Add branch cuts

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-06 14:35:41 +01:00
parent 1c316a7ab1
commit b3c49df7cc
3 changed files with 127 additions and 1 deletions

View File

@@ -44,6 +44,7 @@
\usetikzlibrary{decorations.markings}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{arrows}
\newenvironment{equationblock}[1]{%
@@ -480,7 +481,7 @@
\begin{equationblock}{Twist Fields Correlators}
\begin{equation*}
\left\langle \prod\limits_{t = 1}^N \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle
\left\langle \prod\limits_{t = 1}^{N_B} \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle
=
\mathcal{N}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )
e^{- S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )}
@@ -514,6 +515,89 @@
\end{columns}
\end{frame}
\begin{frame}{$\mathrm{SO}(4)$ Rotations}
Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$):
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}}
\end{column}
\begin{column}{0.6\linewidth}
\begin{equation*}
\qty( X_{(t)} )^I
=
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
\quad
\text{s.t.}
\quad
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
\end{equation*}
\pause
that is
\begin{equation*}
\qty[ R_{(t)} ]
=
\qty{ R_{(t)} \sim \mathcal{O}_{(t)} R_{(t)} }
\end{equation*}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Boundary Conditions}
What are the consequences for \highlight{open strings?}
\pause
\begin{columns}
\begin{column}{0.6\linewidth}
\begin{itemize}
\item consider $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$
\item let $x_{(t)} < x_{(t-1)}$ be the \textbf{worldsheet intersection points} on \textbf{real axis}
\item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet}
\end{itemize}
\end{column}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{branchcuts.pgf}}
\end{column}
\end{columns}
\pause
\begin{equationblock}{Branch Cuts and Discontinuities for $x \in D_{(t)}$}
\begin{equation*}
\begin{cases}
\partial_u X( x + i 0^+ )
& =
U_{(t)}
\cdot
\partial_{\overline{u}} \overline{X}( x - i 0^+ )
=
\qty[%
R_{(t)}^{-1}
\cdot
\qty( \upsigma_3 \otimes \mathds{1}_2 )
\cdot
R_{(t)}
]
\cdot
\partial_{\overline{u}} \overline{X}( x - i 0^+ )
\\
X( x_{(t)},\, x_{(t)} )
& =
f_{(t)}
\end{cases}
\end{equation*}
\end{equationblock}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
\begin{frame}{BBB}