For the sake of completeness we report the expression of the full \nbo tensor wave function. In what follows $L = \frac{l}{k_+}$. We have \begin{equation} \begin{split} \mqty( S_{u\, u} \\ S_{u\, v} \\ S_{u\, z} \\ S_{u\, i} \\ S_{v\, v} \\ S_{v\, z} \\ S_{v\, i} \\ S_{z\, z} \\ S_{z\, i} \\ S_{i\, i} ) & = \Biggl\lbrace \cS_{u\, u} \mqty( 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ )\, + \cS_{u\, v} \mqty( \frac{i}{k_+\, u} + \frac{L^2}{\Delta^2\, u^2} \\ 1 \\ L \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ )\, + \cS_{u\, z} \mqty( \frac{2\, L}{\Delta\, u} \\ 0 \\ \Delta\, u \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ )\, + \cS_{u\, i} \mqty( 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ )\, \\ & + \cS_{v\, v} \mqty( -\frac{3}{4\, k_+^2\, u^2} + \frac{3\, i\, L^2}{2\, \Delta^2\, k_+\, u^3} + \frac{L^4}{4\, \Delta^4\, u^4} \\ \frac{i}{2\, k_+\, u} + \frac{L^2}{2\, \Delta^2\, u^2} \\ \frac{3\, i\, L}{2\, k_+\, u} + \frac{L^3}{2\, \Delta^2\, u^2} \\ 0 \\ 1 \\ L \\ 0 \\ \frac{i\, \Delta^2\, u}{k_+} + L^2 \\ 0 \\ 0 \\ )\, + \cS_{v\, z} \mqty( \frac{3\, i\, L}{\Delta\, k_+\, u^2} + \frac{L^3}{\Delta^3\, u^3} \\ \frac{L}{\Delta\, u} \\ \frac{3\, L^2}{2\, \Delta\, u} + \frac{3\, i\, \Delta}{2\, k_+} \\ 0 \\ 0 \\ \Delta\, u \\ 0 \\ 2\, \Delta\, L\, u \\ 0 \\ 0 \\ )\, \\ & + \cS_{v\, i} \mqty( 0 \\ 0 \\ 0 \\ \frac{i}{2\, k_+\, u} + \frac{L^2}{2\, \Delta^2\, u^2} \\ 0 \\ 0 \\ 1 \\ 0 \\ L \\ 0 \\ )\, + \cS_{z\, z} \mqty( \frac{i}{k_+\, u} + \frac{L^2}{\Delta^2\, u^2} \\ 0 \\ L \\ 0 \\ 0 \\ 0 \\ 0 \\ \Delta^2\, u^2 \\ 0 \\ 0 \\ )\, + \cS_{z\, i} \mqty( 0 \\ 0 \\ 0 \\ \frac{L}{\Delta\, u} \\ 0 \\ 0 \\ 0 \\ 0 \\ \Delta\, u \\ 0 \\ )\, \\ & + \cS_{i\, j} \mqty( 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \delta_{i j} \\ )\, \Biggr\rbrace \phi_{\kmkr}. \end{split} \end{equation}