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Abstract

We present topics in phenomenology of string theory ranging from particle physics amplitudes
and Big Bang-like singularities to the study of state-of-the-art deep learning techniques for string
compactifications based on recent advancements in artificial intelligence.

We show the computation of the leading contribution to amplitudes in the presence of non
Abelian twist fields in intersecting D-branes scenarios in non factorised tori. This is a generalisa-
tion to the current literature which mainly covers factorised internal spaces. We also study a new
method to compute amplitudes in the presence of an arbitrary number of spin fields introducing
point-like defects on the string worldsheet. This method can then be treated as an alternative
computation with respect to bosonization and approaches based on the Reggeon vertex. We then
present an analysis of Big Bang-like cosmological divergences in string theory on time-dependent
orbifolds. We show that the nature of the divergences are not due to gravitational feedback but
to the lack of an underlying effective field theory. We also introduce a new orbifold structure
capable of fixing the issue and reinstate a distributional interpretation to field theory amplitudes.

We finally present a new artificial intelligence approach to algebraic geometry and string
compactifications. We compute the Hodge numbers of Complete Intersection Calabi–Yau 3-folds
using deep learning techniques based on computer vision and object recognition techniques. We
also include a methodological study of machine learning applied to data in string theory: as in
most applications machine learning almost never relies on the blind application of algorithms to
the data but it requires a careful exploratory analysis and feature engineering. We thus show how
such an approach can help in improving results by processing the data before using it. We then
show that the deep learning approach can reach the highest accuracy in the task with smaller
networks and less parameters. This is a novel approach to the task: differently from previous
attempts we focus on using convolutional neural networks capable of reaching higher accuracy on
the predictions and ensuring phenomenological relevance to results. In fact parameter sharing
and concurrent scans of the configuration matrix retain better generalisation properties and
adapt better to the task than fully connected networks.
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Outline

This thesis follows my research work as a Ph.D. student and candidate at the Università degli
Studi di Torino, Italy. During my programme I mainly dealt with the topic of string the-
ory and its relation with a viable formulation of phenomenology in this framework. I tried to
cover mathematical aspects related to amplitudes in intersecting D-branes scenarios and in the
presence of defects on the worldsheet, but I also worked on computational issues such as the
application of recent deep learning and machine learning techniques to the compactification of
the extra-dimensions of superstrings. In this manuscript I present the original results obtained
over the course of my Ph.D. programme. They are mainly based on published work [1], [2] and
preprints [3]–[5]. However I also include some hints to future directions to cover which might
expand the work shown here. The thesis is organised in three main parts plus a fourth with
appendices and notes.

Part I of the manuscript is dedicated to set the stage for the entire discussion and to present
mathematical tools used to compute amplitudes with (semi-)phenomenological relevance in string
theory. Namely it starts with an introduction on conformal symmetry (clearly focusing only on
aspects relevant to the discussion as many reviews on the subject have already been written) and
the role of compactification and D-branes in replicating results obtained in particle physics. Then
the analysis of a specific setup involving angled D6-branes intersecting in non factorised internal
space is presented.1 Here a general framework to deal with SO(4) rotated D-branes is presented
alongside the computation of the leading term of amplitudes involving an arbitrary number of
non Abelian twist fields located at their intersection, that is the exponential contribution of the
classical bosonic string in this geometry. Finally point-like defects along the time direction of the
(super)string worldsheet are introduced and the propagation of fermions on such surface studied
in detail. In this setup the stress-energy tensor presents a time dependence but it still respects
the usual operator product expansion. Thus the theory is still conformal though time dependence
is due to the defects where spin fields are located. Through the study of the operator algebra
the computation of amplitudes in the presence of spin fields and matter fields are computed with
a method alternative to the usual bosonization, but which may be expanded also to twist fields
and to more general configurations.

Part II deals with cosmological singularities in string and field theory. The main focus is on
time-dependent orbifolds as simple models of Big Bang-like singularities in string theory: after
a brief introduction on the concept of orbifold from the mathematical and the physical point
of views, the Null Boost Orbifold is introduced as first example. Differently from what usually
referred, the divergences appearing in the amplitudes are not a consequence of gravitational
feedback, but they appear also at the tree level of open string amplitudes. The source of the
divergences are shown in string and field theory amplitudes due to the presence of the compact
dimension and its conjugated momentum which prevents the interpretation of the amplitudes
even as a distribution. In fact the introduction of a non compact direction of motion on the
orbifold restores the physical interpretation of the amplitude, hence the origin of the divergences
comes from geometrical aspects of the orbifold models. Namely it is hidden in contact terms and
interaction with massive string states which are no longer spectators, thus invalidating the usual
approach with the inheritance principle.

1For instance this is a generalisation of the typical setup involving D6-branes filling entirely the 4-dimensional
spacetime and embedded as lines in T 2 × T 2 × T 2, where the possible rotations performed by the D-branes are
parametrised by Abelian SO(2) ' U(1) rotations.
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Part III is dedicated to state-of-the-art application of deep learning techniques to the field
of string theory compactifications. The Hodge numbers of Complete Intersection Calabi–Yau
3-folds are computed through a rigorous data science and machine learning analysis. In fact
the blind application of neural networks to the configuration matrix of the manifolds can be
improved by exploratory data analysis and feature engineering, from which to infer behaviour
and relations of topological quantities invisibly hidden in the configuration matrix. Deep learning
techniques are then applied to the configuration matrix of the manifolds to obtain the Hodge
numbers as a regression task.2 A new neural network architecture based on recent computer
vision advancements in the field of computer science is eventually introduced: it utilises parallel
convolutional kernels to extract the Hodge numbers from the configuration matrix and it reaches
near perfect accuracy on the prediction of h1,1. Such model also leads to good preliminary results
for h2,1 which has been mostly ignored by previous attempts.

2Many previous approaches have proposed classification tasks to get the best performance out of machine
learning models. This however implies specific knowledge of the definition interval of the Hodge numbers and
does not generalise well to unknown examples of Complete Intersection Calabi–Yau manifolds.
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1 Introduction

In this first part we focus on aspects of string theory directly connected with its worldsheet
description and symmetries. The underlying idea is to build technical tools to address the study
of viable phenomenological models in this framework. The construction of realistic string models
of particle physics is key to better understanding the nature of a theory of everything such as
string theory.

As a first test of validity, the string theory should properly extend the known Standard Model
(sm) of particle physics which is arguably one of the most experimentally backed theoretical
frameworks in modern physics. In particular its description in terms of fundamental strings
should be able to include a gauge algebra isomorphic to the algebra of the group

SU(3)C ⊗ SU(2)L ⊗U(1)Y (1.1)

in order to reproduce known results. For instance a good string theory could provide a unified
framework by predicting the existence of a larger gauge group containing the sm as a subset. In
what follows we deal with the definition of mathematical tools to compute amplitudes to be used
in phenomenological calculations related to the study of particles.

In this introduction we present instruments and frameworks used throughout the manuscript
as many other aspects are strongly connected and their definitions are interdependent. In par-
ticular we recall some results on the symmetries of string theory and how to recover a realistic
description of 4-dimensional physics.

1.1 Properties of String Theory and Conformal Symmetry

Strings are extended one-dimensional objects. They are curves in spacetime parametrized by a
coordinate σ ∈ [0, `]. When propagating they span a two-dimensional surface, the worldsheet,
described by the position of the string at given values of σ at a time τ, i.e. Xµ(τ,σ) where
µ = 0, 1, . . . , D− 1 indexes the coordinates. Such surface can have different topologies according
to the nature of the object propagating in spacetime: strings can be closed if Xµ(τ, 0) = Xµ(τ, `)
or open if the endpoints in σ = 0 and σ = ` do not coincide.

1.1.1 Action Principle

As the action of a point particle is proportional to the length of its trajectory (its worldline), the
same object for a string is proportional to the area of the worldsheet in the original formulation
by Nambu and Goto. The solutions of the classical equations of motion (e.o.m.) are therefore
strings spanning a worldsheet of extremal area. While Nambu and Goto’s formulation is fairly
direct in its definition, it is usually best to work with Polyakov’s action [6]:

SP [γ, X] = − 1
4πα′

+∞∫
−∞

dτ
`∫

0

dσ
√
−detγ(τ,σ)γαβ(τ,σ) ∂αXµ(τ,σ) ∂βXν(τ,σ)ηµν. (1.2)
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1.1 Properties of String Theory and Conformal Symmetry

The e.o.m. for the string Xµ(τ,σ) is therefore:

1√
−detγ

∂α

(√
−detγγαβ ∂βXµ

)
= 0, µ = 0, 1, . . . , D − 1, α, β = 0, 1. (1.3)

In this formulation γαβ are the components of the worldsheet metric with Lorentzian signature
(−, +). As there are no derivatives of γαβ, the e.o.m. of the metric is a constraint ensuring the
equivalence of Polyakov’s and Nambu and Goto’s formulations. In fact

δSP [γ, X]
δγαβ

= − 1
4πα′

√
−detγ

(
∂αX · ∂βX − 1

2 γαβ γ
λρ ∂λX · ∂ρX

)
= 0 (1.4)

implies

SP [γ, X]
∣∣∣∣
δSP [γ, X]
δγαβ

=0
= − 1

2πα′

+∞∫
−∞

dτ
σ∫

0

dσ
√

Ẋ · Ẋ −X ′ ·X ′ = SNG[X], (1.5)

where SNG[X] is the Nambu–Goto action of the classical string, Ẋ = ∂τX and X ′ = ∂σX.

The symmetries of SP [γ, X] are keys to the success of the string theory framework [7].
Specifically (1.2) displays symmetries under:

• D-dimensional Poincaré transformations

X ′µ(τ,σ) = ΛµνXν(τ,σ) + cµ,

γ′αβ(τ,σ) = γαβ(τ,σ)
(1.6)

where Λ ∈ SO(1, D − 1) and c ∈ RD,

• 2-dimensional diffeomorphisms

X ′µ(τ′,σ′) = Xµ(τ,σ)

γ′αβ(τ′,σ′) = ∂σ′λ

∂σα
∂σ′ρ

∂σβ
γλρ(τ,σ)

(1.7)

where σ0 = τ and σ1 = σ,

• Weyl transformations

X ′µ(τ′,σ′) = Xµ(τ,σ)
γ′αβ(τ,σ) = e2ω(τ,σ) γαβ(τ,σ)

(1.8)

for an arbitrary function ω(τ,σ).

Notice that the last is not a symmetry of the Nambu–Goto action and it only appears in
Polyakov’s formulation.

20



1.1 Properties of String Theory and Conformal Symmetry

1.1.2 Conformal Invariance

The definition of the 2-dimensional stress-energy tensor is a direct consequence of (1.4) [8]. In
fact the classical constraint on the tensor is simply

Tαβ = 4π√
−detγ

δSP [γ, X]
δγαβ

= − 1
α′

(
∂αX · ∂βX − 1

2ηαβ η
λρ ∂λX · ∂ρX

)
= 0. (1.9)

While its conservation∇αTαβ = 0 is somewhat trivial, Weyl invariance also ensures the vanishing
trace of the tensor

tr T = T αα = 0. (1.10)

In other words, the (1 + 1)-dimensional theory of massless scalars Xµ in (1.2) is conformally
invariant (for review and details see [9]–[11]).

Using the invariances of the actions we set γαβ(τ,σ) = eφ(τ,σ) ηαβ, known as conformal
gauge where ηαβ = diag(−1, 1). This gauge choice is however preserved by the residual pseudo-
conformal transformations

τ± σ = σ± 7→ f±(σ±), (1.11)

where f± is an arbitrary function of its argument (the subscript ± distinguishes the combination
of the variables τ and σ in it).

It is natural to introduce a Wick rotation τE = iτ and the complex coordinates ξ = τE + iσ
and ξ = ξ∗. The transformation maps the Lorentzian worldsheet to a new surface: an infinite
Euclidean strip for open strings or a cylinder for closed strings. In these terms, the vanishing
trace of the stress-energy tensor translates to

T
ξξ

= 0, (1.12)

while its conservation ∂αTαβ = 0 becomes:3

∂
ξ
Tξξ
(
ξ, ξ

)
= ∂ξT ξξ

(
ξ, ξ

)
= 0. (1.13)

The last equation finally implies

Tξξ
(
ξ, ξ

)
= Tξξ(ξ) = T (ξ), T

ξξ

(
ξ, ξ

)
= T

ξξ

(
ξ
)

= T
(
ξ
)
, (1.14)

which are respectively the holomorphic and the anti-holomorphic components of the stress energy
tensor.

The previous properties define what is known as a two-dimensional conformal field theory
(cft). Ordinary tensor fields

φω,ω

(
ξ, ξ
)

= φ
ξ . . . ξ︸ ︷︷ ︸
ω times

ξ . . . ξ︸ ︷︷ ︸
ω times

(
ξ, ξ
)
(dξ)ω

(
dξ
)ω (1.15)

are classified according to their weight (ω, ω) referring to the holomorphic and anti-holomorphic
parts respectively. In fact a transformation ξ 7→ χ(ξ) and ξ 7→ χ(ξ) maps the conformal fields
to

φω,ω(χ,χ) =
(

dχ
dξ

)ω(dχ
dξ

)ω
φω,ω

(
ξ, ξ
)
. (1.16)
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Re z

Im z ∣∣z(1)
∣∣ = eτE (1)

∣∣z(0)
∣∣ = eτE (0)

w

C(0)

C(1)

(a) Radial ordering.

Re z

Im z

w

C(w)

(b) Difference of time ordered contours.

Figure 1.1: Map to the complex plane.

An additional conformal transformation

z = eξ = eτe+iσ ∈ {z ∈ C| Im z ≥ 0}, z = eξ = eτe−iσ ∈ {z ∈ C| Im z ≤ 0} (1.17)

maps the worldsheet of the string to the complex plane. On this Riemann surface the usual time
ordering becomes a radial ordering as constant time surfaces are circles around the origin (see
the contours C(0) and C(1) in Figure 1.1). In these coordinates the conserved charge associated
to the transformation z 7→ z + ε(z) in radial quantization is:

Qε,ε =
∮
C0

dz

2πi
ε(z) T (z) +

∮
C0

dz

2πi
ε(z) T (z), (1.18)

where C0 is an anti-clockwise constant radial time path around the origin. The transformation
on a field φω,ω of weight (ω,ω) is thus given by the commutator with Qε,ε:

δε,εφω,ω =
[
Qε,ε, φω,ω(w, w)

]
=
∮
C0

dz

2πi
ε(z)

[
T (z),φω,ω(w, w)

]
+
∮
C0

dz

2πi
ε(z)

[
T (z),φω,ω(w, w)

]
=
∮

Cw

dz

2πi
ε(z) R

(
T (z)φω,ω(w, w)

)
+
∮

Cw

dz

2πi
ε(z) R

(
T (z)φω,ω(w, w)

)
,

(1.19)

where in the last passage we used the fact that the difference of ordered integrals becomes the
contour integral of the radially ordered product computed as a infinitesimally small anti-clockwise
loop around w. Equating the result with the expected variation

δε,εφω,ω = ω ∂wε(w)φω,ω(w, w) + ε(w) ∂wφω,ω(w, w)
+ω ∂wε(w)φω,ω(w, w) + ε(w) ∂wφω,ω(w, w)

(1.20)

3Since we fix γαβ(τ,σ) ∝ ηαβ we do not need to account for the components of the connection and we can
replace the covariant derivative ∇α with a standard derivative ∂α.
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1.1 Properties of String Theory and Conformal Symmetry

we find the short distance singularities of the components of the stress-energy tensor with the
field φω,ω(w, w):

T (z)φω,ω(w, w) = ω

(z − w)2 φω,ω(w, w) + 1
z − w

∂wφω,ω(w, w) +O(1),

T (z)φω,ω(w, w) = ω

(z − w)2 φω,ω(w, w) + 1
z − w

∂wφω,ω(w, w) +O(1),
(1.21)

where we drop the radial ordering symbol R for simplicity. Since the contour Cw is infinitely
small around w, the conformal properties of φω,ω(w, w) are entirely defined by these relations.
In fact φω,ω(w, w) is a primary field if its short distance behaviour with the stress-energy tensor
is as such. This is an example of an operator product expansion (o.p.e.)

