177 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| In this appendix we explain the conventions used for \SU{2} and show the details of the isomorphism between \SO{4} and a class of equivalence of $\SU{2} \times \SU{2}$.
 | |
| 
 | |
| 
 | |
| \subsection{Conventions}
 | |
| 
 | |
| We parameterise \SU{2} matrices $U$ with a vector $\vec{n} \in \R^3$ such that:
 | |
| \begin{equation}
 | |
|   U(\vec{n})
 | |
|   =
 | |
|   \cos(2 \pi n)\, \1_2
 | |
|   +
 | |
|   i\, \frac{\vec{n} \cdot \vec{\sigma}}{n}\, \sin(2 \pi n),
 | |
|   \label{eq:su2parametrisation}
 | |
| \end{equation}
 | |
| where $n = \norm{\vec{n}}$ and $0 \le n \le \frac{1}{2}$.
 | |
| We also identify all $\vec{n}$ when $n=\frac{1}{2}$ since in this case $U(\vec{n})= -\1_2$.
 | |
| The parametrisation is such that:
 | |
| \begin{eqnarray}
 | |
|   U^*(\vec{n})
 | |
|   & = &
 | |
|   \sigma^2\, U(\vec{n})\, \sigma^2
 | |
|   =
 | |
|   U(\widetilde{\vec{n}}),
 | |
|   \\
 | |
|   U^{\dagger}(\vec{n})
 | |
|   & = &
 | |
|   U^T(\widetilde{\vec{n}})
 | |
|   =
 | |
|   U(-\vec{n}),
 | |
|   \\
 | |
|   -U(\vec{n})
 | |
|   & = &
 | |
|   U(\widehat{\vec{n}})
 | |
|   \label{eq:U_props}
 | |
| \end{eqnarray}
 | |
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vec{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vec{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vec{n}}{n}$.
 | |
| 
 | |
| The group product of two elements $U(\vec{n} \circ \vec{m} ) = U(\vec{n})\,  U(\vec{m})$ has an explicit realisation as:
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \cos(2 \pi \norm{\vec{n} \circ \vec{m}})
 | |
|     & =
 | |
|     \cos(2 \pi n)\, \cos(2 \pi m)
 | |
|     -
 | |
|     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{n} \cdot \vec{m}}{n\, m},
 | |
|     \\
 | |
|     \sin(2 \pi \norm{\vec{n} \circ \vec{m}})\,
 | |
|     \frac{\vec{n} \circ \vec{m}}{\norm{\vec{n} \circ \vec{m}}}
 | |
|     & =
 | |
|     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{m}}{m}
 | |
|     +
 | |
|     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vec{n}}{n}.
 | |
|   \end{split}
 | |
|   \label{eq:product_in_SU2}
 | |
| \end{equation}
 | |
| 
 | |
| \subsection{The Isomorphism}
 | |
| 
 | |
| Let $I = 1,\, 2,\, 3,\, 4$ and define:
 | |
| \begin{equation}
 | |
|   \tau_I = \qty( i\, \1_2,\, \vec{\sigma} ),
 | |
| \end{equation}
 | |
| where $\vec{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices.
 | |
| It is possible to show that:
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     \qty( \tau_I )^{\dagger}
 | |
|     & =
 | |
|     \eta_{IJ}\, {\tau}^I,
 | |
|     \\
 | |
|     \qty( \tau^I )^*
 | |
|     & =
 | |
|     -\sigma_2\, \tau_I\, \sigma_2,
 | |
|   \end{split}
 | |
|   \label{eq:tau_props}
 | |
| \end{equation}
 | |
| where $\eta_{IJ} = \mathrm{diag}(-1,1,1,1)$.
 | |
| The following relations are then a natural consequence:
 | |
| \begin{eqnarray}
 | |
|   \tr(\tau_I)
 | |
|   & = &
 | |
|   2\, i\, \delta_{I1},
 | |
|   \\
 | |
|   \tr(\tau_I \tau_J)
 | |
|   & = &
 | |
|   2\, \eta_{IJ},
 | |
|   \\
 | |
|   \tr(\tau_I \qty( \tau_J )^{\dagger})
 | |
|   & = &
 | |
|   2\, \delta_{IJ}.
