Files
phd-thesis-beamer/thesis.tex
2020-11-03 22:05:04 +01:00

312 lines
7.9 KiB
TeX

\documentclass[10pt, aspectratio=169]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[british]{babel}
\usepackage{csquotes}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{dsfont}
\usepackage{upgreek}
\usepackage{physics}
\usepackage{tensor}
\usepackage{graphicx}
\usepackage{transparent}
\usepackage{tikz}
\usepackage{import}
\usepackage{booktabs}
\usepackage{multicol}
\usepackage{multirow}
\usepackage{bookmark}
\usepackage{xspace}
\usetheme{Singapore}
\usecolortheme{crane}
\usefonttheme{structurebold}
\setbeamertemplate{navigation symbols}{}
\author[Finotello]{Riccardo Finotello}
\title[D-branes and Deep Learning]{D-branes and Deep Learning}
\subtitle{Theoretical and Computational Aspects in String Theory}
\institute[UniTO]{%
Scuola di Dottorato in Fisica e Astrofisica
\\[0.5em]
Università degli Studi di Torino
\\
and
\\
I.N.F.N.\ -- sezione di Torino
}
\date{15th December 2020}
\newenvironment{equationblock}[1]{%
\begin{block}{#1}
\vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt}
}{%
\end{block}
}
\newcommand{\firstlogo}{img/unito}
\newcommand{\thefirstlogo}{%
\begin{figure}
\centering
\includegraphics[width=7em]{\firstlogo}
\end{figure}
}
\newcommand{\secondlogo}{img/infn}
\newcommand{\thesecondlogo}{%
\begin{figure}
\centering
\includegraphics[width=7em]{\secondlogo}
\end{figure}
}
\setbeamertemplate{title page}{%
\begin{center}
{%
\usebeamercolor{title}
\usebeamerfont{title}
\colorbox{bg}{%
{\Huge \inserttitle}\xspace
}
\vspace{0.5em}
}\par
{%
\usebeamercolor{subtitle}
\usebeamerfont{subtitle}
{\large \it \insertsubtitle}\xspace
\vspace{2em}
}\par
{%
\usebeamercolor{author}
\usebeamerfont{author}
{\Large \insertauthor}\xspace
\vspace{1em}
}\par
{%
\begin{columns}
\centering
\begin{column}{0.3\linewidth}
\centering
\thefirstlogo
\end{column}
\begin{column}{0.4\linewidth}
\centering
\usebeamercolor{institute}
\usebeamerfont{institute}
\insertinstitute{}
\\[1em]
\insertdate{}
\end{column}
\begin{column}{0.3\linewidth}
\centering
\thesecondlogo
\end{column}
\end{columns}
}\par
\end{center}
}
\setbeamertemplate{footline}{%
\usebeamerfont{footnote}
\usebeamercolor{footnote}
\hfill
\insertframenumber{}~/~\inserttotalframenumber{}
\hspace{1em}
\vspace{1em}
\par
}
% \AtBeginSection[]
% {%
% {%
% \setbeamertemplate{footline}{}
% \begin{frame}[noframenumbering]{\contentsname}
% \tableofcontents[currentsection]
% \end{frame}
% }
% }
\begin{document}
{%
\usebackgroundtemplate{%
\transparent{0.1}
\includegraphics[width=\paperwidth]{img/torino.png}
}
\begin{frame}[noframenumbering, plain]
\titlepage{}
\end{frame}
}
{%
\setbeamertemplate{footline}{}
\begin{frame}[noframenumbering]{\contentsname}
\tableofcontents{}
\end{frame}
}
\section[CFT]{Conformal Symmetry and Geometry of the Worldsheet}
\subsection[Preliminary]{Preliminary Concepts and Tools}
\begin{frame}{Action Principle and Conformal Symmetry}
\begin{equationblock}{Polyakov's Action}
\begin{equation*}
S_P\qty[ \upgamma,\, X,\, \uppsi ]
=
-\frac{1}{4\pi}
\int\limits_{-\infty}^{+\infty} \dd{\uptau}
\int\limits_0^{\ell} \dd{\upsigma}
\sqrt{-\det \upgamma}\,
\upgamma^{\upalpha \upbeta}\,
\qty(%
\frac{2}{\upalpha'}\,
\partial_{\upalpha} X^{\upmu}\,
\partial_{\upbeta} X^{\upnu}
+
\uppsi^{\upmu}\,
\uprho_{\upalpha}
\partial_{\upbeta}
\uppsi^{\upnu}
)\,
\upeta_{\upmu\upnu}
\end{equation*}
\end{equationblock}
\begin{columns}
\begin{column}[t]{0.5\linewidth}
\fcolorbox{yellow}{yellow!20}{Symmetries:}
\begin{itemize}
\item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
\item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$
\item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$
\end{itemize}
\end{column}
\begin{column}[t]{0.5\linewidth}
\fcolorbox{yellow}{yellow!20}{Conformal symmetry:}
\begin{itemize}
\item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$
\item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$
\item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Action Principle and Conformal Symmetry}
\begin{columns}
\begin{column}{0.6\linewidth}
\fcolorbox{yellow}{yellow!20}{%
Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
}
\begin{equation*}
\mathcal{T}( z )\, \Upphi_h( w )
\stackrel{z \to w}{\sim}
\frac{h}{(z - w)^2} \Upphi_h( w )
+
\frac{1}{z - w} \partial_w \Upphi_h( w )
\end{equation*}
\begin{equation*}
\mathcal{T}( z )\, \mathcal{T}( w )
\stackrel{z \to w}{\sim}
\frac{\frac{c}{2}}{(z - w)^4}
+
\order{(z - w)^{-2}}
\end{equation*}
\begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
\begin{eqnarray*}
\qty[ L_n,\, L_m ]
& = &
(n - m) L_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
\\
\qty[ L_n,\, \overline{L}_m ]
& = &
0
\end{eqnarray*}
\end{equationblock}
\end{column}
\begin{column}{0.4\linewidth}
\begin{figure}[h]
\centering
\resizebox{0.8\columnwidth}{!}{\import{img}{complex_plane.pgf}}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Action Principle and Conformal Symmetry}
\fcolorbox{yellow}{yellow!20}{Superstrings in $D$ dimensions:}
\begin{equation*}
\mathcal{T}( z )
=
-\frac{1}{\upalpha'}
\partial X( z ) \cdot \partial X( z )
-\frac{1}{2}
\uppsi( z ) \cdot \partial \uppsi( z )
\quad
\Rightarrow
\quad
c = \frac{3}{2} D
\end{equation*}
\begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System}
Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields:
\begin{equation*}
S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ]
=
\frac{1}{2\uppi}
\iint \dd{z} \dd{\overline{z}}
\qty(%
b( z )\, \overline{\partial} c( z )
+
\upbeta( z )\, \overline{\partial} \upgamma( z )
)
\end{equation*}
where $\uplambda_b = 2$ and $\uplambda_{\upbeta} = \frac{3}{2}$.
\end{block}
\fcolorbox{yellow}{yellow!20}{Consequence:}
\begin{equation*}
c_{\text{full}} = c + c_{\text{ghost}} = 0
\quad
\Leftrightarrow
\quad
D = 10.
\end{equation*}
\end{frame}
\begin{frame}{Extra Dimensions and Compactification}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
\begin{frame}{BBB}
b
\end{frame}
\section[Deep Learning]{Deep Learning the Geometry of String Theory}
\begin{frame}{CCC}
c
\end{frame}
\end{document}