φ
(i)
ωi,ωi

(z, z)φ(j)
ωj ,ωj

(w, w) =
∑

k

Cijk(z − w)ωk−ωi−ωj (z − w)ωk−ωi−ωj φ
(k)
ωk,ωk

(w, w) (1.22)

which is an asymptotic expansion containing the full information on the singularities.4 The
constant coefficients Cijk are subject to restrictive constraints given by the properties of the
conformal theories to the point that a cft is completely specified by the spectrum of the weights
(ωi,ωi) and the coefficients Cijk [9].

The o.p.e. can also be computed on the stress-energy tensor itself:

T (z) T (w) =
c
2

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w),

T (z) T (w) =
c
2

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w).

(1.23)

The components of the stress-energy tensor are therefore not primary fields and show an anomaly
in the behaviour encoded by the constant c ∈ R. This is a reflection of the anomalous algebra
of the operator modes Ln and Ln computed from the Laurent expansion

T (z) =
+∞∑

n=−∞
Ln z−n−2 ⇒ Ln =

∮
C0

dz

2πi
zn+1T (z),

T (z) =
+∞∑

n=−∞
Ln z−n−2 ⇒ Ln =

∮
C0

dz

2πi
zn+1T (z).

(1.24)

This ultimately leads to the quantum algebra

[Ln, Lm] = (n−m) Ln+m + c

12 n (n2 − 1) δn,−m,[
Ln, Lm

]
= (n−m) Ln+m + c

12 n (n2 − 1) δn,−m,[
Ln, Lm

]
= 0,

(1.25)

4The expression (1.22) is valid assuming the normalisation of the 2-points function〈
φ

(i)
ωi,ωi

(z, z)φ(j)
ωj ,ωj

(w, w)
〉

=
δij

(z − w)ωi+ωj (z − w)ωi+ωj
.
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1.1 Properties of String Theory and Conformal Symmetry

known as Virasoro algebra, unique central extension of the classical de Witt algebra, with central
charge c. Operators Ln and Ln are called Virasoro operators.5 Notice that L0 + L0 is the
generator of the dilations on the complex plane. In terms of radial quantization this maps to
time translations and L0 + L0 can be considered to be the Hamiltonian of the theory.

In the same fashion as (1.24), fields can be expanded in modes:

φω,ω(w, w) =
+∞∑

n, m=−∞
φ

(n,m)
ω,ω z−n−ω z−m−ω. (1.26)

From the previous relations we can finally define the “asymptotic” in-states as one-to-one cor-
respondence with conformal operators:∣∣φω,ω

〉
= lim

z, z→0
φω,ω |0〉SL2(R) . (1.27)

Regularity of (1.26) requires

φ
(n,m)
ω,ω |0〉SL2(R) = 0, n > ω, m > ω. (1.28)

As a consequence also

Ln |0〉SL2(R) = Ln |0〉SL2(R) = 0, n > −2. (1.29)

Finally the definitions of the primary operators (1.21) define the physical states as

L0
∣∣φω,ω

〉
= ω

∣∣φω,ω

〉
,

L0
∣∣φω,ω

〉
= ω

∣∣φω,ω

〉
,

Ln

∣∣φω,ω

〉
= Ln

∣∣φω,ω

〉
= 0, n ≥ 1.

(1.30)

From this definition we can build an entire representation of descendant states applying any
operator L−n (or L−n) with n ≥ 1 to

∣∣φω,ω

〉
. Let φω(w) be a holomorphic field in the cft for

simplicity, and let |φω〉 be its corresponding state. The generic state at level m built from such
state is ∣∣∣φ{n1,n2,...,nm}

ω

〉
= L−n1 L−n2 . . . L−nm |φω〉 ,

m∑
i=1

ni = m ≥ 0. (1.31)

From the commutation relations (1.25) we finally compute its conformal weight as eigenvalue of
the (holomorphic) Hamiltonian L0:

L0

∣∣∣φ{n1,n2,...,nm}
ω

〉
= (ω+ m)

∣∣∣φ{n1,n2,...,nm}
ω

〉
. (1.32)

States corresponding to primary operators have therefore the lowest energy (intended as eigen-
value of the Hamiltonian) in the entire representation. They are however called highest weight
states from the mathematical literature which uses the opposite sign for the Hamiltonian oper-
ator.

5Notice that the subset of Virasoro operators {L−1, L0, L1} forms a closed sub-algebra generating the group
SL2(R).
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1.1 Properties of String Theory and Conformal Symmetry

The particular case of the cft in (1.2) can be cast in this language. In particular the solutions
to the e.o.m. factorise into a holomorphic and an anti-holomorphic contributions:

∂z∂zX(z, z) = 0 ⇒ X(z, z) = X(z) + X(z), (1.33)

and the components of the stress-energy tensor (1.9) are

T (z) = ∂zX(z) · ∂zX(z),
T (z) = ∂zX(z) · ∂zX(z).

(1.34)

Using the normalisation of the 2-points function 〈Xµ(z, z) Xν(w, w)〉 = − 1
2η
µν ln |z − w| and

the Wick theorem, we can prove that c = D in (1.23), where D is the dimensions of spacetime
(or equivalently the number of scalar fields Xµ in the action). It can be shown that in order
to cancel the central charge in bosonic string theory we need to introduce a pair of conformal
ghosts b(z) and c(z) with conformal weights (2, 0) and (−1, 0) respectively, together with their
anti-holomorphic counterparts b(z) and c(z). The non vanishing components of their stress-
energy tensor can be computed as:6

Tghost(z) = c(z) ∂zb(z)− 2 b(z) ∂zc(z),
T ghost(z) = c(z) ∂zb(z)− 2 b(z) ∂zc(z).

(1.35)

From their 2-points functions

〈b(z) c(w)〉 = 1
z − w

,
〈
b(z) c(w)

〉
= 1

z − w
, (1.36)

we get the o.p.e. of the components of their stress-energy tensor:

Tghost(z) Tghost(w) = −13
(z − w)4 + 2

(z − w)2 Tghost(z) + 1
z − w

∂zTghost(z),

T ghost(z) T ghost(w) = −13
(z − w)4 + 2

(z − w)2 T ghost(z) + 1
z − w

∂zT ghost(z),
(1.37)

6In general a system of ghosts b(z) and c(z) with weight (λ, 0) and (1−λ, 0) can be introduced as a standalone
cft with action [9]

S =
1

2π

∫∫
dz dz b(z) ∂zc(z).

The equations of motion are ∂zc(z) = ∂zb(z) = 0. The o.p.e. is

b(z) c(z) =
ε

z − w
+O(1),

where ε = +1 for anti-commuting fields and ε = −1 for Bose statistic. Their stress-energy tensor is

Tghost(z) = −λ b(z) ∂zc(z)− ε (1− λ) c(z) ∂zb(z).

Their central charge is therefore cghost = ε (1− 3Q2), where Q = ε (1− 2λ).
The ghost cft has an additional ghost number U(1) symmetry generated by the current

j(z) = −b(z) c(z).

The current is a primary field (i.e. it is not anomalous) when Q = 0 since

Tghost(z) j(w) =
Q

(z − w)3 +O
(
(z − w)−2

)
.

This is the case of the worldsheet fermions in (1.39) for which λ = 1
2 . For instance the reparametrisation ghosts

with λ = 2 have Q = −3, while the superghosts with λ = 3
2 present Q = 2.
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1.2 Superstrings

which show that cghost = −26. The central charge is therefore cancelled in the full theory
(bosonic string and reparametrisation ghosts) when the spacetime dimensions are D = 26. In
fact let Tfull = T + Tghost and T full = T + T ghost, then:

Tfull(z)
∣∣∣∣
O((z−w)−4)

= T full(z)
∣∣∣∣
O((z−w)−4)

= c + cghost = D

2 − 13 = 0 ⇔ D = 26. (1.38)

Tfull and T full are then primary fields with conformal weight −2.

1.2 Superstrings

As bosonic string theory deals with commuting fields Xµ, it is impossible to build spacetime
fermions and consequently a consistent phenomenology. It is in fact necessary to introduce
worldsheet fermions (i.e. anti-commuting variables on the string worldsheet) as an extension to
the bosonic coordinates. We schematically and briefly recall some results due to the extension of
bosonic string theory to the superstring as they will be used in what follows and mainly descend
from the previous discussion.

The superstring action is built as an addition to the bosonic equivalent (1.2). In complex
coordinates on the plane it is [12]:

S[X, ψ] = − 1
4π

∫∫
dz dz

(
2
α′

∂zXµ ∂zXν +ψµ ∂zψ
ν +ψµ ∂zψ

ν
)
ηµν. (1.39)

In the last expression ψµ are D two-dimensional holomorphic fermion fields with conformal
weight

( 1
2 , 0
)
and ψµ are their anti-holomorphic counterparts with weight

(
0, 1

2
)
. Their short-

distance behaviour is

ψµ(z)ψν(w) = ηµν

z − w
, ψ

µ(z)ψν(w) = ηµν

z − w
. (1.40)

In this case the components of the stress-energy tensor of the theory are:

T (z) = − 1
α′

∂zX(z) · ∂zX(z)− 1
2 ψ(z) · ∂zψ(z),

T (z) = − 1
α′

∂zX(z) · ∂zX(z)− 1
2 ψ(z) · ∂zψ(z).

(1.41)

The action (1.39) is also invariant under the supersymmetric transformations√
2
α′
δε,εXµ(z, z) = ε(z)ψµ(z) + ε(z)ψµ(z),√

2
α′
δεψ

µ(z) = −ε(z) ∂zXµ(z),√
2
α′
δεψ

µ(z) = −ε(z) ∂zX
µ(z)

(1.42)

generated by the currents J(z) = ε(z) TF (z) and J(z) = ε(z) T F (z), where ε(z) and ε(z) =
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1.3 Extra Dimensions and Compactification

(ε(z))∗ are anti-commuting fermions and

TF (z) = i

√
2
α′
ψ(z) · ∂zX(z),

T F (z) = i

√
2
α′
ψ(z) · ∂zX(z)

(1.43)

are the supercurrents. The central charge associated to the Virasoro algebra is in this case given
by both bosonic and fermionic contributions:

T (z) T (w) =
3D
4

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w) +O(1),

T (z) T (w) =
3D
4

(z − w)4 + 2
(z − w)2 T (w) + 1

z − w
∂wT (w) +O(1).

(1.44)

The central charge is therefore c = 3
2 D for the cft defined in (1.39).

As in the case of the bosonic string, in order to cancel the central charge of superstring
theory we introduce the reparametrisation anti-commuting ghosts b(z) and c(z) and their anti-
holomorphic components as well as the commuting superghosts β(z) and γ(z) and their anti-
holomorphic counterparts. These are conformal fields with conformal weights

( 3
2 , 0

)
and

(
− 1

2 , 0
)
.

Their central charge becomes cghost = cbc +cβγ = −26+11 = −15 (see footnote 6 for the general
computation). When considering the full theory Tfull = T + Tghost and T full = T + T ghost the
central charge vanishes only in 10-dimensional spacetime:

Tfull(z)
∣∣∣∣
O((z−w)−4)

= T full(z)
∣∣∣∣
O((z−w)−4)

= c + cghost = 3
2 D − 15 = 0 ⇔ D = 10. (1.45)

1.3 Extra Dimensions and Compactification

We are ultimately interested in building a consistent phenomenology in the framework of string
theory. Any theoretical infrastructure has to be able to support matter states made of fermions.
In what follows we thus consider the superstring formulation in D = 10 dimensions even when
we focus only on its bosonic components.

It is however clear that low energy phenomena need to be explained by a 4-dimensional
theory in order to be comparable with other theoretical frameworks and experimental evidence.
In this section we briefly review for completeness the necessary tools to be able to reproduce
consistent models capable of describing particle physics and beyond. These results represent
the background knowledge necessary to better understand more complicated scenarios involving
strings. As we will never deal directly with 4-dimensional physics this is not a complete review
and we refer to [13]–[17] for more in-depth explanations.

In general we consider Minkowski space in 10 dimensions M 1,9. To recover 4-dimensional
spacetime we let it be defined as a product

M 1,9 = M 1,3 ⊗X6, (1.46)

where X6 is a generic 6-dimensional manifold at this stage. This internal manifold X6 is however
subject to very stringent restrictions due to mathematical consistency conditions and physical
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1.3 Extra Dimensions and Compactification

requests. In particular X6 should be a compact manifold to “hide” the 6 extra-dimensions
computed in (1.45).7 Moreover the geometry of M 1,3 should be a maximally symmetric space
and there should be a N = 1 unbroken supersymmetry in 4 dimensions. Finally the arising
gauge group and the spectrum of fermions should be realistic (e.g. it should be possible to define
chiral fermion states) [18]. These manifolds were first conjectured to exist by Eugenio Calabi [19]
and their existence was later proved by Shing-Tung Yau [20], hence the name Calabi-Yau (CY)
manifolds. They are defined as complex Ricci-flat Kähler manifolds M of dimensions 2m and
with holonomy SU(m) (see for instance [21]–[23]). More on this topic is also presented in Part III
of this thesis where we compute topological properties of a subset of CY manifolds.

1.3.1 Complex and Kähler Manifolds

In general an almost complex structure J is a tensor such that Ja
b Jb

c = −δa
c. For any vector

field vp ∈ TpM defined in p ∈M we then define (Jv)a = Ja
b vb, thus the tangent space TpM has

the structure of a complex vector space. The tensor J is called complex structure if there exist a
tensor N such that

Na
bc vb

p wc
p = ([vp, wp] + J([J vp, wp] + [vp, J wp])− [J vp, J wp])a = 0 (1.47)

for any vp, wp ∈ TpM , where [·, ·] : TpM × TpM → TpM is the Lie braket of vector fields. A
manifold M is a complex manifold if it is possible to define a complex structure J on it.8

Let then (M, J, g) be a complex manifold with a Riemannian metric g. The metric is Her-
mitian if

g(vp, wp) = g(J vp, J wp) ∀vp, wp ∈ TpM (1.48)

In this case we can define a (1, 1)-form ω as

ω(vp, wp) = g(J vp, wp) ∀vp, wp ∈ TpM. (1.49)

(M, J, g) is a Kähler manifold if:

dω =
(
∂ + ∂

)
ω(z, z) = 0, (1.50)

or equivalently ∇J = 0 or ∇ω = 0, where ∇ is the connection of g. Notice that the operators
∂ and ∂ are such that ∂2 = ∂

2 = 0: they replace the de Rham cohomology operator d2 = 0 in
complex space with the holomorphic and anti-holomorphic Dolbeault cohomology operators. The
covariant conservation of J and ω implies that the holonomy group must preserve these objects
in R2m. Thus we have Hol(g) ⊆ U(m) ⊂ O(2m).

7A compact manifold X is defined as a Hausdorff topological space whose open covers all have a finite
subcover. In other words X is compact if for each covering atlas A = {Uα}α∈A such that X =

⋃
α∈A

Uα, then

∃B =
{

Vβ
}
β∈B

⊂ A finite such that X =
⋃
β∈B

Vβ.

