352 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			352 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| In this appendix we show the computation of the parameters of the hypergeometric functions and their relation with the rotation parameters.
 | |
| 
 | |
| 
 | |
| \subsection{Consistency Conditions of the Monodromy Matrices}
 | |
| 
 | |
| In the main text we set
 | |
| \begin{equation}
 | |
|   D~
 | |
|   \rM_{\vb{\infty}}~
 | |
|   D^{-1}
 | |
|   =
 | |
|   e^{-2\pi i \delta_{\vb{\infty}}}\,
 | |
|   \cL(\vb{n}_{\vb{\infty}}),
 | |
| \end{equation}
 | |
| where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$.
 | |
| The previous equation implies
 | |
| \begin{equation}
 | |
|   \left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^\dagger
 | |
|   =
 | |
|   \left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^{-1},
 | |
| \end{equation}
 | |
| which can be rewritten as
 | |
| \begin{equation}
 | |
|   \widetilde{\rM}_{\vb{\infty}}^{-1}~
 | |
|   \cC^{\dagger}\, D^{\dagger}\, D\, \cC
 | |
|   =
 | |
|   \cC^{\dagger}\, D^{\dagger}\, D\, \cC~
 | |
|   \widetilde{\rM}_{\vb{\infty}}^{-1}.
 | |
| \end{equation}
 | |
| As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish.
 | |
| We therefore have
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \abs{K}^{-2}
 | |
|     & =
 | |
|     -\frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}
 | |
|     \\
 | |
|     & =
 | |
|     -\frac{1}{\pi^4}\,
 | |
|     \abs{\gfun{a} \gfun{b} \gfun{c-a} \gfun{c-b}}^2 \times
 | |
|     \\
 | |
|     & \times
 | |
|     \sin(\pi a)\, \sin^*(\pi (c-a))\, (\sin(\pi b)\, \sin^*(\pi (c-b)))^*.
 | |
|   \end{split}
 | |
| \end{equation}
 | |
| When $a,\, b,\, c \in \R$ this ultimately means that
 | |
| \begin{equation}
 | |
|   \sin(\pi a)\, \sin(\pi (c-a))\, \sin(\pi b)\, \sin(\pi (c-b)) < 0.
 | |
|   \label{eq:constraint_from_K^2}
 | |
| \end{equation}
 | |
| Since the previous equation is invariant under integer shift of any of its parameters, we can consider just the fractional parts $0 \le \{a\},\, \{b\},\, \{c\} < 1$.
 | |
| In order to have \U{2} monodromies finally requires
 | |
| \begin{equation}
 | |
|   0 \le \{b\} < \{c\} < \{a\} < 1
 | |
|   \qq{or}
 | |
|   0 \le \{a\} < \{c\} < \{b\} <1.
 | |
|   \label{eq:K_consistency_condition}
 | |
| \end{equation}
 | |
| 
 | |
| Should we request \U{1,1} monodromies as in moving rotated branes then we get:
 | |
| \begin{equation}
 | |
|   \abs{K}^{-2}
 | |
|   =
 | |
|   \frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}.
 | |
| \end{equation}
 | |
| This would then imply
 | |
| \begin{equation}
 | |
|   0 \le \{c\} < \{a\},\, \{b\} < 1
 | |
|   \qq{or}
 | |
|   0 \le \{a\},\, \{b\} < \{c\} < 1.
 | |
| \end{equation}
 | |
| 
 | |
| 
 | |
| \subsection{Fixing the Parameters}
 | |
| 
 | |
| We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text.
 | |
| The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes.
 | |
| 
 | |
| The monodromy in $\omega_{\bt-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal.
 | |
| We impose:
 | |
| \begin{eqnarray}
 | |
|   \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} )
 | |
|   & = &
 | |
|   e^{-2\pi i \delta_{\vb{0}}^{(L)}}\,
 | |
|   \mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ),
 | |
|   \\
 | |
|   \mqty( \dmat{1, e^{-2\pi i c^{(R)}}} )
 | |
|   & = &
 | |
|   e^{-2\pi i \delta_{\vb{0}}^{(R)}}\,
 | |
|   \mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ),
 | |
| \end{eqnarray}
 | |
| where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le  n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}.
 | |
| We thus have:
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \delta_{\vb{0}}^{(L)}
 | |
|     & =
 | |
|     n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}},
 | |
|     \qquad
 | |
|     k_{\delta^{(L)}_{\vb{0}}} \in \Z,
 | |
|     \\
 | |
|     c^{(L)}
 | |
|     & =
 | |
|     2 n_{\vb{0}} + k_c,
 | |
|     \qquad
 | |
|     k_c \in \Z.
