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1 INTRODUCTION

1 Introduction

In this first part we focus on aspects of string theory directly connected with its worldsheet
description and symmetries. The underlying idea is to build technical tools to address the study
of viable phenomenological models in this framework. In fact the construction of realistic string
models of particle physics is the key to better understanding the nature of a theory of everything
such as string theory.

As a first test of validity, the string theory should properly extend the known Standard Model
(sm) of particle physics, which is arguably one of the most experimentally backed theoretical
frameworks in modern physics. In particular its description in terms of fundamental strings
should be able to include a gauge algebra isomorphic to that of

SU(3)C ⊗ SU(2)L ⊗U(1)Y (1.1)

in order to reproduce known results. For instance, string theory could provide a unified framework
by predicting the existence of a larger gauge group containing the sm as a subset. In what
follows we deal with the definition of mathematical tools to compute amplitudes to be used in
phenomenological calculations related to the study of particles in string theory.

1.1 Properties of String Theory and Conformal Symmetry

Strings are extended one-dimensional objects. They are curves in space parametrized by a
coordinate σ ∈ [0, `]. Propagating in D-dimensional spacetime they span a two-dimensional
surface, the worldsheet, described by the position of the string at given values of σ at a time τ,
i.e. Xµ(τ,σ) where µ = 0, 1, . . . , D − 1 indexes the coordinates. Such surface can have different
topologies according to the nature of the object propagating in spacetime: strings can be closed
if Xµ(τ, 0) = Xµ(τ, `) or open if the endpoints in σ = 0 and σ = ` do not coincide.

1.1.1 Action Principle

As the action of a point particle is proportional to the length of its trajectory (its worldline), the
same object for string is proportional to the area of the worldsheet in the original formulation
by Nambu and Goto. The solutions of the classical equations of motion (e.o.m.) are therefore
strings spanning a worldsheet of extremal area. While Nambu and Goto’s formulation is fairly
direct in its definition, it usually best to work with Polyakov’s action [1]

SP [γ, X] = − 1
4πα′

+∞∫
−∞

dτ
`∫

0

dσ
√
−detγ(τ,σ)γαβ(τ,σ) ∂αXµ(τ,σ) ∂βXν(τ,σ)ηµν. (1.2)

The e.o.m. for the string Xµ(τ,σ) is therefore
1√
− detγ

∂α

(√
−detγγαβ ∂βXµ

)
= 0, µ = 0, 1, . . . , D − 1, α, β = 0, 1. (1.3)

In this formulation γαβ is the worldsheet metric with Lorentzian signature (−, +). As there
are no derivatives of γαβ, its e.o.m. is a constraint ensuring the equivalence of Polyakov’s and
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1.1 Properties of String Theory and Conformal Symmetry 1 INTRODUCTION

Nambu and Goto’s formulations. In fact
δSP [γ, X]
δγαβ

= − 1
4πα′

√
−detγ

(
∂αX · ∂βX − 1

2γαβ γ
λρ ∂λX · ∂ρX

)
= 0 (1.4)

implies

SP [γ, X]
∣∣∣∣
δSP [γ,X]
δγαβ

=0
= − 1

2πα′

+∞∫
−∞

dτ
σ∫

0

dσ
√

Ẋ · Ẋ −X ′ ·X ′ = SNG[X], (1.5)

where SNG[X] is the Nambu–Goto action for the classical string.

The symmetries of SP [γ, X] are the keys to the success of the string theory framework [2].
Specifically (1.2) displays symmetries under:

• D-dimensional Poincaré invariance
X ′µ(τ,σ) = ΛµνXµ(τ,σ) + cν,

γ′αβ(τ,σ) = γαβ(τ,σ)
(1.6)

where Λ ∈ SO(1, D − 1) and c ∈ RD,

• 2-dimensional diffeomorphism invariance

X ′µ(τ′,σ′) = Xµ(τ,σ)

γ′αβ(τ′,σ′) = ∂σ′λ

∂σα
∂σ′ρ

∂σβ
γλρ(τ,σ)

(1.7)

where σ0 = τ and σ1 = σ,

• Weyl invariance

X ′µ(τ′,σ′) = Xµ(τ,σ)
γ′αβ(τ,σ) = e2ω(τ,σ) γαβ(τ,σ)

(1.8)

for arbitrary ω(τ,σ).

Notice that the last is not a symmetry of the Nambu–Goto action and it only appears in
Polyakov’s formulation of the action.