8Notice that a smooth function f : M → C whose pushforward of vp ∈ TpM is f∗ p : TpM → Tf(p)C ' C is
called holomorphic if (J f∗ p(vp))a = i(f∗ p(vp))a as such expression encodes the Cauchy-Riemann equations. Let
in fact f(x, y) = f1(x, y) + i f2(x, y), then the expression implies{

∂xf1(x, y) = ∂yf2(x, y)
∂xf2(x, y) = −∂yf1(x, y)

⇒ ∂xf(x, y) = −i∂yf(x, y) ⇒ ∂zf(z, z) = 0 ⇒ f(z, z) = f(z).
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1.3.2 Calabi-Yau Manifolds

With the general definitions of the Kähler geometry we can now explicitly compute the conditions
needed for a CY manifold. In local complex coordinates a Hermitian metric is such that

g = gab dza ⊗ dzb + gab dza ⊗ dzb , (1.51)

thus the Kähler form becomes ω = igab dza ∧ dzb. Relation (1.50) translates into:

dω = i
(
∂ + ∂

)
gab dza ∧ dzb = 0 ⇔

{
∂zcgab = ∂zagcb

∂zcgab = ∂zagcb

. (1.52)

The (1, 1)-form ω can locally be written as ω = i ∂∂ φ(z, z) up to a constant. This ultimately
leads to

gab = ∂2φ(z, z)
∂za∂zb

= ∂za∂zb φ(z, z), (1.53)

Since ω is the Kähler form then the Levi-Civita connection has only fully holomorphic and
anti-holomorphic components:

Γa
bc = gad ∂zb g

dc
, Γa

bc
= gad ∂zb gdc . (1.54)

As a consequence the Ricci tensor becomes

Rab = −∂Γ c
ac

∂zb
. (1.55)

Since for CY manifolds Hol(g) ⊆ SU(m), the trace part of the coefficients of the connection
vanishes. CY manifolds thus have Rab = 0, that is they are complex Ricci-flat Kähler manifolds
with SU(m) holonomy.

1.3.3 Cohomology and Hodge Numbers

CY manifolds M of complex dimension m present geometric characteristics of general interest
both in pure mathematics and string theory. They can be characterised in different ways. For
instance the study of the cohomology groups of the manifold has a direct connection with the
analysis of topological invariants.

For real manifolds M̃ of dimension 2m, closed p-forms ω̃ are always defined up to an exact
term. In fact:

dω̃′(p) = d
(
ω̃(p) + dη̃(p−1)

)
= 0 (1.56)

implies an equivalence relation ω̃′(p) ∼ ω̃(p) + dη̃(p−1). This translates to the fact that elements
of the de Rham cohomology group H

(p)
d

(
M̃,R

)
are equivalence classes [ω̃] computed through

the operator d. The term bp = dim H
(p)
d (M̃,R) counts the total number of possible p-forms we

can build on M̃ , up to gauge transformations. These are known as Betti numbers.
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1.4 D-branes and Open Strings

The extension to the Dolbeault cohomology in complex space is possible through the operators
∂ and ∂ over (r, s)-forms on manifolds M of complex dimension m. The equivalence relation (1.56)
has a similar expression in complex space as

ω′(r,s) ∼ ω(r,s) + ∂η(r,s−1), (1.57)

or an equivalent formulation using ∂. The cohomology group in this case is H
(r,s)
∂

(M,C) and
the relation with the real counterpart is

H
(p)
d (M,R) =

⊕
p=r+s

H
(r,s)
∂

(M,C). (1.58)

As in the case of Betti numbers, we can define the complex equivalents, the Hodge numbers,
hr,s = dimC H

(r,s)
∂

(M,C) which count the number of harmonic (r, s)-forms on M . Notice that
in this case hr,s is the complex dimension dimC of the cohomology group.

For CY manifolds it is possible to show that the SU(m) holonomy of g implies that the vector
space of (r, 0)-forms is C if r = 0 or r = m. Therefore h0,0 = hm,0 = 1, while hr,0 = 0 if r 6= 0, m.
Exploiting symmetries of the cohomology groups, Hodge numbers are usually collected in Hodge
diamonds. In string theory we are ultimately interested in CY manifolds of real dimensions 6,
thus we focus mainly on CY 3-folds (i.e. having m = 3). The diamond in this case is

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

, (1.59)

where we used hr,s = hm−r,m−s to stress the fact that the only independent Hodge numbers are
h1,1 and h2,1 for m = 3. These results will also be the starting point of Part III in which the
ability to predict the values of the Hodge numbers using artificial intelligence is tested.

1.4 D-branes and Open Strings

Dirichlet branes, or D-branes, are another key mathematical object in string theory. They
are naturally included as extended hypersurfaces supporting strings with open topology and
as physical objects with charge and tension [24]–[28]. They are relevant in the definition of
phenomenological models in string theory as they can be arranged to support chiral fermions
and bosons in sm-like scenarios as well as beyond [29], [30]. We are ultimately interested in their
study to construct Yukawa couplings in string theory.

1.4.1 Compactification of Closed Strings

As a first approach to the definition of D-branes, consider the action (1.2). The variation of such
action with respect to δX leads to the equation of motion

∂α∂αXµ(τ,σ) = 0 µ = 0, 1, . . . , D − 1, (1.60)
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1.4 D-branes and Open Strings

and naturally to the Neumann boundary conditions:9

∂σXµ(τ,σ)
∣∣∣∣σ=`

σ=0
= 0, µ = 0, 1, . . . , D − 1. (1.61)

Closed strings are such that Xµ(τ,σ + `) = Xµ(τ,σ). The usual mode expansion in conformal
coordinates Xµ(z, z) = X(z) + X(z) leads to

Xµ(z) = xµ0 + i

√
α′

2

−αµ0 ln z +
∑

n∈Z\{0}

αµn
n

z−n

,

X
µ(z) = xµ0 + i

√
α′

2

−αµ0 ln z +
∑

n∈Z\{0}

αµn
n

z−n

,

(1.62)

where αµ0 = αµ0 and ` = 2π. When the string is free to move in the entire D-dimensional space,
then the momentum of the center of mass is pµ = 1√

2α′ (α
µ
0 + αµ0 ).

Now let
M 1,D−1 = M 1,D−2 ⊗ S1(R), (1.63)

where S1(R) is a compact 1-dimensional circle of radius R such that the boundary conditions
for the compact coordinate are

XD−1(z e2πi, z e−2πi) = XD−1(z, z) + 2πm R, m ∈ Z. (1.64)

This is cast into

αD−1
0 + αD−1

0 =
√

2
α′

n
α′

R
, n ∈ Z,

αD−1
0 − αD−1

0 =
√

2
α′

m R, m ∈ Z,

(1.65)

respectively encoding the quantisation of the momentum for a compact coordinate and the
winding in the compact direction (1.64). We finally have

αD−1
0 = 1√

2α′

(
n
α′

R
+ m R

)
,

αD−1
0 = 1√

2α′

(
n
α′

R
−m R

)
,

(1.66)

An interesting phenomenon involving these quantities appears when computing the mass
spectrum of the theory. From (1.24) and (1.34) we find

L0 = α′

2

((
αD−1

0
)2 +

D−2∑
i=0

(
αi

0
)2 +

+∞∑
n=1

(
2αµ−nα

ν
n ηµν + a

))
,

L0 = α′

2

((
αD−1

0
)2 +

D−2∑
i=0

(
αi

0
)2 +

+∞∑
n=1

(
2αµ−nα

ν
n ηµν + a

))
,

(1.67)

9As [25] shows, Dirichlet conditions can descend from T-duality which is introduced later.
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1.4 D-branes and Open Strings

where a is constant given by normal ordering, representing the zero point energy of the theory.
Imposing physical conditions (1.30) and the level matching (L0 − L0) |φ〉 = 0 for closed strings,
we find

M2 = 1
(α′)2

(
n
α′

R
+ m R

)2
+ 4
α′

(N + a)

= 1
(α′)2

(
n
α′

R
−m R

)2
+ 4
α′

(
N + a

)
,

(1.68)

where N =
+∞∑
n=1

α−n · αn and N =
+∞∑
n=1

α−n · αn. We then notice that as R → ∞ all states
with m 6= 0 become infinitely massive while the states for m = 0 and all values of n become a
continuum. Conversely, as R → 0 all states with n 6= 0 become infinitely heavy. In field theory
this would translate into a reduction of the number of dimensions since the remaining fields
would be independent of the compact coordinate. However in closed string theory as R→ 0 the
compactified dimension is again present.

As seen in (1.68) the mass spectra of the theories compactified at radius R or α′R−1 are the
same under the exchange of n and m. At the level of the modes this T-duality acts by swapping
the sign of the right zero-modes in the compact direction

αD−1
0

T7−→ αD−1
0 , αD−1

0
T7−→ −αD−1

0 , (1.69)

defining the dual coordinate

Y D−1(z, z) = Y D−1(z) + Y
D−1(z) = XD−1(z)−X

D−1(z). (1.70)

1.4.2 D-branes from T-duality

Consider the case of open strings satisfying the e.o.m. (1.60) and the boundary conditions (1.61).
The usual mode expansion (1.62) here leads to:

Xµ(z, z) = xµ0 − iα′ pµ ln(zz) + i

√
α′

2
∑

n∈Z\{0}

αµn
n

(
z−n + z−n

)
(1.71)

and ` = π.

Under the compactification (1.63) open strings do not wind around the compact cycle. Thus
they do not present a quantum number m as closed strings do. When R → 0 modes with non
vanishing momentum (i.e. with n 6= 0) become infinitely massive:

pD−1 = n

R

R→0−→ ∞. (1.72)

The behaviour is similar to the traditional field theory: the compactified dimension disappears
and open string endpoints live in a (D − 1)-dimensional hypersurface. This is a consequence of
the T-duality transformation applied on the compact direction. In fact the original Neumann
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1.4 D-branes and Open Strings

boundary condition (1.61) becomes a Dirichlet condition for Y D−1 defined as in (1.70):

∂σXD−1(τ,σ)
∣∣∣∣σ=π

σ=0
= ∂σXD−1(eτE+iσ) + ∂σX

D−1(eτE−iσ)
∣∣∣∣σ=π

σ=0

= i ∂ξXD−1(eξ)− i ∂
ξ
X

D−1(eξ)
∣∣∣∣Imξ=π

Imξ=0

= i ∂τE
Y D−1(eτE+iσ) + i ∂τE

Y
D−1(eτE−iσ)

∣∣∣∣σ=π

σ=0

= i ∂τY
D−1(τ,σ)

∣∣∣∣σ=π

σ=0

= 0.

(1.73)

The coordinate of the endpoint in the compact direction is therefore fixed and constrained on a
hypersurface called Dp-brane, where p+1 is the dimension of the surface (in this case p = D−2):

Y D−1(τ,π)− Y D−1(τ, 0) =
π∫

0

dσ ∂σY D−1(τ,σ)

= i

π∫
0

dσ ∂τX
D−1(τ,σ)

= 2πα′pD−1

= 2πn
α′

R
= 2πn R′.

(1.74)

The only difference in the position of the endpoints can only be a multiple of the radius of the
compactified dimension. Otherwise they lie on the same hypersurface. The procedure can be
generalised to p coordinates, constraining the string to live on a (D − p− 1)-brane.

This geometric interpretation of the Dirichlet branes and boundary conditions is the basis for
the definition of more complex scenarios in which multiple D-branes are inserted in spacetime. D-
branes are however much more than mathematical entities. They also present physical properties
such as tension and charge [24], [28], [31]. However these aspects will not be discussed here as
the following analysis will mainly focus on geometrical aspects of D-branes in spacetime.

1.4.3 Gauge Groups from D-branes

As previously stated, in order to recover 4-dimensional physics we need to compactify the 6
extra-dimensions of the superstring. There are in general multiple ways to do such operation
consistently [32]–[34]. Reproducing the sm or beyond sm spectra are however strong constraints
on the possible compactification procedures [30], [35]. Many of the physical requests usually
involve the introduction of D-branes and the study of open strings in order to be able to define
chiral fermions and realist gauge groups.

As seen in the previous section, D-branes introduce preferred directions of motion by restrict-
ing the hypersurface on which the open string endpoints live. Specifically a Dp-brane breaks the

33
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(a) Chan-Paton factors labelling strings.
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(b) Naive model of left handed massive quarks.

Figure 1.2: Strings attached to different D-branes.

original SO(1, D − 1) symmetry to SO(1, p) ⊗ SO(D − 1 − p).10 The massless spectrum of
the theory on the D-brane is easily computed in lightcone gauge [36], [37]. Using the residual
symmetries (1.11) of the two-dimensional diffeomorphism (i.e. harmonic functions of τ and σ)
we can set

X+(τ,σ) = x+
0 + 2α′ p+ τ, (1.75)

where X± = 1√
2 (X0 ±XD−1). The vanishing of the stress-energy tensor fixes the oscillators in

X− in terms of the physical transverse modes. The mass shell condition for open strings then
becomes:11

M2 = 1
α′

(N − 1). (1.76)

Consider for a moment bosonic string theory and define the usual vacuum as

αi
n |0〉SL2(R) = 0, n ≥ 0, i = 1, 2, . . . , D − 2, (1.77)

we find that at the massless level we have a single U(1) gauge field in the representation of the
Little Group SO(D − 2):

Ai → αi
−1 |0〉SL2(R) . (1.78)

The introduction of a Dp-brane however breaks the Lorentz invariance down to SO(1, p)⊗SO(D−
1− p). Thus the gauge field in the original theory is split into

AA → αA
−1 |0〉SL2(R) , A = 1, . . . , p− 2,

Aa → αa
−1 |0〉SL2(R) , a = 1, 2, . . . , D − 1− p.

(1.79)

In the last expression AA forms a representation of the Little Group SO(p − 2) and as such it
is a vector gauge field in p dimensions. The field Aa forms a vector representation of the group
SO(D− 1− p) and from the point of view of the Lorentz group they are D− 1− p scalars in the
light spectrum.

10Notice that usually D = 10 in the superstring formulation (D = 26 for purely bosonic strings), but we keep
a generic indication of the spacetime dimensions when possible.

11The constant a in (1.68) takes here the value −1 from the imposition of the canonical commutation relations
and a ζ-regularisation.
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1.4 D-branes and Open Strings

It is also possible to add non dynamical degrees of freedom (d.o.f.) to the open string
endpoints. They are known as Chan-Paton factors [38]. They have no dynamics and do not
spoil Poincaré or conformal invariance in the action of the string. Each state can then be
labelled by i and j running from 1 to N . Matrices λa

ij thus form a basis for expanding wave
functions and states:

|n; a〉 =
N∑

i, j=1
|n; i, j〉 λa

ij . (1.80)

In general Chan-Paton factors label the D-brane on which the endpoint of the string lives as in the
left of Figure 1.2. Notice that strings stretching across different D-branes present an additional
term in the mass shell condition proportional to the distance between the hypersurfaces: fields
built using strings with Chan-Paton factors λa

ij for which i 6= j will therefore be massive.
However when N D-branes coincide in space and form a stack their mass vanishes again: it
then possible to organise the N2 resulting massless fields in a representation of the gauge group

U(N), thus promoting the symmetry
N⊗

a=1
Ua(1) of N separate D-branes to a larger gauge group.

It is also possible to show that in the field theory limit the resulting gauge theory is a Super
Yang-Mills gauge theory.

Eventually the massless spectrum of N coincident Dp-branes is formed by U(N) gauge bosons
in the adjoint representation, N2 × (D − 1 − p) scalars and N2 sets of (p + 1)-dimensional
fermions [17]. These are the basic building blocks for a consistent string phenomenology involving
both gauge bosons and matter.

