\det \upgamma}\,
|
||||
\upgamma^{\upalpha \upbeta}\,
|
||||
\qty(%
|
||||
\frac{2}{\alpha'}\,
|
||||
\frac{2}{\upalpha'}\,
|
||||
\partial_{\upalpha} X^{\upmu}\,
|
||||
\partial_{\upbeta} X^{\upnu}
|
||||
+
|
||||
@@ -168,44 +178,66 @@
|
||||
)\,
|
||||
\upeta_{\upmu\upnu}
|
||||
\end{equation*}
|
||||
\end{block}
|
||||
\end{equationblock}
|
||||
|
||||
\begin{columns}
|
||||
\begin{column}[t]{0.5\linewidth}
|
||||
Symmetries:
|
||||
\fcolorbox{yellow}{yellow!20}{Symmetries:}
|
||||
\begin{itemize}
|
||||
\item Poincaré transf.\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
|
||||
\item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
|
||||
|
||||
\item 2D diff.\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$
|
||||
\item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$
|
||||
|
||||
\item Weyl transf.\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$
|
||||
\item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
|
||||
\begin{column}[t]{0.5\linewidth}
|
||||
Conformal symmetry:
|
||||
\fcolorbox{yellow}{yellow!20}{Conformal symmetry:}
|
||||
\begin{itemize}
|
||||
\item vanishing stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$
|
||||
\item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$
|
||||
|
||||
\item traceless stress-energy tensor: $\trace{\mathcal{T}} = 0$
|
||||
\item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$
|
||||
|
||||
\item conformal gauge $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
|
||||
\item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Action Principle and Conformal Symmetry}
|
||||
\begin{columns}
|
||||
\begin{column}{0.6\linewidth}
|
||||
Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
|
||||
\fcolorbox{yellow}{yellow!20}{%
|
||||
Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
|
||||
}
|
||||
\begin{equation*}
|
||||
T( z )\, \Upphi_{\upomega}( w )
|
||||
\mathcal{T}( z )\, \Upphi_h( w )
|
||||
\stackrel{z \to w}{\sim}
|
||||
\frac{\upomega}{(z - w)^2} \Upphi_{\upomega}( w )
|
||||
\frac{h}{(z - w)^2} \Upphi_h( w )
|
||||
+
|
||||
\frac{1}{z - w} \partial_w \Upphi_{\upomega}( w )
|
||||
\frac{1}{z - w} \partial_w \Upphi_h( w )
|
||||
\end{equation*}
|
||||
\begin{equation*}
|
||||
\mathcal{T}( z )\, \mathcal{T}( w )
|
||||
\stackrel{z \to w}{\sim}
|
||||
\frac{\frac{c}{2}}{(z - w)^4}
|
||||
+
|
||||
\order{(z - w)^{-2}}
|
||||
\end{equation*}
|
||||
|
||||
\begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
|
||||
\begin{eqnarray*}
|
||||
\qty[ L_n,\, L_m ]
|
||||
& = &
|
||||
(n - m) L_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
|
||||
\\
|
||||
\qty[ L_n,\, \overline{L}_m ]
|
||||
& = &
|
||||
0
|
||||
\end{eqnarray*}
|
||||
\end{equationblock}
|
||||
\end{column}
|
||||
|
||||
\begin{column}{0.4\linewidth}
|
||||
@@ -217,25 +249,49 @@
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Action Principle and Conformal Symmetry}
|
||||
\fcolorbox{yellow}{yellow!20}{Superstrings in $D$ dimensions:}
|
||||
\begin{equation*}
|
||||
\mathcal{T}( z )
|
||||
=
|
||||
-\frac{1}{\upalpha'}
|
||||
\partial X( z ) \cdot \partial X( z )
|
||||
-\frac{1}{2}
|
||||
\uppsi( z ) \cdot \partial \uppsi( z )
|
||||
\quad
|
||||
\Rightarrow
|
||||
\quad
|
||||
c = \frac{3}{2} D
|
||||
\end{equation*}
|
||||
|
||||
\subsection[Tools]{Preliminary Tools and Definitions}
|
||||
\begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System}
|
||||
Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields:
|
||||
\begin{equation*}
|
||||
S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ]
|
||||
=
|
||||
\frac{1}{2\uppi}
|
||||
\iint \dd{z} \dd{\overline{z}}
|
||||
\qty(%
|
||||
b( z )\, \overline{\partial} c( z )
|
||||
+
|
||||
\upbeta( z )\, \overline{\partial} \upgamma( z )
|
||||
)
|
||||
\end{equation*}
|
||||
where $\uplambda_b = 2$ and $\uplambda_{\upbeta} = \frac{3}{2}$.
|
||||
\end{block}
|
||||
|
||||
\begin{frame}{AAA}
|
||||
a1
|
||||
\fcolorbox{yellow}{yellow!20}{Consequence:}
|
||||
\begin{equation*}
|
||||
c_{\text{full}} = c + c_{\text{ghost}} = 0
|
||||
\quad
|
||||
\Leftrightarrow
|
||||
\quad
|
||||
D = 10.
|
||||
\end{equation*}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection[D-branes]{D-branes Intersecting at Angles}
|
||||
|
||||
\begin{frame}{AAA}
|
||||
a2
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection[Fermions]{Fermions With Boundary Defects}
|
||||
|
||||
\begin{frame}{AAA}
|
||||
a3
|
||||
\begin{frame}{Extra Dimensions and Compactification}
|
||||
\end{frame}
|
||||
|
||||
|
||||
@@ -246,38 +302,10 @@
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection[Orbifolds]{Orbifolds and Cosmological Models}
|
||||
|
||||
\begin{frame}{BBB}
|
||||
b1
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection[Time Dependency]{Time Dependent Orbifolds}
|
||||
|
||||
\begin{frame}{BBB}
|
||||
b2
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section[Deep Learning]{Deep Learning the Geometry of String Theory}
|
||||
|
||||
\begin{frame}{CCC}
|
||||
c
|
||||
\end{frame}
|
||||
|
||||
\subsection[CICY]{Complete Intersection Calabi--Yau Manifolds}
|
||||
|
||||
\begin{frame}{CCC}
|
||||
c1
|
||||
\end{frame}
|
||||
|
||||
|
||||
\subsection[Machine Learning]{Machine Learning and Deep Learning for CICY Manifolds}
|
||||
|
||||
\begin{frame}{CCC}
|
||||
c2
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user