1.1.2 Conformal Invariance

The definition of the 2-dimensional stress-energy tensor is a direct consequence of (1.4) [3]. In
fact the classical constraint on the tensor is simply

Tαβ = 4π√
−detγ

δSP [γ, X]
δγαβ

= − 1
α′

(
∂αX · ∂βX − 1

2ηαβ η
λρ ∂λX · ∂ρX

)
= 0. (1.9)

While its conservation ∇αTαβ = 0 is somewhat trivial, Weyl invariance also ensures the trace-
lessness of the tensor

tr T = Tαα = 0. (1.10)
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1 INTRODUCTION 1.1 Properties of String Theory and Conformal Symmetry

In other words, the (1 + 1)-dimensional theory of massless scalars Xµ in (1.2) is conformally
invariant (for review and details see [4–7]).

Finally we can set γαβ(τ,σ) = eφ(τ,σ) ηαβ, known as conformal gauge where ηαβ = diag(−1, 1),
using the invariances of the action. This gauge choice is however preserved by the residual pseudo-
conformal transformations

τ± σ = σ± 7→ f±(σ±), (1.11)
where f±(ξ) are arbitrary functions. It is natural to introduce a Wick rotation τE = iτ and
the complex coordinates ξ = τE + iσ and ξ = ξ∗. The transformation maps the Lorentzian
worldsheet to a new surface: an infinite Euclidean strip for open strings or a cylinder for closed
strings.

In these terms, the tracelessness of the stress-energy tensor translates to

Tzz = 0, (1.12)

while its conservation ∂αTαβ = 0 becomes:1

∂Tξξ(ξ, ξ) = ∂T
ξξ

(ξ, ξ) = 0. (1.13)

The last equation finally implies

Tξξ(ξ, ξ) = Tξξ(ξ) = T (ξ), T
ξξ

(ξ, ξ) = T
ξξ

(ξ) = T (ξ), (1.14)

which are respectively the holomorphic and the anti-holomorphic components of the 2-dimensional
stress energy tensor.

The previous properties define what is known as a 2-dimensional conformal field theory (cft).
Ordinary tensor fields

φω,ω(ξ, ξ) = φ
ξ . . . ξ︸ ︷︷ ︸
ω times

ξ . . . ξ︸ ︷︷ ︸
ω times

(ξ, ξ) (dξ)ω
(
dξ
)ω (1.15)

can be classified according to their weight (ω,ω) referring to the holomorphic and anti-holomorphic
parts respectively. In fact a transformation ξ 7→ χ(ξ) and ξ 7→ χ(ξ) maps the conformal fields
to

φω,ω(χ,χ) =
(

dχ
dξ

)ω (dχ
dξ

)ω
φω,ω(ξ, ξ). (1.16)

An additional conformal map

z = eξ = eτe+iσ ∈ {z ∈ C| Im z ≥ 0} , z = eξ = eτe−iσ ∈ {z ∈ C| Im z ≤ 0} (1.17)

maps the worldsheet of the string to the complex plane. On this Riemann surface the usual time
ordering becomes a radial ordering as constant time surfaces are circles around the origin (see
the contours C(0) and C(1) in Figure 1.1). In these coordinates the conserved charge associated
to the transformation z 7→ z + ε(z) in radial quantization is

Qε,ε =
∮
C0

dz

2πi
ε(z) T (z) +

∮
C0

dz

2πi
ε(z) T (z), (1.18)

1Since we fix γαβ(τ,σ) ∝ ηαβ we do not need to account for the components of the connection and we can
replace the covariant derivative ∇α with a standard derivative ∂α.
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1.1 Properties of String Theory and Conformal Symmetry 1 INTRODUCTION

w

∣∣z(0)
∣∣ = eτE (0)

∣∣z(1)
∣∣ = eτE (1)

Re z

Im z

C(0)

C(1)

(a) Radial ordering.

w

Re z

Im z

Cw

(b) Difference of time ordered contours.