1.4.4 Standard Model Scenarios

Being able to describe gauge bosons and fermions is not enough. Physics as we test it in experi-
ments poses stringent constraints on what kind of string models we can use. For instance there
is no way to describe chirality by simply using parallel D-branes and strings stretching among
them, while requiring the existence of fermions transforming in different representations of the
gauge group is necessary to reproduce sm results [39], [40].

For instance, in the low energy limit it is possible to build a gauge theory of the strong force
using a stack of 3 coincident D-branes and an electroweak sector using 2 D-branes. These stacks
would separately lead to a U(3)×U(2) gauge theory. It would however be a theory of pure force,
without matter content. Moreover we should also worry about the extra U(1) groups appearing:
these need careful consideration but go beyond the necessary analysis presented in what follows.

Matter fields are fermions transforming in the bi-fundamental representation (N, M) of the
sm gauge group (1.1). For example left handed quarks in the sm transform under the (3, 2)
representation of the group SU(3)C ⊗ SU(2)L. This is realised in string theory by a string
stretched across two stacks of 3 and 2 D-branes as in the right of Figure 1.2. The fermion
would then be characterised by the charge under the gauge bosons living on the D-branes.
The corresponding anti-particle would then be modelled as a string oriented in the opposite
direction. Things get complicated when introducing also left handed leptons transforming in the
(1, 2) representation: they cannot have endpoints on the same stack of D-branes as quarks since
they do not have colour charge. We therefore need to introduce more D-branes to account for
all the possible combinations.
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Figure 1.3: Example of sm-like construction using intersecting D-branes with the indications of
the hypercharge Y . Perpendicular angles are only a matter of convenience: they are in principal
arbitrary.

An additional issue comes from the requirement of chirality. Strings stretched across D-
branes are naturally massive but, in the field theory limit, a mass term would mix different
chiralities. We thus need to include a symmetry preserving mechanism for generating the mass
of fermions. In string theory there are ways to deal with the requirement [39], [41], [42]. These
range from D-branes located at singular points of orbifolds to D-branes intersecting at angles.
In this manuscript we focus on intersecting D6-branes filling the 4-dimensional spacetime and
whose additional 3 dimensions are embedded in a CY 3-fold (e.g. as lines in a factorised torus
T 6 = T 2×T 2×T 2). This D-brane geometry supports chiral fermion states at their intersection:
while some of the modes of the stretched string become indeed massive, the spectrum of the
fields is proportional to combinations of the angles and some of the modes can remain massless.
The light spectrum is thus composed of the desired matter content alongside with other particles
arising from the string compactification.

It is therefore possible to recover a sm-like construction using multiple D-branes at angles
as in Figure 1.3, where the angles have been drawn perpendicular but can in principle be ar-
bitrary [43]–[45]. For instance quarks are localised at the intersection of the baryonic stack of
D-branes, yielding the colour symmetry generators, with the left and right stacks, leading to the
(3, 2) and (3, 1) representations. The same applies to leptons created by strings attached to the
leptonic stack. Combinations of the additional U(1) factors in the resulting gauge group finally
lead to the definition of the hypercharge Y .

Physics in 4 dimensions is eventually recovered by compactifying the extra-dimensions of the
superstring.12 Fermions localised at the intersection of the D-branes are however naturally 4-
dimensional as they only propagate in the non compact Minkowski space M 1,3. The presence of
compactified dimensions however leads to phenomena such as family replications of the fermions.
With accurate calibration it is in fact possible to recover the quark and lepton families in the
sm. Consider for example the simple CY factorised manifold T 6 = T 2 × T 2 × T 2 and introduce
stacks of D6-branes as lines in each of the bi-tori. Even though the lines might never intersect

12We specifically reviewed particle physics interactions. Gravitational interactions in general remain untouched
by these constructions and still propagate in 10-dimensional spacetime.
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on a plane, they can have points in common on a torus due to the identifications [42]. Since
each intersections supports a different set of fermions with different spectrum, the angles of the
intersecting branes can be calibrated to reproduce the separation in mass of the families of quarks
and leptons in the sm.

2 D-branes Intersecting at Angles

2.1 Motivation

As seen in the previous sections, the study of viable phenomenological models in string theory
involves the analysis of the properties of systems of D-branes. The inclusion of the physical
requirements deeply constrains the possible scenarios. In particular the chiral spectrum of the
sm acts as a strong restriction on the possible setup. In this section we study intersecting D-
branes, which represent a relevant class of models with interacting chiral matter. We focus on
the development of technical tools for the computation of Yukawa interactions for D-branes at
angles [46]–[52]. The fermion–boson couplings and the study of flavour changing neutral cur-
rents [53] are keys to the validity of the models. Furthermore these and many other computations
require the ability to calculate correlation functions of (excited) twist and (excited) spin fields.
The goal of the section is therefore to address such challenges in specific scenarios.

The computation of the correlation functions of Abelian twist fields can be found in literature
and plays a role in many scenarios such as magnetic branes with commuting magnetic fluxes [54]–
[57], strings in gravitational wave background [58], [59], bound states of D-branes [60], [61] and
tachyon condensation in Superstring Field Theory [62]–[64]. A similar analysis can be extended to
excited twist fields even though they are more subtle to treat and hide more delicate aspects [65]–
[68]. Results were however found starting from dual models [69] up to modern interpretations
of string theory. Correlation functions involving arbitrary numbers of plain and excited twist
fields were more recently studied [70]–[72] blending the CFT techniques with the path integral
approach and the canonical quantization [73]–[77].

We consider D6-branes intersecting at angles in the case of non Abelian relative rotations
presenting non Abelian twist fields at the intersections. We try to understand subtleties and
technical issues arising from a scenario which has been studied only in the formulation of non
Abelian orbifolds [78]–[80] and for relative SU(2) rotations of the D-branes [81]. In this configur-
ation we study three D6-branes in 10-dimensional Minkowski space M 1,9 with an internal space
of the form R4×R2 before the compactification. The D-branes are embedded as lines in R2 and
as two-dimensional surfaces inside R4. We focus on the relative rotations which characterise each
D-brane in R4 with respect to the others. In total generality, they are non commuting SO(4)
matrices. We study the classical solution of the bosonic string which dominates the behaviour
of the correlator of twist fields. Using the path integral approach we can in fact separate the
classical contribution from the quantum fluctuations and write the correlators of NB twist fields
σM(t)

(
x(t)
)
as:13〈

NB∏
t=1
σM(t)(x(t))

〉
= N

({
x(t), M(t)

}
1≤t≤NB

)
e
−SE

(
{x(t),M(t)}1≤t≤NB

)
, (2.1)

13Ultimately NB = 3 in our case.
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where M(t) (for 1 ≤ t ≤ NB) are the monodromies induced by the twist fields, NB is the
number of D-branes and x(t) are the intersection points on the worldsheet. Even though quantum
corrections are crucial to the complete determination of the normalisation of the correlator, the
classical contribution of the Euclidean action represents the leading term of the Yukawa couplings.
We focus on its contribution to better address the differences from the usual factorised case and
generalise the results to non Abelian rotations of the D-branes. We do not consider the quantum
corrections as they cannot be computed with the actual techniques. Their calculations requires
the correlator of four twist fields which in turn requires knowledge of the connection formula for
Heun functions which is not known.

We therefore study the boundary conditions for the open string describing the D-branes
embedded in R4. In particular we first address the issue connected to the global description of
the embedding of the D-branes. In conformal coordinates we rephrase such problem into the
study of the monodromies acquired by the string coordinates. These additional phase factors
can then be specialised to SO(4) and be studied in spinor representation as a tensor product of
SU(2) elements. We thus recast the issue of finding the solution as 4-dimensional real vector to
a tensor product of two solutions in the fundamental representation of SU(2). We then see that
these solutions are well represented by hypergeometric functions, up to integer factors. Physical
requirements finally restrict the number of possible solutions.

2.2 D-brane Configuration and Boundary Conditions

We focus on the bosonic string embedded in M 1,d+4. The relevant configuration of the D-
branes is seen as two-dimensional Euclidean planes in R4. We specifically concentrate on the
Euclidean solution for the classical bosonic string in this scenario. The mathematical analysis
is however more general and can be applied to any Dp-brane embedded in a generic Euclidean
space Rq. The classical solution can in principle be defined in this case provided the ability
to write the explicit form of the basis of functions with the proper boundary and monodromy
conditions. This is possible in the case of three intersecting D-branes but in general it is an
open mathematical issue. In the case of three D-branes with generic embedding we can in fact
connect a local basis around one intersection point to another, the third depending on the first
two intersections, by means of Mellin-Barnes integrals. This way the solution can be explicitly
and globally constructed. With more than three D-branes the situation is by far more difficult
since the explicit form of the connection formulas is not known.

2.2.1 Intersecting D-branes at Angles

Let NB be the total number of D-branes and t = 1, 2, . . . , NB be an index defined modulo NB

to label them. We describe one of the D-branes in a well adapted system of coordinates XI
(t),

where I = 1, 2, 3, 4, as:
X3

(t) = X4
(t) = 0. (2.2)

We thus choose X1
(t) and X2

(t) to be the coordinates parallel to the D-brane D(t) while X3
(t) and

X4
(t) are the coordinates orthogonal to it.

The well adapted reference coordinates system is connected to the global R4 coordinates XI
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(a) D-branes as lines on R2.
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(b) Well adapted system of coordinates.

Figure 2.1: Geometry of D-branes at angles.

by a transformation:

(X(t))I = (R(t))I
J XJ − (g(t))I , I, J = 1, 2, 3, 4, (2.3)

where R(t) represents the rotation of the D-brane D(t) and g(t) ∈ R4 its translation with respect
to the origin of the global set of coordinates (see Figure 2.1 for a two-dimensional example).

While we could naively consider R(t) ∈ SO(4), rotating separately the subset of coordinates
parallel and orthogonal to the D-brane does not affect the embedding. In fact it just amounts to
a trivial redefinition of the initial well adapted coordinates. The rotation R(t) is actually defined
in the Grassmannian:

R(t) ∈ Gr(2, 4) = SO(4)
S(O(2)×O(2)) , (2.4)

that is we just need to consider the left coset where R(t) is a representative of an equivalence
class [

R(t)
]

=
{

R(t) ∼ O(t)R(t)
}

, (2.5)
where O(t) = S(O(2)×O(2)) is defined as

O(t) =
(
O‖(t)

O⊥(t)

)
(2.6)

with O‖t ∈ O(2), O⊥t ∈ O(2) and detO(t) = 1. The superscript ‖ represents any of the coordinates
parallel to the D-brane, while ⊥ any of the orthogonal. Notice that the additional Z2 factor in
S(O(2)×O(2)) with respect to SO(2)× SO(2) can be used to set g⊥(t) ≥ 0.

2.2.2 Boundary Conditions for Branes at Angles

The peculiar embedding of the D-branes has natural consequences on the boundary conditions
of the open strings. Let τE = iτ be the Wick rotated time direction. We define the usual upper
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2.2 D-brane Configuration and Boundary Conditions

plane coordinates:

u = x + iy = eτE+iσ ∈ H ∪ {z ∈ C | Im z = 0}, (2.7)
u = x− iy = eτE−iσ ∈ H ∪ {z ∈ C | Im z = 0}, (2.8)

where H = {z ∈ C | Im z > 0} is the upper complex plane and H = {z ∈ C | Im z < 0} is the
lower complex plane. In conformal coordinates u and u, D-branes at σ = 0 and σ = π are
mapped onto the real axis Im z = 0. We use the symbol D(t) to label both the brane and the
interval representing it on the real axis of the upper half plane:

D(t) =
[
x(t), x(t−1)

]
, t = 2, 3, . . . , NB , x(t) < x(t−1). (2.9)

The points x(t) and x(t−1) represent the worldsheet intersection points of the brane D(t) with the
branes D(t+1) and D(t−1) respectively. The choice of the intervals must be carefully considered:
since the D-branes are defined modulo NB , the shorthand for the interval D(1) =

[
x(1), x(NB)

]
should actually be:

D(1) =
[
x(1), +∞

)
∪
(
−∞, x(NB)

]
. (2.10)

In the global coordinates system associated to the subspace R4 ⊂ M 1,d+4 where D-branes
intersect, the relevant part of the action in conformal gauge is:

SR4 = 1
2πα′

∫∫
H

du du ∂uXI ∂uXJ ηIJ

= 1
4πα′

∫∫
R×R+

dx dy
(
∂xXI ∂xXJ + ∂yXI ∂yXJ

)
ηIJ ,

(2.11)

where 2 ∂u = ∂x − i ∂y and 2 ∂u = ∂x + i ∂y. The e.o.m. in these coordinates are:

∂u∂uXI(u, u) = 1
4
(
∂2

x + ∂2
y

)
XI(x + iy, x− iy) = 0. (2.12)

Their solution factorises as usual in holomorphic and anti-holomorphic components XI(u, u) =
XI(u) + X

I(u).

In the well adapted frame (2.2) we describe an open string with one of the endpoints on D(t)
through the relations:

∂σXi
(t)(τ,σ)

∣∣∣∣
σ=0

= ∂yXi
(t)(u, u)

∣∣∣∣
y=0

= 0, i = 1, 2, (2.13)

Xm
(t)(τ, 0) = Xm

(t)(x, x) = 0, m = 3, 4, (2.14)

where x ∈ D(t) = [xt, xt−1] and the index i labels the Neumann boundary conditions while m
labels the Dirichlet coordinates associated to the direction orthogonal to the D-branes.

As the presence of gm
(t) in (2.3) and (2.14) may complicate the analysis, we consider the deriv-

ative along the boundary direction of (2.14) to remove the dependence on the translation vector.
This procedure produces simpler boundary conditions which are nevertheless not equivalent to
the original (2.13) and (2.14): they will be recovered later by adding further constraints. The
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2.2 D-brane Configuration and Boundary Conditions

simpler boundary conditions we consider in the global coordinates are:(
R(t)

)i

J
∂σXJ(τ,σ)

∣∣∣∣
σ=0

= i
(
R(t)

)i

J

(
∂uXJ(x + i 0+)− ∂uX

J(x− i 0+)
)

= 0, (2.15)

(
R(t)

)m

J
∂τX

J(τ,σ)
∣∣∣∣
σ=0

= i
(
R(t)

)m

J

(
∂uXJ(x + i 0+) + ∂uX

J(x− i 0+)
)

= 0, (2.16)

where i = 1, 2, m = 3, 4 and x ∈ D(t).

With the introduction of the target space embedding of the worldsheet interaction point
between D-branes D(t) and D(t+1), f(t), we recover the full boundary conditions in terms of
discontinuities on the real axis:{

∂uXI(x + i 0+) =
(
U(t)

)I

J
∂uX

J(x− i 0+), x ∈ D(t)

XI(x(t), x(t)) = f(t)
. (2.17)

In the last expression we introduced the matrix

U(t) =
(
R(t)

)−1 S R(t) ∈
SO(4)

S(O(2)×O(2)) , (2.18)

where

S =


1

1
−1

−1

 (2.19)

embeds the difference between Neumann and Dirichlet conditions. Given its definition U(t) is
such that U(t) =

(
U(t)

)−1 =
(
U(t)

)T .

The target space vector f(t) recovers the apparent loss of information suffered when losing
g(t). Consider for instance the embedding equations (2.14) for any two intersecting D-branes
D(t) and D(t+1). Introducing the auxiliary quantities

R(t, t+1) =
(

Rm
(t)

Rn
(t+1)

)
∈ GL4(R), m, n = 3, 4, (2.20)

G(t, t+1) =
(

gm
(t)

gn
(t+1)

)
∈ R4, m, n = 3, 4, (2.21)

we can compute the intersection point as:

f(t) =
(
R(t, t+1)

)−1 G(t, t+1). (2.22)

Information on g(t) is thus recovered through the global boundary conditions in the second
equation in (2.17).