 | |
| \end{eqnarray}
 | |
| 
 | |
| Now consider a vector in the spinor representation:
 | |
| \begin{equation}
 | |
|   X_{(s)} = X^I\, \tau_I.
 | |
| \end{equation}
 | |
| We can recover the components using the previous properties:
 | |
| \begin{equation}
 | |
|   X^I
 | |
|   =
 | |
|   \frac{1}{2}\, \delta^{IJ}\,
 | |
|   \tr(X_{(s)} \qty( \tau_J )^{\dagger})
 | |
|   =
 | |
|   \frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J),
 | |
| \end{equation}
 | |
| where the trace acts on the space of the $\tau$ matrices.
 | |
| If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have:
 | |
| \begin{equation}
 | |
|   \begin{split}
 | |
|     X_{(s)}^{\dagger}
 | |
|     & =
 | |
|     X^I\, \eta_{IJ}\, \tau^J
 | |
|     =
 | |
|     \frac{1}{2} \tr(X_{(s)} \tau_I)\, \tau^I,
 | |
|     \\
 | |
|     X_{(s)}^*
 | |
|     & =
 | |
|     - \sigma_2\, X_{(s)}\, \sigma_2.
 | |
|   \end{split}
 | |
|   \label{eq:X_dagger}
 | |
| \end{equation}
 | |
| 
 | |
| A rotation in spinor representation is defined as:
 | |
| \begin{equation}
 | |
|   X'_{(s)} = U_{L}(\vec{n})\, X_{(s)}\, U_{R}^{\dagger}(\vec{m})
 | |
| \end{equation}
 | |
| and it is equivalent to:
 | |
| \begin{equation}
 | |
|   \qty( X' )^I
 | |
|   =
 | |
|   \tensor{R}{^I_J}\,
 | |
|   X^J
 | |
| \end{equation}
 | |
| through
 | |
| \begin{equation}
 | |
|   R_{IJ}
 | |
|   =
 | |
|   \frac{1}{2}
 | |
|   \tr(
 | |
|     \qty( \tau_I )^{\dagger}\,
 | |
|     U_{L}(\vec{n})\,
 | |
|     \tau_J\,
 | |
|     U_{R}^{\dagger}(\vec{m})
 | |
|   ).
 | |
| \end{equation}
 | |
| The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since:
 | |
| \begin{equation}
 | |
|   \tr(X'_{(s)}\, (X')^{\dagger}_{(s)})
 | |
|   =
 | |
|   \tr(X_{(s)}\, X^{\dagger}_{(s)})
 | |
|   \qquad
 | |
|   \Rightarrow
 | |
|   \qquad
 | |
|   \finitesum{K}{1}{4} R_{IK} R^*_{JK} = \delta_{I \,J}.
 | |
| \end{equation}
 | |
| From the second equation in \eqref{eq:tau_props} and the first equation in \eqref{eq:U_props} we then get the reality condition on $R$:
 | |
| \begin{equation}
 | |
|   R_{NM}
 | |
|   =
 | |
|   \frac{1}{2}\, \eta_{NI}\, \eta_{MJ}\,
 | |
|   \tr(\tau_I ^{\dagger}\, U_{R}\, \tau_J\, U_{L}^{\dagger})
 | |
|   =
 | |
|   \frac{1}{2}
 | |
|   \tr(\tau_N\, U_{R}\, \tau_M^\dagger\, U_{L}^{\dagger})
 | |
|   =
 | |
|   R_{NM}^*.
 | |
| \end{equation}
 | |
| Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$.
 | |
| Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$.
 | |
| Since $\qty{ U_{L},\, U_{R} }$ and $\qty{ -U_{L},\, -U_{R} }$ generate the same \SO{4} matrix then the correct isomorphism takes the form:
 | |
| \begin{equation}
 | |
|   \SO{4}
 | |
|   \cong
 | |
|   \frac{\SU{2} \times \SU{2}}{\Z_2}.
 | |
| \end{equation}
 | |
| 
 |