 | |
|   \end{split}
 | |
|   \label{eq:cL}
 | |
| \end{equation}
 | |
| Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le  \alpha + \frac{1}{2}$.
 | |
| Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$.
 | |
| Analogous results hold in the right sector.
 | |
| Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict:
 | |
| \begin{equation}
 | |
|   n_{\vb{0}} + m_{\vb{0}} - A \in \Z.
 | |
| \end{equation}
 | |
| 
 | |
| We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$.
 | |
| After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$.
 | |
| The equations follow from~\eqref{eq:parameters_equality_infty}.
 | |
| The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}:
 | |
| \begin{equation}
 | |
|   e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) )
 | |
|   =
 | |
|   e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}),
 | |
| \end{equation}
 | |
| which is satisfied by:
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \delta^{(L)}_{\vb{\infty}}
 | |
|     & =
 | |
|     -
 | |
|     \frac{1}{2}(a^{(L)} + b^{(L)})
 | |
|     +
 | |
|     \frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}},
 | |
|     \qquad
 | |
|     k_{\delta_{\vb{\infty}}} \in \Z,
 | |
|     \\
 | |
|     a^{(L)} - b^{(L)}
 | |
|     & =
 | |
|     2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}}
 | |
|     +
 | |
|     (-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}}
 | |
|     +
 | |
|     2\, k'_{a b},
 | |
|     \qquad
 | |
|     k'_{ab} \in \Z,
 | |
|   \end{split}
 | |
| \end{equation}
 | |
| where $p^{(L)},\, q^{(L)} \in \left\lbrace 0, 1 \right\rbrace$.
 | |
| Notice that changing the value of $p^{(L)}$ corresponds to swapping $a$ and $b$: since the hypergeometric function is symmetric in those parameters we can fix $p^{(L)}=0$.
 | |
| Redefining $k'$ we can always set $q^{(L)}=0$.
 | |
| We therefore have:
 | |
| \begin{equation}
 | |
|   a^{(L)} - b^{(L)}
 | |
|   =
 | |
|   2\, n_{\vb{\infty}}
 | |
|   +
 | |
|   k_{\delta^{(L)}_{\vb{\infty}}}
 | |
|   +
 | |
|   2 k_{ab},
 | |
|   \qquad
 | |
|   k_{a b}\in \Z.
 | |
|   \label{eq:aL-bL}
 | |
| \end{equation}
 | |
| The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bt-1} = 0$.
 | |
| The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$  may a priori take values in an interval of width $1$.
 | |
| As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
 | |
| We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
 | |
| 
 | |
| We find a third relation by considering the entry
 | |
| \begin{equation}
 | |
|   \Im\left(
 | |
|     e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\,
 | |
|     D^{(L)}\,
 | |
|     \rM_{\vb{\infty}}^{(L)}\,
 | |
|     \left( D^{(L)} \right)^{-1}
 | |
|   \right)_{11}
 | |
|   =
 | |
|   \Im\left(
 | |
|     \cL(n_{\vb{\infty}})
 | |
|   \right)_{11}.
 | |
| \end{equation}
 | |
| Using
 | |
| \begin{equation}
 | |
|   \det \cC
 | |
|   =
 | |
|   \frac{\sin(\pi c^{(L)})}{\sin(\pi(a^{(L)}-b^{(L)}))},
 | |
| \end{equation}
 | |
| and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to:
 | |
| \begin{equation}
 | |
|   \cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} ))
 | |
|   =
 | |
|   (-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}),
 | |
| \end{equation}
 | |
| where
 | |
| \begin{equation}
 | |
|   \cos(2\pi \cA^{(L)})
 | |
|   =
 | |
|   \cos(2\pi n_{\vb{0}})\,
 | |
|   \cos(2\pi n_{\vb{\infty}})
 | |
|   -
 | |
|   \sin(2\pi n_{\vb{0}})\,
 | |
|   \sin(2\pi n_{\vb{\infty}})\,
 | |
|   \frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}.
 | |
| \label{eq:cos_n1}
 | |
| \end{equation}
 | |
| This expression is connected with rotation parameter in the third interaction point $\omega_{\bt+1} = 1$.
 | |
| In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$.
 | |
| We then write
 | |
| \begin{equation}
 | |
|   a^{(L)} + b^{(L)} - c^{(L)}
 | |
|   =
 | |
|   2\, (-1)^{f^{(L)}}\, n_{\vb{1}}
 | |
|   +
 | |
|   k_c
 | |
|   +
 | |
|   k_{\delta^{(L)}_{\vb{\infty}}}
 | |
|   +
 | |
|   2\, k_{abc},
 | |
|   \qquad
 | |
|   k_{abc}\in \Z,
 | |
| \end{equation}
 | |
| with $f^{(L)} \in \left\lbrace 0, 1 \right\rbrace$.