2.2.3 Doubling Trick and Branch Cut Structure

In conformal coordinates we thus introduced the discontinuities (2.17) across each D-brane which
define a non trivial cut structure on the plane. One way to deal with them is to introduce the
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x
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x(1)x(2)x(3)x(4)
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D(1) D(1)

Figure 2.2: Branch cut structure of the complex plane with NB = 4. Cuts are pictured as solid
coloured blocks running from one intersection point to another at finite.

doubling trick by gluing the relations along an arbitrary but fixed D-brane D(t):

∂zX (z) =
{

∂uX(u) if z = u and Im z > 0 or z ∈ D(t)
U(t) ∂uX(u) if z = u and Im z < 0 or z ∈ D(t)

. (2.23)

Let then U(t, t+1) = U(t+1) U(t) and Ũ(t, t+1) = U(t) U(t) U(t+1) U(t). The boundary conditions in
terms of the doubling field are:

∂zX (xt + e2πi(η+ i 0+)) = U(t, t+1)∂zX (xt + η+ i 0+), (2.24)
∂X (xt + e2πi(η− i 0+)) = Ũ(t, t+1)∂zX (xt + η− i 0+), (2.25)

for 0 < η < min
(∣∣x(t−1) − x(t)

∣∣, ∣∣x(t) − x(t+1)
∣∣) in order to consider only the two adjacent D-

branes D(t) and D(t+1). Matrices U(t, t+1) and Ũ(t, t+1) are the non trivial monodromies arising
from the rotation of the D-branes.

Since the relative rotations between consecutive D-branes are non Abelian, for each interaction
point there are two monodromies U and Ũ depending on the location of the base point of the
closed loop: one for paths starting in the upper plane H and one for paths starting in H . As
a consequence of the geometry of the rotations of the D-branes, a path on the complex plane
enclosing all of them does not present a monodromy:

NB∏
t=1
U(t−t,t+1−t) =

NB∏
t=1
Ũ(t+t,t+1+t) = 14. (2.26)

The complex plane has therefore branch cuts running between the D-branes at finite as shown
in Figure 2.2. We thus translated the rotations of the D-branes encoded in the matrices R(t)

in terms of U(t, t+1) and Ũ(t, t+1) which are matrix representations of the homotopy group of the
complex plane with the described branch cut structure.

As a consistency check, the action (2.11) can be computed in terms of the doubling field X .
The map

x(t) + η± i 0+ 7→ x(t) + e2πi(η± i 0+) (2.27)
must leave the action untouched since it does not depend on the branch cut structure. In fact
we can show that

SR4 = 1
4πα′

∫∫
C

dz dz ∂zX T (z) U(t) ∂zX (z). (2.28)
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2.3 D-branes at Angles in Spinor Representation

As a matter of fact the action does not depend on the branch structure of the complex plane.

2.3 D-branes at Angles in Spinor Representation

In the previous section we showed that it is possible to map the information on the rotations
of the D-branes to non trivial monodromies of the doubling field. We thus recast the issue of
solving the e.o.m. of the string in the presence of rotated boundary conditions to the search for
an explicit solution ∂zX (z) reproducing the non trivial monodromies in (2.24) and (2.25).

The field ∂zX (z) is technically a 4-dimensional real vector which has NB non trivial mono-
dromy factors represented by 4×4 real matrices, one for each interaction point x(t). A solution of
the e.o.m. is encoded in four linearly independent functions with NB branch points. In principle
we could try to write it as a solution to fourth order differential equations with NB finite Fuchsian
points. This is however an open mathematical debate. In fact the basis of such functions around
each branch point are usually complicated and defined up to several free parameters. Moreover
the explicit connection formulae between any two of them is an unsolved mathematical problem.
Using contour integrals and writing the functions as Mellin–Barnes integrals it might be possible
to solve the issue in the case NB = 3 but it is certainly not the best course of action.

On the other hand NB = 3 is exactly the case we are investigating. In what follows we use
the isomorphism

SO(4) ∼=
SU(2)× SU(2)

Z2
(2.29)

to map the problem of finding a 4-dimensional real solution to the e.o.m. to a quest for a
2× 2 complex matrix. Such matrix is a linear superposition of tensor products of vectors in the
fundamental representation of two different SU(2) groups. These vectors are solutions to second
order differential equations with three Fuchsian points, possibly the hypergeometric equation.
The task is then to find the parameters of the hypergeometric functions producing the spinor
representation of the monodromies in (2.24) and (2.25).

2.3.1 Doubling Trick and Rotations in Spinor Representation

We recall some of the properties of the isomorphism (2.29) in Appendix A. We define the spinor
representation of X as:

X(s)(u, u) = XI(u, u) τI , (2.30)

where τ = (i12, ~σ) and ~σ is the vector of the Pauli matrices. Consider then:

∂zX(s)(z) =
{

∂uX(s)(u) if z ∈H or z ∈ D(t)
UL(~n(t)) ∂uX(s)(u) U†R(~m(t)) if z ∈H or z ∈ D(t)

. (2.31)

As in the real representation the discontinuities on the D-branes can be cast into mono-
dromy factors with respect to the D-brane D(t). Branch cut structure and considerations on
the homotopy group are left unchanged as long as we consider both left and right sectors of
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2.3 D-branes at Angles in Spinor Representation

SU(2)L × SU(2)R at the same time. Let 0 < η < min
(∣∣x(t) − x(t−1)

∣∣, ∣∣x(t+1) − x(t)
∣∣). We find:

∂zX(s)(xt + e2πi(η+ i 0+)) = L(t, t+1)∂z X(s)(xt + η+ i 0+)R†(t, t+1), (2.32)

∂zX(s)(xt + e2πi(η− i 0+)) = L̃(t, t+1) ∂zX(s)(xt + η− i 0+) R̃†(t, t+1), (2.33)

where:

L(t, t+1) = UL(~n(t+1)) U†L(~n(t)), (2.34)
L̃(t, t+1) = UL(~n(t)) U†L(~n(t)) UL(~n(t+1)) U†L(~n(t)), (2.35)

R(t, t+1) = UR(~m(t+1)) U†R(~m(t)), (2.36)
R̃(t, t+1) = UR(~m(t)) U†R(~m(t)) UR(~m(t+1)) U†R(~m(t)). (2.37)

In spinor representation the action (2.11) becomes

SR4 = 1
4πα′

∫∫
H

du du tr
(

∂uX(s)(u, u) · ∂uX†(s)(u, u)
)

= 1
8πα′

∫∫
C

dz dz tr
(

UL(~n(t)) ∂zX(s)(z, z) U†R(~m(t)) ∂zX †(s)(z, z)
)

.

(2.38)

It is possible to show that the closed loop xt + η± i 0+ 7→ xt + e2πi(η± i 0+) does not generate
additional contributions in the action.

2.3.2 Special Form of Matrices for D-Branes at Angles

The SU(2) matrices involved in this scenario with D-branes intersecting at angles have a partic-
ular form. In the left sector (i.e. SU(2)L matrices) we have:

L(t, t+1) = UL(~n(t+1)) U†L(~n(t)) = −~v(t+1) · ~v(t) + i (~v(t+1) × ~v(t)) · ~σ, (2.39)

with
∥∥~v(t)

∥∥2 = 1. This is a consequence of the peculiar properties of the SO(4) matrices U(t)
defined in (2.18). Hence the corresponding SU(2)L×SU(2)R element (UL(~n(t)), UR(~m(t))) reflects
such characteristics. In particular for the left part we have

UL(~n(t)) = i ~v(t) · ~σ,
∥∥~v(t)

∥∥2 = 1, (2.40)

since U2
(t) = 14 implies that U2

L = ±12. The right sector clearly follows the same discussion.

In fact S in (2.19) can be represented as UL = UR = iσ1. Then any matrix UL(~n(t)) is of
the form UL(~n(t)) = i U(~r(t)) · σ1 ·U†(~r(t)), for some ~r(t) as follows from (2.18). Such matrix has
vanishing trace and squares to −12 hence the term proportional to two-dimensional unit matrix
in the expression of the generic SU(2) element given in Appendix A vanishes. As a consequence
n(t) = 1

4 such that (2.40) follows.
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Reω

Imω

∞10

Figure 2.3: Fixing the SL2(R) invariance for NB = 3 and t = 1 leads to a cut structure with all
the cuts defined on the real axis towards ωt =∞.

2.4 The Classical Solution

In the previous sections we defined the principal tools to study the non Abelian embedding of the
D-branes. In what follows we start the investigation of the relation between the hypergeometric
solutions and the monodromies due to the geometry of the D-branes.

2.4.1 The Choice of Hypergeometric Functions

We build the spinorial representation with SU(2) matrices and solutions of Fuchsian equations
with NB regular singular points. We are specifically interested in a solution with NB = 3. We
fix the usual SL2(R) invariance by mapping the three intersection points x(t−1), x(t+1) and x(t)
to ωt−1 = ωx(t−1)

= 0, ωt+1 = ωx(t+1)
= 1 and ωt = ωx(t)

=∞ respectively through:

ωu =
u− x(t−1)

u− x(t)
·

x(t+1) − x(t−1)

x(t+1) − x(t)
(2.41)

The cut structure for this choice is presented in Figure 2.3. The map also defines arg(ωt−ωz) ∈
[0, 2π) for t = t− 1, t + 1. We choose t = 1 in what follows.

The map (2.41) moves the generic Fuchsian singularities to known points on the complex
plane. The functions reproducing the necessary monodromies are basis of hypergeometric func-
tions. We define:

F (a, b; c; z) =
+∞∑
k=0

(a)k (b)k

Γ (c + k)
zk

k! = 1
Γ (c) F2 1 (a, b; c; z), (2.42)

where F2 1 (a, b; c; z) is the Gauss hypergeometric function and Γ (s) is the Euler Gamma func-
tion. The function F (a, b; c; z) is well defined for any value of its parameters.14 We define a
vector of independent hypergeometric functions:

B0(z) =
(

F (a, b; c; z)
(−z)1−c F (a + 1− c, b + 1− c; 2− c; z)

)
(2.43)

14It is not necessary to require c ∈ Z+ as in the definition of the Gauss hypergeometric function.
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as basis of functions around z = 0 with a branch cut on the interval [0, +∞). The choice of the
branch cuts follows from the cut on [1, +∞) coming from F (a, b; c; z) which has a singularity
at z = 1 and the cut on [0, +∞) from (−z)1−c.

As argued in (2.26), the homotopy group of the complex plane with the branch cut structure
of Figure 2.3 is such that a closed loop around all the singularities is homotopically trivial. The
corresponding product of the monodromy matrices (2.26) is the unit matrix. Let for instance
M±ωz

be the monodromy matrix which represents a closed loop around ωz (the + sign represents
a path starting in H , while − is a path with base point in H ). The triviality property is realised
through:

M+
0 M

+
1 M+

∞ =M−∞M−1 M−0 = 12 (2.44)
The monodromy matrix ωt+1 = 1 can thus be recovered as a product of monodromies around 0
and ∞ given the properties

M+
0 =M−0 =M0,

M+
∞ =M−∞ =M∞,

(2.45)

which encode the peculiar branch cut structure due to the doubling trick gluing the intervals on
one arbitrary D-brane. These matrices are an abstract representation of the monodromy group
since they are in an arbitrary basis.

Using the basis in z = 0 (2.43) it is straightforward to find the explicit representation M0 of
the abstract monodromyM0:

M0(c) =
(

1
e−2πic

)
. (2.46)

The computation of the monodromy matrix M∞ representing the monodromy in ωz = ∞ in
the basis (2.43) requires to first compute the monodromy representation M̃∞ of the abstract
monodromyM∞ in the basis of hypergeometric functions around z =∞:

B∞(z) =
(

(−z)−a F
(
a, a + 1− c; a + 1− b; z−1)

(−z)−b F
(
b, b + 1− c; b + 1− a; z−1)). (2.47)

This basis is connected to (2.43) through the transition matrix

C(a, b, c) = π

sin(π(a− b))

(
1

Γ(b)Γ(c−a) − 1
Γ(a)Γ(c−b)

1
Γ(1−a)Γ(b+1−c) − 1

Γ(1−b)Γ(a+1−c)

)
, (2.48)

as B0(z) = C(a, b, c) B∞(z). Through the loop z 7→ ze−2πi we find:

M̃∞(a, b) =
(

e2πia

e2πib

)
. (2.49)

Finally we can build the desired monodromy:

M∞ = C(a, b, c) M̃∞(a, b) C−1(a, b, c). (2.50)

2.4.2 The Monodromy Factors

With the previous definitions we reproduce the monodromies of the doubling field in its spinor
representation (2.32).15 These monodromies are tensor products of two basis of hypergeometric

15In general we do not need to consider (2.33) since they are the same monodromies.
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functions: the first basis reproduces the monodromies defined as L and the second one those
defined as R in (2.32). Since in principle there can be several combinations of parameters of
the hypergeometric function yielding the same monodromy, we consider the full solution to be a
linear superposition of all possible contributions:

∂zX (z) = ∂ωz

∂z

∑
l, r

clr ∂zXl,r(ωz), (2.51)

where we drop the index representing the spinorial representation to lighten the notation. We
write any possible solution in a factorised form as

∂zXl, r(ωz) = (−ωz)Alr (1−ωz)Blr B(L)
0, l (ωz)

(
B(R)

0, r (ωz)
)T

, (2.52)

where l and r label the parameters associates with the left and right sectors of the hypergeometric
function. We introduce the left basis element

B(L)
0, l (ωz) = D

(L)
l B

(L)
0, l (ωz)

=
(1 0

0 K
(L)
l

)(
F (al, bl; cl; ωz)

(−z)(1−cl) F (al + 1− cl, bl + 1− cl; 2− cl; ωz)

) (2.53)

where D
(L)
l ∈ GL2(C) is a relative normalisation matrix weighting differently the components of

the basis.16 The right sector follows in a similar way. Notice that the matrices D
(L)
l do not fix

the absolute normalisation contained in clr.

2.4.3 Parameters of the Trivial Monodromy

Using the previous relations we can determine the possible ∂zXl,r(ωz) with the desired mono-
dromies. In this section we study the case of the most general SU(2) matrices despite the fact
that in Section 2.3.2 we argued that they have a specific form.

First of all consider the matrices in (2.46) and (2.50). We impose:
D(L) M(L)

0
(
D(L))−1 = e−2πiδ

(L)
0 L(~n0)

D(R) M(R)
0
(
D(R))−1 = e−2πiδ

(R)
0 R∗(~m0) = e−2πiδ

(R)
0 R( ~̃m0)

e2πi(Alr−δ(L)
0 −δ(R)

0 ) = 1
, (2.54)


D(L), M(L)

∞
(
D(L))−1 = e−2πiδ(L)

∞ L(~n∞)
D(R) M(R)

∞
(
D(R))−1 = e−2πiδ(R)

∞ R∗(~m∞) = e−2πiδ(R)
∞ R( ~̃m∞)

e2πi(Alr+Blr−δ(L)
∞ −δ

(R)
∞ ) = 1

, (2.55)

where we defined

L(~n0) = L(t−1, t) = UL(~n(t)) U†L(~n(t−1)), (2.56)

L(~n∞) = L(t, t+1) = UL(~n(t+1))U
†
L(~n(t)), (2.57)

R(~m0) = R(t−1, t) = UR(~n(t))U
†
R(~n(t−1)), (2.58)

R(~m∞) = R(t, t+1) = UR(~n(t+1))U
†
R(~n(t)). (2.59)

16In general they can be different for each solution.
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The range of δ(L)
0 is

α ≤ δ(L)
0 ≤ α+ 1

2 , (2.60)

that is the width of the range is only 1
2 and not 1 as one would naively expect. This is a

consequence of the fact that e−4πiδ
(L)
0 is the determinant of the right hand side of the first

equation in (2.54). We then choose α = 0 for simplicity. The same considerations hold true for
all the other additional parameters δ(R)

0 and δ(L, R)
∞ .

