96 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| We provide details on how~\eqref{eq:reflection condition_out_field_generic_vacuum} can be computed.
 | |
| First we introduce the projector of positive frequency and negative frequency modes for the NS fermion as
 | |
| \begin{eqnarray}
 | |
|   P^{(+,\, 0)}(z,w)
 | |
|   & = &
 | |
|   \frac{+1}{z-w},
 | |
|   \qquad
 | |
|   \abs{z} > \abs{w}
 | |
|   \\
 | |
|   P^{(-,\, 0)}(z,w)
 | |
|   & = &
 | |
|   \frac{-1}{z-w},
 | |
|   \qquad
 | |
|   \abs{z} < \abs{w},
 | |
| \end{eqnarray}
 | |
| such that
 | |
| \begin{equation}
 | |
|   \oint\limits_{\abs{z} > \abs{w}} \ddw
 | |
|   P^{(+,\, 0)}(z,w)\,
 | |
|   \Psi^{(0)}( 0 )
 | |
|   =
 | |
|   \Psi^{(0,\, +)}( z ),
 | |
| \end{equation}
 | |
| and similarly for the negative frequency modes.
 | |
| Likewise we introduce the projectors for the field with defects as
 | |
| \begin{eqnarray}
 | |
|   P^{(+)}(z,\, w)
 | |
|   & = &
 | |
|   \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\,
 | |
|         P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} )
 | |
|        }{z-w},
 | |
|   \qquad
 | |
|   \abs{z} > \abs{w}
 | |
|   \\
 | |
|   P^{(-)}(z,\, w)
 | |
|   & = &
 | |
|   -
 | |
|   \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\,
 | |
|         P\qty(w;\, \qty{x_{(t)}, -\rE_{(t)}} )
 | |
|        }{z-w},
 | |
|   \qquad
 | |
|   \abs{z} < \abs{w},
 | |
| \end{eqnarray}
 | |
| with $P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} ) = \finiteprod{t}{1}{N} \qty( 1- \frac{z}{x_{(t)}} )^{\rE_{(t)}}$ as in the main text.
 | |
|     
 | |
| We then compute
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \qty(P^{(+)}\, P^{(+,\,0)})(z,\, w)
 | |
|     & =
 | |
|     \oint\limits_{\abs{z} > \abs{\zeta} > \abs{w}} \ddz
 | |
|     P^{(+)}(z,\, \zeta)\,
 | |
|     P^{(+,\, 0)}(\zeta,\, w)
 | |
|     =
 | |
|     P^{(+,\, 0)}(z,\, w)
 | |
|     \\
 | |
|     \qty(P^{(+)}\, P^{(-,\, 0)})(z,\, w)
 | |
|     & =
 | |
|     \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\,
 | |
|           P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} ) -1
 | |
|          }{z-w}.
 | |
|   \end{split}
 | |
| \end{equation}
 | |
| The last equation is valid when $\rM=\finitesum{t}{1}{N} \rE_{(t)} \le 0$ and for $\abs{z}$ and $\abs{w}$ arbitrary.
 | |
| Specializing the previous expressions to $\Psi^{(out)}( z )$, we need to constrain $\abs{z} > x_{(1)}$ and $\abs{w} > x_{(1)}$.
 | |
| 
 | |
| Finally the vacuum in presence of defects can be  described by
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \Psi^{(+)}( z ) \Gexcvacket
 | |
|     & =
 | |
|     \qty(P^{(+)}\, \Psi)( z ) \Gexcvacket
 | |
|     \\
 | |
|     & =
 | |
|     \qty(P^{(+)}\, \Psi^{(out)})( z ) \Gexcvacket
 | |
|     \\
 | |
|     & =
 | |
|     \left\lbrace
 | |
|       \qty(P^{(+)}\, P^{(+,\, 0)}\, \Psi^{(out)})( z )
 | |
|     \right.
 | |
|     \\
 | |
|     & +
 | |
|     \left.
 | |
|       \qty(P^{(+)}\, P^{(-,\, 0)}\, \Psi^{(out)})( z )
 | |
|     \right\rbrace
 | |
|     \Gexcvacket
 | |
|     \\
 | |
|     & =
 | |
|     0,
 | |
|   \end{split}
 | |
| \end{equation}
 | |
| where we assumed $\abs{z} > x_{(1)}$.
 | |
| The expression finally becomes~\eqref{eq:reflection condition_out_field_generic_vacuum}.
 | |
| 
 | |
| % vim: ft=tex
 |