 | |
| The request
 | |
| \begin{equation}
 | |
|   A
 | |
|   +
 | |
|   B
 | |
|   -
 | |
|   n_{\vb{0}}
 | |
|   -
 | |
|   m_{\vb{0}}
 | |
|   -
 | |
|   (-1)^{f^{(L)}}\, n_{\vb{1}}
 | |
|   -
 | |
|   (-1)^{f^{(R)}}\, m_{\vb{1}}
 | |
|   \in \Z
 | |
| \end{equation}
 | |
| finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}.
 | |
| 
 | |
| So far we can summarise the results in
 | |
| \begin{eqnarray}
 | |
|   a
 | |
|   =
 | |
|   n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a,
 | |
|   & \qquad &
 | |
|   m_a \in \Z,
 | |
|   \\
 | |
|   b
 | |
|   =
 | |
|   n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b,
 | |
|   & \qquad &
 | |
|   m_b \in \Z,
 | |
|   \\
 | |
|   c
 | |
|   =
 | |
|   2\, n_{\vb{0}} + m_c,
 | |
|   & \qquad &
 | |
|   m_c \in \Z,
 | |
|   \\
 | |
|   \delta_{\vb{0}}^{(L)}
 | |
|   =
 | |
|   n_{\vb{0}},
 | |
|   \\
 | |
|   \delta_{\vb{\infty}}^{(L)}
 | |
|   =
 | |
|   - n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta,
 | |
|   & \qquad &
 | |
|   m_{\delta} \in \Z,
 | |
|   \\
 | |
|   A
 | |
|   =
 | |
|   n_{\vb{0}} + m_{\vb{0}} + m_A,
 | |
|   & \qquad &
 | |
|   m_A \in \Z,
 | |
|   \\
 | |
|   B
 | |
|   =
 | |
|   (-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B,
 | |
|   & \qquad &
 | |
|   m_B \in \Z.
 | |
| \end{eqnarray}
 | |
| 
 | |
| $K^{(L)}$ is finally determined from
 | |
| \begin{equation}
 | |
|   \left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{21}
 | |
|   =
 | |
|   e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
 | |
|   \left( \cL(n_{\vb{\infty}}) \right)_{21},
 | |
|   \label{eq:fixing_K_21}
 | |
| \end{equation}
 | |
| and get:
 | |
| \begin{equation}
 | |
|   K^{(L)}
 | |
|   =
 | |
|   -\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
 | |
|   \cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\,
 | |
|   \sin(2 \pi n_{\vb{0}})
 | |
|   \sin(2 \pi n_{\vb{\infty}})
 | |
|   \frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
 | |
|   \label{eq:app_B_K21}
 | |
| \end{equation}
 | |
| where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$.
 | |
| 
 | |
| 
 | |
| \subsection{Checking the Consistency of the Solution}
 | |
| 
 | |
| We check the consistency condition \eqref{eq:K_consistency_condition} using~\eqref{eq:product_in_SU2}.
 | |
| The result is
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \left( K^{(L)} \right)^{-1}
 | |
|     & =
 | |
|     \frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\,
 | |
|     \cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\,
 | |
|     \\
 | |
|     & \times
 | |
|     \sin(2 \pi n_{\vb{0}})\,
 | |
|     \sin(2 \pi n_{\vb{\infty}})\,
 | |
|     \frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}},
 | |
|   \end{split}
 | |
|   \label{eq:app_B_K12}
 | |
| \end{equation}
 | |
| where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section.
 | |
| Compatibility with~\eqref{eq:app_B_K21} requires
 | |
| \begin{equation}
 | |
|   \frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
 | |
|   =
 | |
|   -4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))}
 | |
|           {\sin^2(\pi c) \sin^2(\pi(a-b))}.
 | |
|   \label{eq:n12+n22}
 | |
| \end{equation}
 | |
| We can then rewrite~\eqref{eq:cos_n1} as
 | |
| \begin{equation}
 | |
|   \frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}}
 | |
|   =
 | |
|   \frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2}
 | |
|        {\sin^2(\pi c) \sin^2(\pi(a-b))}.
 | |
| \end{equation}
 | |
| It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$.
 | |
| The same consistency check can also be performed by computing $K^{(L)}$ from
 | |
| \begin{equation}
 | |
|   \left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{12}
 | |
|   =
 | |
|   e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\,
 | |
|   \left( \cL(n_{\vb{\infty}}) \right)_{12},
 | |
| \end{equation}
 | |
| instead of \eqref{eq:fixing_K_21}.
 | |
| 
 | |
| % vim: ft=tex
 |