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1 INTRODUCTION

1 Introduction

In this first part we focus on aspects of string theory directly connected with its worldsheet
description and symmetries. The underlying idea is to build technical tools to address the study
of viable phenomenological models in this framework. In fact the construction of realistic string
models of particle physics is the key to better understanding the nature of a theory of everything
such as string theory.

As a first test of validity, the string theory should properly extend the known Standard Model
(sM) of particle physics, which is arguably one of the most experimentally backed theoretical
frameworks in modern physics. In particular its description in terms of fundamental strings
should be able to include a gauge algebra locally isomorphic to that of

SU®3)c ® SU2)L ® U(1)y (1.1)

in order to reproduce known results. For instance, string theory could provide a unified framework
by predicting the existence of a larger gauge group containing the sM as a subset. In what
follows we deal with the definition of mathematical tools to compute amplitudes to be used in
phenomenological calculations related to the study of particles in string theory.

1.1 Properties of String Theory and Conformal Symmetry

Strings are extended one-dimensional objects. They are curves in space parametrized by a
coordinate ¢ € [0,¢]. Propagating in D-dimensional spacetime they span a two-dimensional
surface, the worldsheet, described by the position of the string at given values of o at a time T,
i.e. X*(t,0) where p=0,1,...,D — 1 indexes the coordinates.

1.1.1 Action Principle

As the action of a point particle is proportional to the length of its trajectory (its worldline), the
same object for string is proportional to the area of the worldsheet in the original formulation
by Nambu and Goto. The solutions of the classical equations of motion (E.0.M.) are therefore
strings spanning a worldsheet of extremal area. While Nambu and Goto’s formulation is fairly
direct in its definition, it usually best to work with Polyakov’s action [1]

“+o00 ¢
T
Sply, X] = 5 / dT/dO‘ —detyy*P 05, X" (1,0) 9 XV (T, 0) Ny - (1.2)
—00 0

In this formulation y«p is the worldsheet metric with Lorentzian signature (—,+). As there

are no derivatives of y4p, its E.O.M. is a constraint ensuring the equivalence of Polyakov’s and
Nambu and Goto’s formulations. In fact

6SP h/a X]

1
Sy = 0aX - 0pX — 5 YaB YW HX-0,X =0 (1.3)
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implies
“+00 o
Sply, X] =T [ dt [doVX -X - X' X' = Sya[X], (1.4)
8Splv.X]_g
syxB T —o0 0

where Syg[X] is the Nambu-Goto action for the classical string.

The symmetries of Sp[y, X] are the keys to the success of the string theory framework [2].
Specifically (1.2) displays symmetries under:

o D-dimensional Poincaré invariance
XM (1,0) = AR, X*(1,0) + ¢, (1.5)
Y/oqs (T> 0) =Yap (T, G) .

where A € SO(1,D — 1) and ¢ € R,
e 2-dimensional diffeomorphism invariance

XM, 0") = X*(1,0)

Do o’ (1.6)
/ roN
YOLB(T?G) - do* Oob 'Y}\P(T7 G)

where ¢° = T and ¢! = o,
e Weyl invariance

XM, 0") = X*(1,0)

2w(T,0)

Yap(T0) =€ Yup (T, 0)

for arbitrary w(T, o).

Notice that the last is not a symmetry of the Nambu—Goto action and it only appears in
Polyakov’s formulation of the action.

1.1.2 Conformal Invariance

The definition of the 2-dimensional stress-energy tensor is a direct consequence of (1.3) [3]. In
fact the classical constraint on the tensor is simply

271 55}3[’}/, X}
V—dety &yxB

While its conservation V*Typ = 0 is somewhat trivial, Weyl invariance also ensures the trace-
lessness of the tensor

Tap = —

=0. (1.8)

trT =T%, =0. (1.9)

In other words, the (1 + 1)-dimensional theory of massless scalars X" in (1.2) is conformally
invariant (for review and details see [4], [5]).
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3 FERMIONS WITH BOUNDARY DEFECTS 1.2 Extra Dimensions and Compactification

Finally we can set yqp(T,0) = e (T.0) Nap, known as conformal gauge where ngp = diag(—1,1),
using the invariances of the action. This gauge choice is however preserved by the residual pseudo-
conformal transformations

Tto=o01+— fi(oy), (1.10)

where fi(&) are arbitrary functions. It is natural to introduce a Wick rotation T = ¢t and
the complex coordinates & = Tg + t0 and £ = &*. In these terms, the tracelessness of the
stress-energy tensor translates to

T.=0, (1.11)

while its conservation 0*Typg =0 becomes:!

OTee (8, &) = 0T (&, &) = 0. (1.12)

The last equation finally implies

Tee(8,8) =Tee(8) =T(8),  Ter(8,8) =T (8) = T(E), (1.13)

which are respectively the holomorphic and the anti-holomorphic components of the 2-dimensional
stress energy tensor.

The previous properties define what is known as a 2-dimensional conformal field theory (CFT).
Ordinary tensor fields

Pow(E8) =0, 7 F(&E@)° (D) (1.14)
—— ——

w times @ times

can be classified according to their weights w and @. In fact a transformation & + x(&) and
& — X (&) maps the conformal fields to

_ ax\© [dx\® _
= === —= o . 1.1
boste® = (5) () dusd (1.15)
1.2 Extra Dimensions and Compactification

1.3 D-branes and Open Strings

2 D-branes Intersecting at Angles

3 Fermions With Boundary Defects

1Since we fix Yap (T, 0) x Ngp we do not need to account for the components of the connection and we can
replace the covariant derivative V% with a standard derivative 9%.
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