Since we are interested in relative rotations of the D-branes, we choose the rotation in ωt−1 =
0 in the maximal torus of SU(2)L×SU(2)R without loss of generality: as we have two independent
groups, we can in fact fix the orientation of both vectors ~n0 and ~m0. In particular we set:

~n0 = (0, 0, n3
0) ∈ R3, 0 < n3

0 <
1
2 , (2.61)

~̃m0 = (0, 0, −m3
0) ∈ R3, 0 < m3

0 <
1
2 , (2.62)

where n3
0 = 0 is excluded to avoid considering a trivial rotation. We then define the parameters

of the rotation in ωt =∞ to be the most general

~n∞ = (n1
∞, n2

∞, n3
∞),

~̃m∞ = (−m1
∞, m2

∞, −m3
∞),

(2.63)

We could actually set n2
∞ = m2

∞ = 0 since the choice of the “gauge” (2.61) and (2.62) is preserved
by U(1) rotations mixing n1

∞ and n2
∞. We nevertheless keep the general expression in order to

check the computations.

Solving (2.54) and (2.55) connects the parameters of the hypergeometric function to the
parameter of the rotations (see Appendix B) thus reproducing the boundary conditions of the
intersecting D-branes through the non trivial monodromies of the basis of hypergeometric func-
tions. We find:

a
(L)
l = n0 + (−1)f(L)

n1 + n∞ + a
(L)
l , a

(L)
l ∈ Z, (2.64)

b
(L)
l = n0 + (−1)f(L)

n1 − n∞ + b
(L)
l , b

(L)
l ∈ Z, (2.65)

c
(L)
l = 2 n0 + c

(L)
l , c

(L)
l ∈ Z, (2.66)

δ
(L)
0 = n0, (2.67)

δ(L)
∞ = −n0 − (−1)f(L)

n1, (2.68)

K
(L)
l = − 1

2π2 G(a(L)
l , b

(L)
l , c

(L)
l )F(a(L)

l , b
(L)
l , c

(L)
l ) n1

∞ + i n2
∞

n∞
, (2.69)

where f (L) ∈ {0, 1}. For the sake of brevity we defined two auxiliary functions, namely
G(a, b, c) = Γ (1− a) Γ (1− b) Γ (a + 1− c) Γ (b + 1− c) and F(a, b, c) = sin(πc) sin(π(a− b)).
We also introduced the norm n1 = ‖~n1‖ of the rotation vector around ωt+1 = 1. Its depend-
ence on the other parameters is encoded in (2.44), where M+

1 = M−1
0 M−1

∞ , and the composition
rule (A.5):

cos(2πn1) = cos(2πn0) cos(2πn∞)− sin(2πn0) sin(2πn∞) n3
∞

n∞
. (2.70)

Relations for the right sector follow under the interchange of (L) with (R) and ~n↔ ~m.
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Parameters Alr and Blr follow the previous results and equations (2.54) and (2.55):

Alr = n0 + m0 + Alr, Alr ∈ Z, (2.71)
Blr(−1)f(L)

n1 + (−1)f(R)
m1 + Blr, Blr ∈ Z. (2.72)

2.4.4 Equivalent Solutions and Necessary Parameters

There are ambiguities in the equations presented in the previous section. In fact the choice of
f (L) and f (R) looks arbitrary and leading to an undefined solution. We can use properties of the
hypergeometric functions to show that any choice does not affect the final result. Specifically we
can start with certain values but we can recover the others through:

P

 0 1 ∞
0 0 a z

1− c c− a− b b

 = (1− z)c−a−b P

 0 1 ∞
0 0 c− b z

1− c a + b− c c− a

, (2.73)

where P is the Papperitz-Riemann symbol for the hypergeometric functions. We can then assign
any admissible value to f (L) and f (R) and then recover the other through the identification:

f (L)′ =
(

1 + f (L)
)
mod 2, (2.74)

a′l = cl − bl, (2.75)
b′l = cl − al, (2.76)
c′l = cl. (2.77)

A similar procedure applies also for the right sector. Finally we also identified the “free” para-
meters:

A′lr = Alr, (2.78)
B′lr = Blr − a

(L)
l − a(R)

r − b
(L)
l − b(R)

r + c
(L)
l + c(R)

r . (2.79)

The choice of f (L, R) is thus simply a convenient relabeling of parameters. We choose f (L) =
f (R) = 0 for simplicity. Moreover in order to get a well defined solution we must impose con-
straints on the hypergeometric parameters. We require:

c
(L)
l 6∈ Z, (2.80)

a
(L)
l + b

(L)
l 6∈ Z+ 1

2 . (2.81)

The relations between the parameters of the hypergeometric functions and the monodromies
associated to the rotation of the intersecting D-brane are more general than needed. The number
of parameters necessary to fix the configuration is 6, that is the amount of parameters to uniquely
determine n3

0, n1
∞, n3

∞ and m3
0, m1

∞, m3
∞. As noticed before we can in fact fix n2

∞ = m2
∞ = 0.

This is a consequence of the fact that all parameters depend on the norm of the rotation vectors
exception made for K(L) and K(R). They depend on n1

∞ + in2
∞ and m1

∞ + im2
∞. Performing a

SU(2)L and SU(2)R rotation around the third axis and a shift of the parameters δ∞, the phases
of the normalisation factors K can vanish.
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2.4 The Classical Solution

2.4.5 The Importance of the Normalization Factors

Using the P symbol the solutions can be symbolically written as

(−ω)A (1−ω)B×

× P


0 1 ∞
n0 n1 n∞ + a(L) ω

−n0 + 1− c(L) −n1 − a(L) − b(L) + c(L) −n∞ + b(L)


× P


0 1 ∞

m0 m1 m∞ + a(R) ω

−m0 + 1− c(R) −m1 − a(R) − b(R) + c(R) −m∞ + b(R)

.

(2.82)

The normalisation parameters K cannot however be guessed from the P symbol.

As we are interested in finding the truly independent solutions to the original problem, we can
use properties of the hypergeometric functions to reduce the number of possible choices of the
integer factors in the definition of the parameters. It is possible to show that any hypergeometric
function F (a + a, b + b; c + c; z) can be written as a combination of F (a, b; c; z) and any of its
contiguous functions [82]. For instance we can choose:

F (a + a, b + b; c + c; z) = h1(a, b, c; z) F (a + 1, b; c; z) + h2(a, b, c; z) F (a, b; c; z) , (2.83)

where h1 and h2 are finite sums of integer (both positive and negative) powers of z and negative
powers of 1− z. For simplicity let:

F = F (a, b; c; z) ,

F (a + k) = F (a + k, b; c; z) ,

F (b + k) = F (a, b + k; c; z) ,

. . .

(2.84)

Similarly we use a shorthand notation for the basis of the hypergeometric functions:17

B0(a, b, c; z) =
(

F (a, b; c; z)
Ka,b,c (−z)(1−c) F (a + 1− c, b + 1− c; 2− c; z)

)
. (2.85)

We can then algorithmically apply the following relations

(c− a) F (a− 1) + (2a− c + (b− a)z) F − a(1− z) F (a + 1) = 0.

(b− a) F + a F (a + 1)− b F (b + 1) = 0,

(c− a− b) F + a(1− z) F (a + 1)− (c− b) F (b− 1) = 0,

(a + (b− c)z) F − a(1− z) F (a + 1) + (c− a)(c− b)z F (c + 1) = 0,

(c− a− 1) F + a F (a + 1)− F (c− 1) = 0,

(2.86)

to eliminate unwanted integer factors and keep only F (a, b; c; z) and any of its contiguous
functions.

Notice that B0 is a basis element of the possible solutions of the classical and quantum string
e.o.m. Using any relation in (2.86) we can change a, b or c by one unit coherently in both

17In this expression we introduce a slight abuse of notation since Ka,b,c depends on a phase which is not a
function of a, b or c. See for instance (2.69) and (B.32).
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hypergeometric functions contained in B0. For example from the first equation in (2.86) we
expect:

(c− a)B0(a− 1) + (2a− c + (b− a)z)B0 − a(1− z)B0(a + 1) = 0, (2.87)

which can be used to lower and rise the integer factors in a. The relation holds only because the
normalisation factor K is present. In fact coefficients in this equation equal those in the relation
for the first component of B0. It is not trivial for the second component where the factor K is
key to the consistency. Similarly the relation needed to lower c reads:

(a− c)(b− c)B0(c + 1) + (a + (b− c)z)B0 − a(1− z)B0(a + 1) = 0. (2.88)

2.4.6 Constraints from the Finite Euclidean Action

In previous sections we present a general procedure to write all possible independent solutions to
the classical string e.o.m. However not all of them are physically acceptable. In fact we require
the finiteness of the Euclidean action (2.38).

In principle it could appear obvious to use (2.86) to restrict the possible arbitrary integers
to:

a(L) ∈ {−1, 0}, a(R) ∈ {−1, 0}, (2.89)
b(L) = 0, b(R) = 0, (2.90)
c(L) = 0, c(R) = 0. (2.91)

We could then use (2.83) to write the possible solution as

∂zX (z) = ∂ωz

∂z
(−ωz)n0+m0 (1−ωz)n1+m1

×
∑

a(L, R)∈{−1,0}

h(ωz, a(L,R))×

× B(L)
0 (a(L) + a(L), b, c; ωz)

(
B(R)

0 (a(R) + a(R), b, c; ωz)
)T

.

(2.92)

The issue is therefore to find an explicit form for h(ωz, a(L,R)) yielding a finite action.

We could however use the symbolic solution (2.82) to find basis of solutions with finite
action. As a matter of fact, finding the possible solutions with finite action can be recast to
finding conditions such that the field ∂zX (z) is finite by itself. Linearity of this condition ensures
a simpler approach with respect to the quadratic action of the string. From (2.38) it is clear
that the action can be expressed as the sum of the product of any possible couple of elements of
the expansion (2.51). We thus need to take into examination all possible pairs of contributions
∂zXl1r1(z) ∂zXl2r2(z). Near its singular points, the behavior of any element of solution (2.51)
can be easily read from its symbolic representation (2.82):

∂zX (z) ωz→ωt∼ ωCt
t

(
ω

kt1
t

ω
kt2
t

)(
ω

ht1
t ω

ht2
t

)
. (2.93)

It can be verified that the convergence of the action both at finite and infinite intersection points
is ensured by the same constraints found when imposing the convergence at any point of the
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classical solution

X(s)(u, u) = f(s) (t−1) +
u∫

x(t−1)

du′ ∂u′X(s)(u′) + U†L(~nt)

 u∫
x(t−1)

du′ ∂u′X(s)(u′)

UR(~mt), (2.94)

which follows in spinor representation from (2.31) and where f(s), (t−1) = f I
(t−1) τI . We specifically

find:

Ct + kti
+ htj

> −1, i, j ∈ {1, 2}, ωt ∈ {0, 1},
Ct + kti

+ htj
< −1, i, j ∈ {1, 2}, ωt =∞.

(2.95)

For simplicity first consider the case of a trivial right rotation.18 In this case (2.82) becomes

(−ω)A (1−ω)B P


0 1 ∞
n0 n1 n∞ + a(L) ω

−n0 + 1− c(L) −n1 − a(L) − b(L) + c(L) −n∞ + b(L)

. (2.96)

The only possible solution compatible with (2.95) is

P

 0 1 ∞
n0 − 1 n1 − 1 n∞ + 1 ω
−n0 −n1 −n∞ + 2

, (2.97)

that is a(L) = −1, b(L) = 0, c(L) = 0, A = −1 and B = −1.

In the general the solution is more complicated and it depends on the relation between the
rotation vectors ~n0, 1,∞, ~m0, 1,∞. For each possible case the solution is however unique and it is
given by

1. n0 > m0 and n1 > m1:

P

 0 1 ∞
n0 − 1 n1 − 1 n∞ + 1 ω
−n0 −n1 −n∞ + 2

P

 0 1 ∞
m0 m1 m∞ ω

−m0 + 1 −m1 −m∞ + 1

, (2.98)

2. n0 > m0, n1 < m1 and n∞ > m∞:

P

 0 1 ∞
n0 − 1 n1 n∞ ω
−n0 −n1 −n∞ + 2

P

 0 1 ∞
m0 m1 − 1 m∞ + 1 ω
−m0 −m1 −m∞ + 1

, (2.99)

3. n0 > m0, n1 < m1 and n∞ < m∞:

P

 0 1 ∞
n0 − 1 n1 n∞ + 1 ω
−n0 −n1 −n∞ + 1

P

 0 1 ∞
m0 m1 − 1 m∞ ω
−m0 −m1 −m∞ + 2

, (2.100)

18That is require that UR is proportional to the identity.
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A B a(L) b(L) c(L) a(R) b(R) c(R)

n0 > m0 n1 > m1 n∞ ≶ m∞ -1 -1 -1 0 0 0 +1 +1
n0 > m0 n1 < m1 n∞ > m∞ -1 -1 -1 +1 0 0 0 +1
n0 > m0 n1 < m1 n∞ < m∞ -1 -1 0 0 0 -1 +1 +1
n0 < m0 n1 > m1 n∞ > m∞ -1 -1 -1 +1 +1 0 0 0
n0 < m0 n1 > m1 n∞ < m∞ -1 -1 0 0 +1 -1 +1 0
n0 < m0 n1 < m1 n∞ ≶ m∞ -1 -1 0 +1 +1 -1 0 0

Table 2.1: Integer shifts in the parameters of the hypergeometric function.

4. n0 < m0, n1 > m1 and n∞ > m∞:

P

 0 1 ∞
n0 n1 − 1 n∞ ω
−n0 −n1 −n∞ + 2

P

 0 1 ∞
m0 − 1 m1 m∞ + 1 ω
−m0 −m1 −m∞ + 1

, (2.101)

5. n0 < m0, n1 > m1 and n∞ < m∞:

P

 0 1 ∞
n0 n1 − 1 n∞ + 1 ω
−n0 −n1 −n∞ + 1

P

 0 1 ∞
m0 − 1 m1 m∞ ω
−m0 −m1 −m∞ + 2

, (2.102)

6. n0 < m0, n1 < m1:

P

 0 1 ∞
n0 n1 n∞ ω
−n0 −n1 −n∞ + 1

P

 0 1 ∞
m0 − 1 m1 − 1 m∞ + 1 ω
−m0 −m1 −m∞ + 2

. (2.103)

The parameters associated to this list of solutions are summarised in Table 2.1, where the sym-
metry under the exchange of n and m becomes evident.

2.4.7 The Basis of Solutions

In the previous section we produced one solution for each ordering of the nωz
with respect to

mωz . There are however other solutions connected to the Z2 equivalence class in the isomorphism
between SO(4) its double cover. Given a solution (~n0, ~n1, ~n∞)⊕ (~m0, ~m1, ~m∞), we can in fact
replace any couple of ~n and ~m by ~̂n and ~̂m and get an apparently new solution.19 For instance
we could consider (~̂n0, ~̂n1, ~n∞) ⊕ (~m0, ~̂m1, ~̂m∞). On the other hand the previous substitution
would change the SO(4) in both ω = 0 and ω = ∞: it does not represent a new solution. We
are left therefore with three possibilities besides the original one:

(~̂n0, ~̂n1, ~n∞)⊕ ( ~̂m0, ~̂m1, ~m∞),
(~̂n0, ~n1, ~̂n∞)⊕ (~m0, ~̂m1, ~̂m∞),
(~̂n0, ~n1, ~̂n∞)⊕ (~m0, ~̂m1, ~̂m∞).

