In this appendix we show the computation of the parameters of the hypergeometric functions and their relation with the rotation parameters. \subsection{Consistency Conditions of the Monodromy Matrices} In the main text we set \begin{equation} D~ \rM_{\vb{\infty}}~ D^{-1} = e^{-2\pi i \delta_{\vb{\infty}}}\, \cL(\vb{n}_{\vb{\infty}}), \end{equation} where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$. The previous equation implies \begin{equation} \left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^\dagger = \left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^{-1}, \end{equation} which can be rewritten as \begin{equation} \widetilde{\rM}_{\vb{\infty}}^{-1}~ \cC^{\dagger}\, D^{\dagger}\, D\, \cC = \cC^{\dagger}\, D^{\dagger}\, D\, \cC~ \widetilde{\rM}_{\vb{\infty}}^{-1}. \end{equation} As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish. We therefore have \begin{equation} \begin{split} \abs{K}^{-2} & = -\frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}} \\ & = -\frac{1}{\pi^4}\, \abs{\gfun{a} \gfun{b} \gfun{c-a} \gfun{c-b}}^2 \times \\ & \times \sin(\pi a)\, \sin^*(\pi (c-a))\, (\sin(\pi b)\, \sin^*(\pi (c-b)))^*. \end{split} \end{equation} When $a,\, b,\, c \in \R$ this ultimately means that \begin{equation} \sin(\pi a)\, \sin(\pi (c-a))\, \sin(\pi b)\, \sin(\pi (c-b)) < 0. \label{eq:constraint_from_K^2} \end{equation} Since the previous equation is invariant under integer shift of any of its parameters, we can consider just the fractional parts $0 \le \{a\},\, \{b\},\, \{c\} < 1$. In order to have \U{2} monodromies finally requires \begin{equation} 0 \le \{b\} < \{c\} < \{a\} < 1 \qq{or} 0 \le \{a\} < \{c\} < \{b\} <1. \label{eq:K_consistency_condition} \end{equation} Should we request \U{1,1} monodromies as in moving rotated branes then we get: \begin{equation} \abs{K}^{-2} = \frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}. \end{equation} This would then imply \begin{equation} 0 \le \{c\} < \{a\},\, \{b\} < 1 \qq{or} 0 \le \{a\},\, \{b\} < \{c\} < 1. \end{equation} \subsection{Fixing the Parameters} We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text. The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes. The monodromy in $\omega_{\bt-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal. We impose: \begin{eqnarray} \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} ) & = & e^{-2\pi i \delta_{\vb{0}}^{(L)}}\, \mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ), \\ \mqty( \dmat{1, e^{-2\pi i c^{(R)}}} ) & = & e^{-2\pi i \delta_{\vb{0}}^{(R)}}\, \mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ), \end{eqnarray} where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}. We thus have: \begin{equation} \begin{split} \delta_{\vb{0}}^{(L)} & = n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}}, \qquad k_{\delta^{(L)}_{\vb{0}}} \in \Z, \\ c^{(L)} & = 2 n_{\vb{0}} + k_c, \qquad k_c \in \Z. \end{split} \label{eq:cL} \end{equation} Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le \alpha + \frac{1}{2}$. Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$. Analogous results hold in the right sector. Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict: \begin{equation} n_{\vb{0}} + m_{\vb{0}} - A \in \Z. \end{equation} We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$. After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$. The equations follow from~\eqref{eq:parameters_equality_infty}. The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}: \begin{equation} e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) ) = e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}), \end{equation} which is satisfied by: \begin{equation} \begin{split} \delta^{(L)}_{\vb{\infty}} & = - \frac{1}{2}(a^{(L)} + b^{(L)}) + \frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}}, \qquad k_{\delta_{\vb{\infty}}} \in \Z, \\ a^{(L)} - b^{(L)} & = 2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}} + (-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}} + 2\, k'_{a b}, \qquad k'_{ab} \in \Z, \end{split} \end{equation} where $p^{(L)},\, q^{(L)} \in \left\lbrace 0, 1 \right\rbrace$. Notice that changing the value of $p^{(L)}$ corresponds to swapping $a$ and $b$: since the hypergeometric function is symmetric in those parameters we can fix $p^{(L)}=0$. Redefining $k'$ we can always set $q^{(L)}=0$. We therefore have: \begin{equation} a^{(L)} - b^{(L)} = 2\, n_{\vb{\infty}} + k_{\delta^{(L)}_{\vb{\infty}}} + 