Figure 1.1: Map to the complex plane.

where C0 is an anti-clockwise constant radial time path around the origin. The transformation
on a field φω,ω of weight (ω,ω) is thus given by the commutator with Qε,ε:

δε,εφω,ω =
[
Qε,ε,φω,ω(w, w)

]
=
∮
C0

dz

2πi
ε(z)

[
T (z),φω,ω(w, w)

]
+
∮
C0

dz

2πi
ε(z)

[
T (z),φω,ω(w, w)

]
=
∮

Cw

dz

2πi
ε(z) R

(
T (z)φω,ω(w, w)

)
+
∮

Cw

dz

2πi
ε(z) R

(
T (z)φω,ω(w, w)

)
,

(1.19)

where in the last passage we used the fact that the difference of ordered integrals becomes the
contour integral of the radially ordered product computed surrounding w. Equating the result
with the expected variation

δε,εφω,ω = ω ∂wε(w)φω,ω(w, w) + ε(w) ∂wφω,ω(w, w)
+ω ∂wε(w)φω,ω(w, w) + ε(w) ∂wφω,ω(w, w)

(1.20)

we find the short distance singularities of the components of the stress-energy tensor with the
field φω,ω(w, w):

T (z)φω,ω(w, w) = ω

(z − w)2φω,ω(w, w) + 1
z − w

∂wφω,ω(w, w) +O(1),

T (z)φω,ω(w, w) = ω

(z − w)2φω,ω(w, w) + 1
z − w

∂wφω,ω(w, w) +O(1),
(1.21)

where we drop the radial ordering symbol R for simplicity. Since the contour Cw is infinitely
small around w, the conformal properties of φω,ω(w, w) are entirely defined by these relations.
In fact φω,ω(w, w) is a primary field if its short distance behaviour with the stress-energy tensor
is as such. This is an example of an operator product expansion (ope)

φ
(i)
ωi,ωi

(z, z)φ(j)
ωj ,ωj

(w, w) =
∑

k

Cijk(z − w)ωk−ωi−ωj (z − w)ωk−ωi−ωj φ
(k)
ωk,ωk

(w, w) (1.22)
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1 INTRODUCTION 1.1 Properties of String Theory and Conformal Symmetry

which is an asymptotic expansion containing the full information on the singularities.2 The
constant coefficients Cijk are subject to restrictive constraints given by the properties of the
conformal theories to the point that a cft is completely specified by the spectrum of the weights
(ωi,ωi) and the coefficients Cijk [4].

The ope can also be compute on the stress-energy tensor itself. Focusing on the holomorphic
component we find

T (z) T (w) =
c
2

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w),

T (z) T (w) =
c
2

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w).

(1.23)

The components of the stress-energy tensor are therefore not primary fields and show an anomaly
in the behaviour encoded by the constant c ∈ R. This is a reflection of the anomalous algebra
of the operator modes Ln and Ln computed from the Laurent expansion

T (z) =
+∞∑

n=−∞
Ln z−n−2 ⇒ Ln =

∮
C0

dz

2πi
zn+1T (z),

T (z) =
+∞∑

n=−∞
Ln z−n−2 ⇒ Ln =

∮
C0

dz

2πi
zn+1T (z).

(1.24)

This ultimately leads to the quantum algebra

[Ln, Lm] = (n−m) Ln+m + c

12 n (n2 − 1) δn,−m,[
Ln, Lm

]
= (n−m) Ln+m + c

12 n (n2 − 1) δn,−m,[
Ln, Lm

]
= 0,

(1.25)

known as Virasoro algebra, unique central extension of the classical de Witt algebra, with central
charge c. Operators Ln and Ln are called Virasoro operators.3 Notice that L0 + L0 is the
generator of the dilations on the complex plane. In terms of radial quantization this translates
to time translations and L0 + L0 can be considered to be the Hamiltonian of the theory.

In the same fashion as (1.24), fields can be expanded in modes:

φω,ω(w, w) =
+∞∑

n, m=−∞
φ

(n,m)
ω,ω z−n−ω z−m−ω. (1.26)

From the previous relations we can finally define the “asymptotic” in-states as one-to-one cor-
respondence with conformal operators:∣∣φω,ω

〉
= lim

z, z→0
φω,ω |0〉SL2(R) . (1.27)

2The expression (1.22) is valid assuming the normalisation of the 2-points function〈
φ

(i)
ωi,ωi

(z, z)φ(j)
ωj ,ωj

(w, w)
〉

=
δij

(z − w)ωi+ωj (z − w)ωi+ωj
.

3Notice that the subset of Virasoro operators {L−1, L0, L1} forms a closed subalgebra generating the group
SL2(R).
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1.1 Properties of String Theory and Conformal Symmetry 1 INTRODUCTION

The regularity of (1.26) requires

φ
(n,m)
ω,ω |0〉SL2(R) = 0, n > ω, m > ω. (1.28)

As a consequence also

Ln |0〉SL2(R) = Ln |0〉SL2(R) = 0, n > −2. (1.29)

Finally the definitions of the primary operators (1.21) define the physical states as

L0
∣∣φω,ω

〉
= ω

∣∣φω,ω

〉
,

L0
∣∣φω,ω

〉
= ω

∣∣φω,ω

〉
,

Ln

∣∣φω,ω

〉
= Ln

∣∣φω,ω

〉
= 0, n ≥ 1.

