diff --git a/img/branchcuts.pgf b/img/branchcuts.pgf new file mode 100644 index 0000000..cbeda58 --- /dev/null +++ b/img/branchcuts.pgf @@ -0,0 +1,29 @@ +\begin{tikzpicture} + +% draw axis +\draw[thick, ->] (-3cm, 0cm) -- (3cm, 0cm) node[anchor=south] {$x$}; +\draw[thick, ->] (-0.4cm, -1cm) -- (-0.4cm, 3cm) node[anchor=east] {$y$}; + +% draw branching cuts +\filldraw[fill=black!50, draw=black, dashed] (-2cm, 3pt) rectangle (2.5cm, -3pt); +\filldraw[fill=black!30, draw=black, dashed] (-0.75cm, 2pt) rectangle (2.5cm, -2pt); +\filldraw[fill=black!10, draw=black, dashed] (1cm, 1pt) rectangle (2.5cm, -1pt); + +% draw branching points +\filldraw[fill=white, draw=black] (2.5cm, 0cm) circle (2pt) node[anchor=north, below=3pt] (x1) {$x_{(1)}$}; +\filldraw[fill=white, draw=black] (1cm, 0cm) circle (2pt) node[anchor=north, below=3pt] (x2) {$x_{(2)}$}; +\filldraw[fill=white, draw=black] (-0.75cm, 0cm) circle (2pt) node[anchor=north, below=3pt] (x3) {$x_{(3)}$}; +\filldraw[fill=white, draw=black] (-2cm, 0cm) circle (2pt) node[anchor=north, below=3pt] (x4) {$x_{(4)}$}; + +% assign the D-branes +\draw[thin, decorate, decoration={brace}] (1cm, 0.3cm) -- (2.5cm, 0.3cm) node[midway, anchor=south] {$D_{(2)}$}; +\draw[thin, decorate, decoration={brace}] (-0.75cm, 0.3cm) -- (1cm, 0.3cm) node[midway, anchor=south] {$D_{(3)}$}; +\draw[thin, decorate, decoration={brace}] (-2cm, 0.3cm) -- (-0.75cm, 0.3cm) node[midway, anchor=south] {$D_{(4)}$}; + +% draw the remaining D-brane +\draw[thin, ->, dash pattern=on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 1cm] (-2cm, 2pt) -- (-2cm, 1cm)-- (-2.75cm, 1cm) node[midway, anchor=south] {$D_{(1)}$} ; +\draw[thin, ->, dash pattern=on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 2pt off 2pt on 1cm] (2.5cm, 2pt) -- (2.5cm, 1cm)-- (3cm, 1cm) node[midway, anchor=south] {$D_{(1)}$} ; + +\end{tikzpicture} + +% vim: ft=tex diff --git a/img/welladapted.pgf b/img/welladapted.pgf new file mode 100644 index 0000000..3cbb884 --- /dev/null +++ b/img/welladapted.pgf @@ -0,0 +1,13 @@ +\begin{tikzpicture} + +% draw the D-brane +\draw (0cm, 0cm) -- (5cm, -1cm) -- (6cm, 3cm) -- (1.5cm, 4cm) node[anchor=south west] {$D_{(t)}$} -- cycle; + +% draw a triad of axis +\draw[thick, ->] (3cm, 1cm) -- (2.7cm, 0.1cm) node[anchor=east] {$X^1_{(t)}$}; +\draw[thick, ->] (3cm, 1cm) -- (5cm, 0.6cm) node[anchor=south] {$X^2_{(t)}$}; +\draw[thick, ->] (3cm, 1cm) -- (3cm, 2.75cm) node[anchor=east] {$X^{3,\, 4}_{(t)}$}; + +\end{tikzpicture} + +% vim: ft=tex diff --git a/thesis.tex b/thesis.tex index 5d0792f..f8d66c5 100644 --- a/thesis.tex +++ b/thesis.tex @@ -44,6 +44,7 @@ \usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.pathmorphing} +\usetikzlibrary{decorations.pathreplacing} \usetikzlibrary{arrows} \newenvironment{equationblock}[1]{% @@ -480,7 +481,7 @@ \begin{equationblock}{Twist Fields Correlators} \begin{equation*} - \left\langle \prod\limits_{t = 1}^N \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle + \left\langle \prod\limits_{t = 1}^{N_B} \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle = \mathcal{N}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) e^{- S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )} @@ -514,6 +515,89 @@ \end{columns} \end{frame} + \begin{frame}{$\mathrm{SO}(4)$ Rotations} + Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$): + + \pause + + \begin{columns} + \begin{column}{0.5\linewidth} + \centering + \resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}} + \end{column} + + \begin{column}{0.6\linewidth} + \begin{equation*} + \qty( X_{(t)} )^I + = + \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I + \quad + \text{s.t.} + \quad + R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )} + \end{equation*} + \pause + that is + \begin{equation*} + \qty[ R_{(t)} ] + = + \qty{ R_{(t)} \sim \mathcal{O}_{(t)} R_{(t)} } + \end{equation*} + \end{column} + \end{columns} + \end{frame} + + \begin{frame}{Boundary Conditions} + What are the consequences for \highlight{open strings?} + + \pause + + \begin{columns} + \begin{column}{0.6\linewidth} + \begin{itemize} + \item consider $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$ + + \item let $x_{(t)} < x_{(t-1)}$ be the \textbf{worldsheet intersection points} on \textbf{real axis} + + \item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet} + \end{itemize} + \end{column} + + \begin{column}{0.4\linewidth} + \centering + \resizebox{0.9\columnwidth}{!}{\import{img}{branchcuts.pgf}} + \end{column} + \end{columns} + + \pause + + \begin{equationblock}{Branch Cuts and Discontinuities for $x \in D_{(t)}$} + \begin{equation*} + \begin{cases} + \partial_u X( x + i 0^+ ) + & = + U_{(t)} + \cdot + \partial_{\overline{u}} \overline{X}( x - i 0^+ ) + = + \qty[% + R_{(t)}^{-1} + \cdot + \qty( \upsigma_3 \otimes \mathds{1}_2 ) + \cdot + R_{(t)} + ] + \cdot + \partial_{\overline{u}} \overline{X}( x - i 0^+ ) + \\ + X( x_{(t)},\, x_{(t)} ) + & = + f_{(t)} + \end{cases} + \end{equation*} + \end{equationblock} + \end{frame} + \section[Time Divergences]{Cosmological Backgrounds and Divergences} \begin{frame}{BBB}