2 k_{ab}, \qquad k_{a b}\in \Z. \label{eq:aL-bL} \end{equation} The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bt-1} = 0$. The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$ may a priori take values in an interval of width $1$. As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary. We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$. We find a third relation by considering the entry \begin{equation} \Im\left( e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\, D^{(L)}\, \rM_{\vb{\infty}}^{(L)}\, \left( D^{(L)} \right)^{-1} \right)_{11} = \Im\left( \cL(n_{\vb{\infty}}) \right)_{11}. \end{equation} Using \begin{equation} \det \cC = \frac{\sin(\pi c^{(L)})}{\sin(\pi(a^{(L)}-b^{(L)}))}, \end{equation} and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to: \begin{equation} \cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} )) = (-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}), \end{equation} where \begin{equation} \cos(2\pi \cA^{(L)}) = \cos(2\pi n_{\vb{0}})\, \cos(2\pi n_{\vb{\infty}}) - \sin(2\pi n_{\vb{0}})\, \sin(2\pi n_{\vb{\infty}})\, \frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}. \label{eq:cos_n1} \end{equation} This expression is connected with rotation parameter in the third interaction point $\omega_{\bt+1} = 1$. In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$. We then write \begin{equation} a^{(L)} + b^{(L)} - c^{(L)} = 2\, (-1)^{f^{(L)}}\, n_{\vb{1}} + k_c + k_{\delta^{(L)}_{\vb{\infty}}} + 2\, k_{abc}, \qquad k_{abc}\in \Z, \end{equation} with $f^{(L)} \in \left\lbrace 0, 1 \right\rbrace$. The request \begin{equation} A + B - n_{\vb{0}} - m_{\vb{0}} - (-1)^{f^{(L)}}\, n_{\vb{1}} - (-1)^{f^{(R)}}\, m_{\vb{1}} \in \Z \end{equation} finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}. So far we can summarise the results in \begin{eqnarray} a = n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a, & \qquad & m_a \in \Z, \\ b = n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b, & \qquad & m_b \in \Z, \\ c = 2\, n_{\vb{0}} + m_c, & \qquad & m_c \in \Z, \\ \delta_{\vb{0}}^{(L)} = n_{\vb{0}}, \\ \delta_{\vb{\infty}}^{(L)} = - n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta, & \qquad & m_{\delta} \in \Z, \\ A = n_{\vb{0}} + m_{\vb{0}} + m_A, & \qquad & m_A \in \Z, \\ B = (-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B, & \qquad & m_B \in \Z. \end{eqnarray} $K^{(L)}$ is finally determined from \begin{equation} \left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{21} = e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\, \left( \cL(n_{\vb{\infty}}) \right)_{21}, \label{eq:fixing_K_21} \end{equation} and get: \begin{equation} K^{(L)} = -\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, \cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\, \sin(2 \pi n_{\vb{0}}) \sin(2 \pi n_{\vb{\infty}}) \frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}}, \label{eq:app_B_K21} \end{equation} where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$. \subsection{Checking the Consistency of the Solution} We check the consistency condition \eqref{eq:K_consistency_condition} using~\eqref{eq:product_in_SU2}. The result is \begin{equation} \begin{split} \left( K^{(L)} \right)^{-1} & = \frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, \cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\, \\ & \times \sin(2 \pi n_{\vb{0}})\, \sin(2 \pi n_{\vb{\infty}})\, \frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}}, \end{split} \label{eq:app_B_K12} \end{equation} where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section. Compatibility with~\eqref{eq:app_B_K21} requires \begin{equation} \frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}} = -4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))} {\sin^2(\pi c) \sin^2(\pi(a-b))}. \label{eq:n12+n22} \end{equation} We can then rewrite~\eqref{eq:cos_n1} as \begin{equation} \frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}} = \frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2} {\sin^2(\pi c) \sin^2(\pi(a-b))}. \end{equation} It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$. The same consistency check can also be performed by computing $K^{(L)}$ from \begin{equation} \left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{12} = e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\, \left( \cL(n_{\vb{\infty}}) \right)_{12}, \end{equation} instead of \eqref{eq:fixing_K_21}. % vim: ft=tex