(1.30)

From this definition we can build an entire representation of descendant states applying any
operator L−n (or L−n) with n ≥ 1 to

∣∣φω,ω

〉
. Let φω(w) be a holomorphic field in the cft for

simplicity, and let |φω〉 be its corresponding state. The generic state at level m build from such
state is ∣∣∣φ{n1,n2,...,nm}

ω

〉
= L−n1 L−n2 . . . L−nm |φω〉 ,

m∑
i=1

ni = m ≥ 0. (1.31)

From the commutation relations (1.25) we finally compute its conformal weight as eigenvalue of
L0:

L0

∣∣∣φ{n1,n2,...,nm}
ω

〉
= (ω+ m)

∣∣∣φ{n1,n2,...,nm}
ω

〉
. (1.32)

States corresponding to primary operators have therefore the lowest energy (intended as eigen-
value of the Hamiltonian L0 + L0) in the entire representation. They are however called highest
weight states from the mathematical literature which uses the opposite sign for the Hamiltonian
operator.

The particular case of the cft in (1.2) can be cast in this language. In particular the solutions
to the e.o.m. factorise into a holomorphic and an anti-holomorphic contributions:

∂z∂zX(z, z) = 0⇒ X(z, z) = X(z) + X(z), (1.33)

and the components of the stress-energy tensor (1.9) are

T (z) = ∂zX(z) · ∂zX(z),
T (z) = ∂zX(z) · ∂zX(z).

(1.34)

Using the normalisation of the 2-points function 〈Xµ(z, z)Xν(w, w)〉 = − 1
2η
µν ln |z − w| we can

show that c = D in (1.23), where D is the dimensions of spacetime (or equivalently the number
of scalar fields Xµ in the action). It can be shown that in order to cancel the central charge in
bosonic string theory we need to introduce a pair of conformal ghosts b(z) and c(z) with conformal
weights (2, 0) and (−1, 0) respectively, together with their anti-holomorphic counterparts b(z) and
c(z). The non vanishing components of their stress-energy tensor can be computed as:4

Tghost(z) = c(z) ∂zb(z)− 2 b(z) ∂zc(z),
T ghost(z) = c(z) ∂zb(z)− 2 b(z) ∂zc(z).

(1.35)

4In general ghosts b(z) and c(z) with weight (λ, 0) and (1− λ, 0) can be introduced as a standalone cft [4, 8]
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1 INTRODUCTION 1.2 Superstrings

From their 2-points functions

〈b(z) c(w)〉 = 1
z − w

,
〈
b(z) c(w)

〉
= 1

z − w
, (1.36)

we get the ope of the components of their stress-energy tensor:

Tghost(z) Tghost(w) = −13
(z − w)4 + 2

(z − w)2 Tghost(z) + 1
z − w

∂zTghost(z),

T ghost(z) T ghost(w) = −13
(z − w)4 + 2

(z − w)2 T ghost(z) + 1
z − w

∂zT ghost(z),
(1.37)

which show that cghost = −26. The central charge is therefore cancelled in the full theory (bosonic
string and ghosts) when the spacetime dimensions are D = 26. In fact let Tfull = T + Tghost and
T full = T + T ghost, then:

Tfull(z)
∣∣∣∣
O((z−w)−4)

= T full(z)
∣∣∣∣
O((z−w)−4)

= c + cghost = D

2 − 13 = 0 ⇔ D = 26. (1.38)

1.2 Superstrings

As bosonic string theory deals with commuting fields Xµ, it is impossible to build spacetime
fermions and a consistent phenomenology. It is in fact necessary to introduce worldsheet fermions
(i.e. anti-commuting variables on the string worldsheet) as an extension to the bosonic coordinates
[4, 8]. We schematically and briefly recall some results due to the extension of bosonic string
theory to the superstring as they will be used in what follows and mainly follow from the previous
discussion.

The superstring action is built as an addition to the bosonic equivalent (1.2). In complex
coordinates on the plane it is:

S[X,ψ] = − 1
4π

∫∫
dz dz

(
2
α′

∂zXµ ∂zXν +ψµ ∂zψ
ν +ψµ ∂zψ

ν
)
ηµν. (1.39)

with action

S =
1

2π

∫∫
dz dz b(z) ∂zc(z)

whose equations of motion are ∂zc(z) = ∂zb(z) = 0. The ope is

b(z) c(z) =
ε

z − w
+O(1),

where ε = +1 for anti-commuting fields and ε = −1 for Bose statistic. Their stress-energy tensor is

Tghost(z) = −λ b(z) ∂zc(z)− ε (1− λ) c(z) ∂zb(z).