(2.104)

19We need to change two rotation vectors because the monodromies are constrained by (2.44).
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We can gauge fix the Z2 choice by letting ~n3
0, ~m3

0 > 0 as required by (2.61) and (2.62). We are
thus left with two possible solutions

(~n0, ~n1, ~n∞)⊕ (~m0, ~m1, ~m∞), (2.105)
(~n0, ~̂n1, ~̂n∞)⊕ (~m0, ~̂m1, ~̂m∞). (2.106)

These are the original and a modified solution obtained by acting with a parity operator P2 on
the rotation parameters at ω = 1, ∞ on both left and right sector at the same time. We then
need to ensure its independence in order to accept it as a possible solution.

As shown in Table 2.1, there are only two different cases up to left-right symmetry. The first
is {

(n0 > m0, n1 > m1, n∞ > m∞), (n0 > m0, n̂1 < m̂1, n̂∞ < m̂∞)
}

, (2.107)

which is mapped to{
(n0 < m0, n1 < m1, n∞ < m∞), (n0 < m0, n̂1 > m̂1, n̂∞ > m̂∞)

}
(2.108)

by the left-right symmetry. The second is{
(n0 > m0, n1 > m1, n∞ < m∞), (n0 > m0, n̂1 < m̂1, n̂∞ > m̂∞)

}
, (2.109)

which is mapped to{
(n0 < m0, n1 < m1, n∞ > m∞), (n0 < m0, n̂1 > m̂1, n̂∞ < m̂∞)

}
(2.110)

by the same symmetry.

We can then study the two solutions in the two cases. We first perform the computations com-
mon to both cases and then we explicitly specialise the calculations. Computing the parameters
of the hypergeometric functions of the first solution leads to:

a(L) = n0 + n1 + n∞ + a(L)

b(L) = n0 + n1 − n∞ + b(L)

c(L) = 2 n0 + c(L)
,


a(R) = m0 + m1 + m∞ + a(R)

b(R) = m0 + m1 −m∞ + b(R)

c(R) = 2 m0 + 1 + c(R)
. (2.111)

The values of the constants are in Table 2.1. We then derive the factors K(L) and K(R) us-
ing (2.69). The first solution reads:

∂ωX1 = (−ω)n0+m0−1 (1−ω)n1+m1−1

×
(

F
(
a(L), b(L); c(L); ω

)
K(L) (−ω)1−c(L) F

(
a(L) + 1− c(L), b(L) + 1− c(L); 2− c(L); ω

))
×
(

F
(
a(R), b(R); c(R); ω

)
K(R) (−ω)1−c(R) F

(
a(R) + 1− c(R), b(R) + 1− c(R); 2− c(R); ω

))
(2.112)
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The parameters of the second solution read
â(L) = n0 + n̂1 + n̂∞ + â(L) = c(L) − a(L) + a(L) − c(L) + â(L) + 1
b̂(L) = n0 + n̂1 − n̂∞ + b̂(L) = c(L) − b(L) + b(L) − c(L) + b̂(L)

ĉ(L) = 2 n0 + ĉ(L) = c(L) − c(L) + ĉ(L)
â(R) = m0 + n̂1 + n̂∞ + â(R) = c(R) − a(R) + a(R) − c(R) + â(R) + 1
b̂(R) = m0 + n̂1 − n̂∞ + b̂(R) = c(R) − b(R) + b(R) − c(R) + b̂(R)

ĉ(R) = 2 m0 + ĉ(R) = c(R) − c(R) + ĉ(R)

(2.113)

The two cases differ only for constant factors and not in structure.

Case 1 Consider n0 > m0, n1 > m1 and n∞ > m∞. The associated second solution is
n0 > m0, n̂1 < m̂1 and n̂∞ < m̂∞. Its parameters are:

â(L) = c(L) − a(L)

b̂(L) = c(L) − b(L)

ĉ(L) = c(L)
,


â(R) = c(R) − a(R)

b̂(R) = c(R) − b(R) + 1
ĉ(R) = c(R) + 1

, (2.114)

The normalisation factors are

K̂(L) = K(L), K̂(R) = K(R)

a(R)(c(R) − b(R)) . (2.115)

Using Euler relation

F (a, b; c; ω) = (1−ω)c−a−b F (c− a, c− b; c; ω) , (2.116)

we can write the second solution as
∂ωX2 = (−ω)n0+m0−1 (1−ω)n1+m1

×
(

F
(
a(L), b(L); c(L); ω

)
K(L) (−ω)1−c(L) F

(
a(L) + 1− c(L), b(L) + 1− c(L); 2− c(L); ω

))
×
(

F
(
a(R) + 1, b(R); c(R) + 1; ω

)
K̂(R) (−ω)−c(R) F

(
a(R) + 1− c(R), b(R) − c(R); 1− c(R); ω

))
. (2.117)

In this solution the left basis is exactly the same as in the first solution (2.112) while the right
basis differs for a(R) 7→ a(R) + 1 and c(R) 7→ c(R) + 1.

Case 2 Consider now the second option n0 > m0, n1 > m1 and n∞ < m∞. For the second
solution we have n0 > m0, n̂1 < m̂1 and n̂∞ > m̂∞ and the parameters are explicitly:

â(L) = c(L) − a(L) − 1
b̂(L) = c(L) − b(L) − 1
ĉ(L) = c(L)

,


â(R) = c(R) − a(R)

b̂(R) = c(R) − b(R)

ĉ(R) = c(R)
, (2.118)

The normalisation factors K are:

K̂(L) = K(L) (b(L) − 1)(c(L) − a(L) − 1)
a(L)(c(L) − b(L)) , K̂(R) = K(R). (2.119)
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Using Euler relation we write the second solution for the second case as

∂ωX2 = (−ω)n0+m0−1 (1−ω)n1+m1

×
(

F
(
a(L) + 1, b(L) − 1; c(L); ω

)
K̂(L) (−ω)1−c(L) F

(
a(L) + 2− c(L), b(L) − c(L); 2− c(L); ω

))
×
(

F
(
a(R), b(R); c(R); ω

)
K̂(R) (−ω)−c(R) F

(
a(R) + 1− c(R), b(R) + 1− c(R); 2− c(R); ω

))
. (2.120)

The right basis is the same as in the first solution while the left basis differs for a(L) 7→ a(L) + 1
and b(L) 7→ b(L) − 1.

2.4.8 The Solution

We showed that there are two independent solutions. The general solution for ∂ωX is therefore:

∂ωX = C1 ∂ωX1 + C2 ∂ωX2. (2.121)
The final solution depends only on two complex constants, C1 and C2, which we can fix imposing
the global conditions in (2.17), that is the second equation in the solution (2.94). As the three
intersection points in target space always define a triangle on a 2-dimensional plane, we impose
the boundary conditions knowing two angles formed by the sides of the triangle (i.e. the branes
between two intersections) and the length of one of them. Since we already fixed the parameters
associated to the rotations, we need to compute the length of one of the sides. Consider for in-
stance the length of X(xt+1, xt+1)−X(xt−1, xt−1). Explicitly we impose the four real equations
in spinorial formalism

1∫
0

dω ∂ωX (ω) + U†L(~nt)

 1∫
0

dω ∂ωX (ω)

UR(~mt) = ft+1 (s) − ft−1 (s), (2.122)

where we used the mapping (2.41) to write the integrals in the ω variables. This equation has
enough d.o.f. to fix completely the two complex parameters C1 and C2. The final generic
solution is thus uniquely determined.

2.5 Recovering the SU(2) and the Abelian Solution

In this section we show how this general procedure includes both the solution with pure SU(2)
rotation matrices and the solution with Abelian rotations of the D-branes. The Abelian solution
emerges from this construction as a limit and produces the known result for Abelian SO(2) ×
SO(2) ⊂ SO(4) rotations in the case of a factorised space R4 = R2 ×R2.

2.5.1 Abelian Limit of the SU(2) Monodromies

Here we compute the parameter ~n1 given two Abelian rotation in ω = 0 and ω = ∞ using the
standard expression for two SU(2) element multiplication given in (A.5) in Appendix A. Results
are shown in Table 2.2.
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2.5 Recovering the SU(2) and the Abelian Solution

~n0 ~n∞ relations n1 ~n1
∑
t

~n~t

n0 ~k n∞ ~k n0 + n∞ < 1
2 n0 ≶ n∞ n0 + n∞ −n1 ~k 0

n0 ~k n∞ ~k n0 + n∞ > 1
2 n0 ≶ n∞ 1− (n0 + n∞) n1 ~k ~k

n0 ~k −n∞ ~k n0 + n∞ ≶ 1
2 n0 > n∞ n0 − n∞ −n1 ~k 0

n0 ~k −n∞ ~k n0 + n∞ ≶ 1
2 n0 < n∞ −n0 + n∞ n1 ~k 0

Table 2.2: Abelian limit of SU(2) monodromies

D(1)

D(2)

D(3)n3
0 > 0

n3
1 < 0

n3
∞ > 0

(a) Case 1.

D(1)

D(2)

D(3)n3
0 > 0

n3
1 < 0

n3
∞ > 0

(b) Case 2.

Figure 2.4: The Abelian limit when the triangle has all acute angles. This corresponds to the
cases n0 + n∞ < 1

2 and n0 < n∞ which are exchanged under the parity P2.

D(1)

D(2)

D(3)

n3
0 > 0

n3
1 < 0

n3
∞ > 0

(a) Case 1.

D(1)

D(2)

D(3)

n3
0 > 0

n3
1 > 0

n3
∞ < 0

(b) Case 2.

Figure 2.5: The Abelian limit when the triangle has one obtuse angle. This corresponds to the
cases n0 + n∞ > 1

2 and n0 > n∞ which are exchanged under the parity P2.

57



2.5 Recovering the SU(2) and the Abelian Solution

D(t)

D(t+1)

α(t) α(t+1)

ε(t)

(a) Case 1.

D(t)

D(t+1)

α(t)α(t+1)

ε(t)

(b) Case 2.

Figure 2.6: The geometrical angles used in the usual geometrical approach to the Abelian con-
figuration do not distinguish among the possible branes orientations. In fact we have 0 ≤ α < 1
and 0 < ε < 1.

Under the parity transformation P2 the previous four cases are grouped into two sets {n1 =
n0 +n∞, n̂1 = −n0 +n̂∞} and {n1 = 1−(n0 +n∞), n̂1 = n0−n̂∞}. Geometrically the first group
corresponds to the same geometry which is depicted in Figure 2.4 while the second in Figure 2.5.
We can in fact arbitrarily fix the orientation of D(3) to obtain these geometrical interpretations.
Since n3

0 > 0 we can then fix the orientation of D1. D2 is then fixed relatively to D1 by the sign
of n3

∞. The sign of n3
1 then follows.

Differently from the usual geometric Abelian case, this group analytical approach distin-
guishes between the possible orientations of the D-branes. In fact we can compare all possible
D-brane orientation and the group parameter n3 with the angles in the Abelian configuration
in Figure 2.6. The relation between the usual Abelian paramter ε~t and n3

~t
is

ε~t = n3
~t

+ θ(−n3
~t
), (2.123)

when all m = 0.

2.5.2 The Abelian Limit of the Left Solutions

We can then compute the basis element for the entries of Table 2.1 for any value of n1 given
in Table 2.2. For simplicity we consider the left sector of the solution and drop the notation
identifying it to avoid cluttering the equations. The right sector follows in a similar way.

In the Abelian limit either K = 0 or K = ∞. We can absorb the infinite divergence in a
constant term globally multiplying the solution and use:

D

∣∣∣∣
K=0

=
(

1
0

)
, (2.124)

D

∣∣∣∣
K=∞

=
(

0
1

)
. (2.125)

58



2.5 Recovering the SU(2) and the Abelian Solution

(
a(L), b(L), c(L)) n1

(
B(L)(z)

)T

(−1, 0, 0)

n0 + n∞
(
(1− z)−2 n∞−2 n0+1 0

)
1− (n0 + n∞)

(
1 0

)
n0 − n∞

(
1 (−z)1−2 n0

)
−n0 + n∞

(
1 0

)
(−1, 1, 0)

n0 + n∞
(
F (2 n∞ + 2 n0 − 1, 2 n0 + 1; 2 n0; z) 0

)
1− (n0 + n∞)

(
1 0

)
n0 − n∞

(
0 (−z)1−2 n0

)
−n0 + n∞

(
0 (1− z)2 n0−2 n∞ (−z)1−2 n0

)
(0, 0, 0)

n0 + n∞
(
(1− z)−2 n∞−2 n0 0

)
1− (n0 + n∞)

(
0 (1− z)2 n∞+2 n0−2 (−z)1−2 n0

)
n0 − n∞

(
(1− z)2 n∞−2 n0 0

)
−n0 + n∞

(
1 0

)
(−1, 1, 1)

n0 + n∞
(
(1− z)−2 n∞−2 n0 + 1 0

)
1− (n0 + n∞)

(
1 0

)
n0 − n∞

(
0 (−z)−2 n0

)
F (−1, 1− 2 n∞; 1− 2 n0; z))

−n0 + n∞
(
0 (1− z)−2 n∞+2 n0+1 (−z)−2 n0

)
(0, 0, 1)

n0 + n∞
(
0 (−z)−2 n0

)
1− (n0 + n∞)

(
0 (1− z)2 n∞+2 n0−1 (−z)−2 n0

)
n0 − n∞

(
0 (−z)−2 n0

)
)

−n0 + n∞
(
1 0

)
(0, 1, 1)

n0 + n∞
(
(1− z)−2 n∞−2 n0 0

)
1− (n0 + n∞)

(
0 (1− z)2 n∞+2 n0−2 (−z)−2 n0

)
n0 − n∞

(
0 (−z)−2 n0

)
)

−n0 + n∞
(
0 (1− z)2 n0−2 n∞ (−z)−2 n0

)
Table 2.3: Abelian limit of the solutions

Results are summarised in Table 2.3 where we left some hypergeometric functions in their sym-
bolic form for compactness even though they are in fact elementary functions since either a or
c− b equal −1.

2.5.3 The SU(2)L Limit

We recover the non Abelian SU(2) solution by considering m~t ∼ 0. This is the first specific case
shown in Section 2.4.7. In this scenario the left solution B(L) is always the same and matches the
previous computation, however the right sector seems to give different solutions when different
Abelian limits are taken. Studying all possible solutions we find that all of them give the same
answer in the limit m~t → 0, i.e. both B(R) =

(
1 0

)T and B(R) =
(
0 1

)T .20 The difference
is the solution obtained from n0 > m0, n1 > m1 and n∞ > m∞ or n0 > m0, n̂1 < m̂1 and
n̂∞ < m̂∞. In any case the solution is factorised in the form B(L)(z) ⊗

(
C C ′

)T which is
expected since the right sector plays no role.

20We write “possible solutions” because m1 = 1− (m0 + m∞) is not.
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2.5 Recovering the SU(2) and the Abelian Solution

2.5.4 Relating the Abelian Angles with the Group Parameters

Using the explicit form of the SO(4) and SU(2) × SU(2) matrices, we can verify that when the
left and right SU(2) parameters are ~n = n3 ~k and ~m = m3 ~k the rotation of the D-branes in the
plane 14 is a SO(2) element (

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, θ = n3 −m3, (2.126)

while in plane 23 the angle is θ = n3 + m3. Comparing with the case m = 0 given in (2.123), we
then guess that the general relation between the group parameters and the usual Abelian angles
is:

ε~t = n3
~t
−m3

~t
+ θ(−(n3

~t
−m3

~t
)),

ϕ~t = n3
~t

+ m3
~t

+ θ(−(n3
~t

+ m3
~t
)).

