Begin part with fermions and defect CFT

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-09 18:40:17 +01:00
parent 6dc21a9be2
commit 3d1d20debb
4 changed files with 219 additions and 9 deletions

View File

@@ -663,13 +663,174 @@
\begin{frame}{Hypergeometric Basis}
\begin{columns}
\begin{column}{0.5\linewidth}
\begin{column}{0.3\linewidth}
\centering
\resizebox{0.8\columnwidth}
\resizebox{0.9\columnwidth}{!}{\import{img}{threebranes_plane.pgf}}
\end{column}
\hfill
\begin{column}{0.7\linewidth}
Sum over \highlight{all contributions:}
\begin{equation*}
\begin{split}
\partial_z \mathcal{X}( z )
& =
\sum\limits_{l,\, r} c_{lr}\,
\qty( - \upomega_z )^{A_{lr}}\,
\qty( 1 - \upomega_z )^{B_{lr}}\,
B_{0,\, l}^{(L)}( \omega_z )\,
\qty( B_{0,\, r}^{(R)}( \omega_z ) )^T
\end{split}
\end{equation*}
\end{column}
\end{columns}
\pause
\begin{equationblock}{Basis of Solutions}
\begin{equation*}
B_{0,\, n}( \upomega_z )
=
\mqty(%
1 & 0
\\
0 & K_n
)
\mqty(%
\frac{1}{\Upgamma( c_n )}\,
\tensor[_2]{F}{_1}( a_n,\, b_n;\, c_n;\, \upomega_z )
\\
\qty( -\upomega_z )^{1 - c_n}\,
\frac{1}{\Upgamma( 2 - c_n )}\,
\tensor[_2]{F}{_1}( a_n + 1 - c_n,\, b_n + 1 - c_n;\, 2 - c_n;\, \upomega_z )
)
\end{equation*}
\end{equationblock}
\end{frame}
\begin{frame}{The Solution}
\highlight{Operations sequence:}
\begin{enumerate}
\item rotation matrix $=$ monodromy matrix
\pause
\item contiguity relations $\Rightarrow$ independent hypergeometrics
\pause
\item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated)
\pause
\item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$
\end{enumerate}
\pause
\begin{block}{Physical Interpretation}
\only<5>{%
\begin{columns}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.607\columnwidth}{!}{\import{img}{branesangles.pgf}}
\end{column}
\hfill
\begin{column}{0.6\linewidth}
\begin{equation*}
\begin{split}
\eval{S_{\mathds{R}^4}}_{\text{on-shell}}
& =
\frac{1}{2\pi \alpha'}
\sum\limits_{t = 1}^3
\qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} )
\\
& =
\text{Area}\qty( \qty{ f_{(t)} } )
\end{split}
\end{equation*}
\end{column}
\end{columns}
\vfill
}
\only<6->{%
\centering
\resizebox{0.25\columnwidth}{!}{\import{img}{brane3d.pgf}}
}
\end{block}
\end{frame}
\subsection[Fermions]{Fermions and Point-like Defect CFT}
\begin{frame}{Fermions on the Strip}
\begin{columns}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{defects.pgf}}
\end{column}
\hfill
\begin{column}{0.6\linewidth}
\begin{equationblock}{Action of Boundary Changing Operators}
\begin{equation*}
\begin{cases}
\uppsi_-^i( \uptau, 0 )
& =
\tensor{\qty( R_{(t)} )}{^I_J}\,
\uppsi_+^J( \uptau, 0 )
\quad \text{for}~
\uptau \in \qty( \hat{\uptau}_{(t)},\, \hat{\uptau}_{(t-1)} )
\\
\uppsi_-^I( \uptau, \uppi )
& =
- \uppsi_+^I( \uptau, \uppi )
\quad \text{for}~
\uptau \in \mathds{R}
\end{cases}
\end{equation*}
\end{equationblock}
\end{column}
\end{columns}
\pause
\begin{block}{Stress-energy Tensor}
\begin{equation*}
\mathcal{T}_{\pm\pm}( \upxi_{\pm} )
=
-i\, \frac{T}{4}\,
\uppsi^*_{\pm,\, I}( \upxi_{\pm} )\,
\overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} )
\quad
\Rightarrow
\quad
\begin{cases}
\dot{\mathrm{H}}( \uptau )
&
% =
% \partial_{\uptau}
% \qty(%
% \int\limits_0^{\uppi} \dd{\upsigma}
% \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma )
% )
=
0 \Leftrightarrow \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} )
\\
\dot{\mathrm{P}}( \uptau )
&
% =
% \partial_{\uptau}
% \qty(%
% \int\limits_0^{\uppi} \dd{\upsigma}
% \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma )
% )
\neq
0
\end{cases}
\end{equation*}
\end{block}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
\begin{frame}{BBB}