Their central charge is therefore cghost = ε (1− 3Q2), where Q = ε (1− 2λ).
Notice finally that this ghost cft has in general an additional ghost number U(1) symmetry generated by the

current
j(z) = −b(z) c(z).

In general this current is a primary field (i.e. it is not anomalous) when Q = 0 since

Tghost(z) j(w) =
Q

(z − w)3 +O
(

(z − w)−2
)

.

This is the case of the worldsheet fermions in (1.39) for which λ = 1
2 . For instance the reparametrisation ghosts

with λ = 2 have Q = −3.
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1.2 Superstrings 1 INTRODUCTION

In the last expression ψµ are D two-dimensional holomorphic fermion fields with conformal
weight ( 1

2 , 0) and ψµ are their anti-holomorphic counterparts with weight (0, 1
2 ). Their short-

distance behaviour is

ψµ(z)ψν(w) = ηµν

z − w
, ψ

µ(z)ψν(w) = ηµν

z − w
. (1.40)

In this case the components of the stress-energy tensor of the theory are:

T (z) = − 1
α′

∂zX(z) · ∂zX(z)− 1
2ψ(z) · ∂zψ(z),

T (z) = − 1
α′

∂zX(z) · ∂zX(z)− 1
2ψ(z) · ∂zψ(z).

(1.41)

The action (1.39) is also invariant under the supersymmetric transformations√
2
α′
δε,εXµ(z, z) = ε(z)ψµ(z) + ε(z)ψµ(z),√

2
α′
δεψ

µ(z) = −ε(z)∂zXµ(z),√
2
α′
δεψ

µ(z) = −ε(z)∂zX
µ(z)

(1.42)

generated by the currents J(z) = ε(z)TF (z) and J(z) = ε(z) T F (z), where ε(z) and ε(z) =
(ε(z))∗ are anti-commuting fermions and

TF (z) = i

√
2
α′
ψ(z) · ∂zX(z),

T F (z) = i

√
2
α′
ψ(z) · ∂zX(z)

(1.43)

are the supercurrents. The central charge associated to the Virasoro algebra is in this case given
by both bosonic and fermionic contributions:

T (z) T (w) =
3D
4

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w) +O(1),

T (z) T (w) =
3D
4

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w) +O(1).

(1.44)

The central charge is therefore c = 3
2 D for the cft defined in (1.39).

As in the case of the bosonic string, in order to cancel the central charge we introduce the
reparametrisation anti-commuting ghosts b(z) and c(z) and their anti-holomorphic components as
well as the commuting superghosts β(z) and γ(z) and their anti-holomorphic counterparts. These
are conformal fields with conformal weights

( 3
2 , 0
)
and

(
− 1

2 , 0
)
. Their central charge becomes

cghost = cbc + cβγ = −26 + 11 = −15. When considering the full theory Tfull = T + Tghost and
T full = T + T ghost the central charge vanishes only in 10-dimensional spacetime:

Tfull(z)
∣∣∣∣
O((z−w)−4)

= T full(z)
∣∣∣∣
O((z−w)−4)

= c + cghost = 3
2 D − 15 = 0 ⇔ D = 10. (1.45)
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3 FERMIONS WITH BOUNDARY DEFECTS 1.3 Extra Dimensions and Compactification

1.3 Extra Dimensions and Compactification

We are ultimately interested in building a consistent phenomenology in the framework of string
theory. Any theoretical infrastructure has then to be able to support matter states made of
fermions. In what follows we thus consider the superstring formulation in D = 10 dimensions
even when we deal with bosonic string theory only.

It is however clear that low energy phenomena need to be explained by a 4-dimensional
theory in order to be comparable with other theoretical frameworks and experimental evidence.
In this section we briefly review for completeness the necessary tools to be able to reproduce
consistent models capable of describing particle physics and beyond. These results represent
the background knowledge necessary to better understand more complicated scenarios involving
strings. As we will never deal directly with 4-dimensional physics this is not a complete review
and we refer to [9–15] for more in-depth explanations.

1.4 D-branes and Open Strings

1.5 Twist Fields and Spin Fields

2 D-branes Intersecting at Angles

3 Fermions With Boundary Defects
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