(2.127)

2.5.5 Recovering the Abelian Result: an Example

To show that the construction of the Abelian limit is indeed working, we consider the first case
in Section 2.4.7 with n1 = 1− (n0 + n∞) and m1 = −m0 + m∞. This leads to two independent
rational functions of ωz:

∂ωz
X (ωz) =

(
i∂ωz Z̄1(ωz) ∂ωzZ2(ωz)
∂ωz
Z̄2(ωz) i∂ωz

Z1(ωz)

)
=
(

i∂ωz (X 1(ωz)− iX 4(ωz)) ∂ωz (X 2(ωz) + iX 3(ωz))
∂ωz

(X 2(ωz)− iX 3(ωz)) i∂ωz
(X 1(ωz) + iX 4(ωz))

)
=
(

0 C1 (1−ωz)ε1−1 (−ωz)ε0−1

0 C2 (1−ωz)−ϕ1 (−ωz)−ϕ0

)
,

(2.128)

where C1 and C2 are constants as in (2.121). This is the known result in the presence of Abelian
rotations of the D-branes: we have two different U(1) sectors undergoing two different rotations
U(1)1 × U(1)2 ⊂ SU(2)L × SU(2)R. In particular we used (2.127) to write the relation between
the usual Abelian angles and the group parameters as

ε0 = n0 −m0, ε1 = n1 −m1, ε∞ = n∞ + m∞ (2.129)

such that
∑
t
ε~t = 1, and

ϕ0 = n0 + m0, ϕ1 = n1 + m1, ϕ∞ = n∞ −m∞, (2.130)

where
∑
t
ϕ~t = 2, in order to approach the usual notation in the literature. As usual we have

∂ωz
Z1(ωz) 6=

[
∂ωz
Z1(ωz)

]∗
.

We can now build the Abelian solution to show the analytical structure of the limit. We have

(
iZ

1(u, u) Z2(u, u)
Z

2(u, u) iZ1(u, u)

)
=


if

1
(t−1) + i

ωu∫
0

dω ∂ωZ1 f2
(t−1) +

ωu∫
0

dω ∂ωZ2

f
2
(t−1) +

ωu∫
0

dω ∂ωZ2 if1
(t−1) + i

ωu∫
0

dω ∂ωzZ1

 (2.131)
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2.6 The Physical Interpretation

where we chose R(t) = 14 so that U(t) in (2.18) is mapped to (iσ1, iσ1) ∈ SU(2) × SU(2).
Notice however that ~n~t = n3

~t
~k implies that v3

(t) = 0 in (2.40). Hence UL and UR are always off
diagonal and their action on (2.128) is to fill the first column. From the previous relations we
can also recover the usual holomorphicity Z

1(u) =
[
Z1(u)

]∗ of the sector with
∑
t
ε~t = 1 and

Z
2(u) =

[
Z2(u)

]∗ of the sector with
∑
t
ϕ~t = 2.

2.5.6 Abelian Limits

From the example in the previous section it is possible to consider both cases given in Section 2.4.7
and all possible combinations of the expression of n1 and m1 for a total of 2×4×4 = 32 possible
combinations. In almost all cases (in fact all but six) the solution in spinorial formalism is a
2 × 2 matrix which has two non vanishing entries, hence two independent Abelian solutions.
In the remaining cases the matrix has only one non vanishing entry but the constraints on n
and m are not compatible, thus they should not be considered. In the first case encountered
in Section 2.4.7 the inconsistent combinations are {n1 = n0 + n∞, m1 = 1 − (m0 + m∞)} and
{n1 = 1−(n0 +n∞), m1 = 1−(m0 +m∞)}. In the second case in Section 2.4.7 the incompatible
constraints appear when n1 = −n0 + n∞.

2.6 The Physical Interpretation

In this section we show some consequences of the explicit classical solution for the phenomenology
of models involving D-branes intersecting at angles. In particular we focus on the value of the
action which plays a fundamental role in the hierarchy of the Yukawa couplings.

2.6.1 Rewriting the Action

Using the classical solution previously computed, it is possible to compute the classical action
of the bosonic string and show its contribution to the correlation functions of twist fields and
Yukawa couplings. We use the equations of motion (2.12) to simplify the action (2.11). We get:

4πα′ SR4

∣∣∣∣
on-shell

= i

3∑
t=1

∑
m∈{3,4}

g(t) m

x(t−1)∫
x(t)

dx
(
R(t)

)
mI

(X ′L(x)−X ′R(x))I

∣∣∣∣
y=0+

, (2.132)

where indices I = 1, 2, 3, 4 are summed over and m = 3, 4 are the transverse directions in the
well adapted frame with respect to the D-brane. As the number of D-branes is defined modulo
NB = 3, D(1) is split on two separate intervals:[

x(1), x(3)
]

=
[
x(1), +∞

)
∪
(
−∞, x(3)

]
, (2.133)

as it is visually shown in Figure 2.2. For x(t) < x < x(t−1) we have:

X(x + iy, x− iy) = X∗(x + iy, x− iy) ⇒ X∗L(x− iy) = XR(x− iy) + Y, (2.134)
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2.6 The Physical Interpretation

where Y ∈ R is a constant factor which cannot depend on the particular D-brane D(t). In fact
the continuity of XL(u) and XR(u) on the worldsheet intersection point ensures that

lim
x→x+

(t)

X(x, x) = lim
x→x−(t)

X(x, x), (2.135)

which does not allow Y to depend on the specific D-brane while the reality of X(u, u) implies
that Im Y = 0. Now (2.132) becomes:

4πα′ SR4

∣∣∣∣
on-shell

= −2
3∑

t=1

∑
m∈{3,4}

g(t) m Im
(
R(t)

)
mI

XI
L(x + i0+)

∣∣∣∣x=x(t−1)

x=x(t)

= −2
3∑

t=1
g

(⊥)
(t) I Im XI

L(x + i0+)
∣∣∣∣x=x(t−1)

x=x(t)

∈ R,

(2.136)

where g
(⊥)
(t) I =

∑
m∈{3,4}

(
R−1

(t)

)
mI

g(t) m is the transverse shift of D(t) in the global coordinates
of the target space:

g
(⊥)
(t) I

(
f(t−1) − f(t)

)I = 0. (2.137)

2.6.2 Holomorphic Case

In this case there are global complex coordinates for which the string solution is holomorphic:

Zi(u, u) = Zi
L(u), Z

i(u, u) = Z̄i(u) =
(
Zi

L(u)
)∗

, (2.138)

where i = 1 in the Abelian case and i = 1, 2 in the SU(2) case. We also have f i
(t) = Zi

L(x(t)+i 0+).
Equations (2.137) and (2.136) then become

Re(g(⊥)
(t) i

(
f(t−1) − f(t)

)i) = 0, (2.139)

4πα′ SR4

∣∣∣∣
on-shell

= −2
3∑

t=1
Im(g(⊥)

(t) i

(
f(t−1) − f(t)

)i), (2.140)

where the last equation shows that the action can be expressed using just the global data.

In the Abelian scenario we can further simplify the action and give a clear geometrical mean-
ing. Given to complex numbers a, b ∈ C such that Re(a∗b) = 0 then Im(a∗b) = ±|a||b|. This can
be seen either by direct computation or by using a U(1) rotation to set b equal to |b|. Since the
action is positive then we can write

SR4

∣∣∣∣
on-shell

= 1
2πα′

3∑
t=1

(
1
2

∣∣∣g(⊥)
(t)

∣∣∣ ∣∣f(t−1) − f(t)
∣∣), (2.141)

where a factor 1
2 comes from raising the complex index in g

(⊥)
(t) 1. The right hand side of the

previous expression is the sum of the areas of the triangles having the interval between two
intersection points on a given D-brane D(t) as base and the distance between the D-brane and
the origin as height. A visual reference can be found in Figure 2.1.

For the SU(2) case we can use a rotation to map (f(t−1)−f(t))i to the form
∥∥f(t−1) − f(t)

∥∥δi
1.

Each term of the action can be interpreted again as an area of a triangle where the distance
between the interaction points is the base.
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D(t)

D(t+1)

Figure 2.7: Pictorial 3-dimensional representation of two D2-branes intersecting in the Euclidean
space R3 along a line (in R4 the intersection is a point since the co-dimension of each D-brane
is 2): since it is no longer constrained on a bi-dimensional plane, the string must be deformed
in order to stretch between two consecutive D-branes. Its action can be larger than the planar
area.

2.6.3 General Case and Intuitive Explanation

In the general case there does not seem to be any possible way of computing the action (2.136) in
term of the global data. Most probably the value of the action is larger than in the holomorphic
case since the string is no longer confined to a plane. Given the nature of the rotation its
worldsheet has to bend in order to be attached to the D-brane as pictorially shown in Figure 2.7
in the case of a 3-dimensional space. The general case we considered then differs from the known
factorised case by an additional contribution in the on-shell action which can be intuitively
understood as a small “bump” of the string worldsheet in proximity of the boundary.

3 Fermions With Boundary Defects

3.1 Motivation

As previously pointed out, the computation of quantities such as Yukawa couplings involves cor-
relators of excited spin and twist fields. After the analysis of the main contribution to amplitudes
involving twist fields at the intersection of D-branes, we focus on the computation of correlators
of (excited) spin fields. This has been a research subject for many years until the formulation
found in the seminal paper by Friedan, Martinec and Shenker [9] based on bosonization. In gen-
eral the available techniques allow to compute only correlators involving Abelian configurations,
that is configurations which can be factorized in sub-configurations having U(1) symmetry. Non
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3.2 Point-like Defect CFT: the Minkowskian Formulation

Abelian cases have also been considered [78]–[81], though their mathematical formulation is by
far more complicated.

Despite the existence of an efficient method based on bosonization [9] and old methods based
on the Reggeon vertex [69], [83]–[86], we take into examination the computation of spin field
correlators and propose a new method to compute them. We hope to be able to extend this
approach to correlators involving twist fields and non Abelian spin and twist fields. We would
also like to investigate the reason of the non existence of an approach equivalent to bosonization
for twist fields. At the same time we are interested to explore what happens to a cft in
presence of defects. It turns out that despite the defects it is still possible to define a radial
time dependent stress-energy tensor which satisfies the canonical o.p.e. Moreover the boundary
changing defects in the construction can be associated with excited spin fields enabling the
computation of correlators involving excited spin fields without resorting to bosonization.

3.2 Point-like Defect CFT: the Minkowskian Formulation

Let (τ, σ) ∈ Σ = (−∞, +∞) × [0,π] define a strip with Lorentzian metric and consider Nf

massless complex fermions ψi such that i = 1, 2, . . . , Nf . Their two-dimensional Minkowski
action defined on the strip Σ is:

S = T

2

+∞∫
−∞

dτ
π∫

0

dσ
(

1
2 ψi(τ, σ)

(
−iγα

↔
∂α

)
ψi(τ, σ)

)
, (3.1)

where the gamma matrices are

γτ =
(

1
−1

)
= −γτ, γσ =

(
1

1

)
= γσ, (3.2)

and the components of the massless fermions are

ψ =
(
ψ+
ψ−

)
, ψ = ψ† γτ =

(
−ψ∗− ψ∗+

)
. (3.3)

We then define the lightcone coordinates ξ± = τ±σ such that ∂± = 1
2 (∂τ ± ∂σ). In components

the action reads:

S = i
T

4

+∞∫
−∞

dξ+

+∞∫
−∞

dξ−
(
ψ∗−, i

↔
∂+ψ

i
− +ψ∗+, i

↔
∂−ψ

i
+

)
, (3.4)

so the e.o.m. are:

∂−ψ
i
+(ξ+, ξ−) = ∂+ψ

i
−(ξ+, ξ−) = 0,

∂−ψ
∗
+, i(ξ+, ξ−) = ∂+ψ

∗
−, i(ξ+, ξ−) = 0.

(3.5)

Their solutions are the “holomorphic” functions ψi
+(ξ+) and ψi

−(ξ−) and their complex conjug-
ates.21 The boundary conditions are instead:

21Notice that ψ∗ is indeed the complex conjugate of the field ψ, while it will no longer be the case in the
Euclidean formalism.
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τ

σ

τ̂(t+1) τ̂(t) τ̂(t−1)

π

Figure 3.1: Propagation of the string in the presence of the worldsheet defects.

(
δψ∗+, iψ

i
+ + δψ∗−, iψ

i
− −ψ∗+, i δψ

i
+ −ψ∗−, i δψ

i
−
)∣∣∣∣σ=π

σ=0
= 0. (3.6)

We solve the constraint imposing the non trivial relations:{
ψi
−(τ, 0) =

(
R(t)

)i

j
ψj

+(τ, 0), τ ∈
(
τ̂(t), τ̂(t−1)

)
,

ψi
−(τ,π) = −ψi

+(τ,π), τ ∈ R,
(3.7)

where t = 1, 2, . . . , N . This way we introduce N zero-dimensional defects on the boundary,
pictorially shown in Figure 3.1. They are located on the strip at (τ̂(t), 0) ∈ Σ such that τ̂(t) <
τ̂(t−1) with τ̂N+1 = −∞ and τ̂0 = +∞. Their characterisation is given by N matrices R(t) ∈
U(Nf ).

In most of this paper we want the in- and out-vacua to be the usual NS vacuum. We thus
choose the boundary condition at σ = π so that when there are no defects the system describes
NS fermions. We require also the cancellation of the action of the defects at τ̂ = ±∞, that is:

R(N)R(N−1) . . . R(1) = 1. (3.8)

More general cases where the asymptotic vacua are twisted can be worked out in similar fashion.

In order to connect to the Euclidean formulation we introduce Nf “double fields” Ψi.22

They can be obtained by gluing ψi
+ and ψi

− along the σ = π boundary and labeled by an index
i = 1, 2, . . . , Nf :

Ψi(τ, φ) =
{
ψi

+(τ, φ), 0 ≤ φ ≤ π
−ψi
−(τ, 2π− φ), π ≤ φ ≤ 2π

(3.9)

where 0 ≤ φ ≤ 2π. The boundary conditions become:

Ψi(τ, 2π) = −
(
R(t)

)i

j
Ψj(τ, 0), τ ∈

(
τ̂(t), τ̂(t−1)

)
. (3.10)

Using the equation of motion we get Ψi(τ, φ) = Ψi(τ+φ) and the boundary conditions become
the (pseudo-)periodicity conditions

Ψi(τ+ 2π) = −
(
R(t)

)i

j
Ψj(τ), τ ∈

(
τ̂(t), τ̂(t−1)

)
. (3.11)

The main issue is now to expand Ψ in a basis of modes and proceed to its quantization. Even
in the simplest case Nf = 1 the task of finding the Minkowskian modes turns out to be fairly
complicated. It is however possible to overcome the issue in the Euclidean formalism.

22In this case they correspond to the fields ψi
+.
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3.3 Conserved Product and Charges

In order to promote the theory to its quantum formulation, we define a procedure to build a Fock
space of states in the Heisenberg formalism. Equal time anti-commutation relations must then
be invariant in time. We thus need a time independent internal product to extract the creation
and annihilation operators and expand the fields on the basis of modes.

3.3.1 Conserved Product and Current

Start from a generic conserved current

j(τ, σ) = jτ(τ, σ) dτ+ jσ(τ, σ) dσ , (3.12)

and consider
?j = jσ dτ+ jτ dσ ⇒ d(?j) = (∂τjτ − ∂σjσ) dτdσ , (3.13)

where ? is the Hodge dual operator. Integration over the surface Σ′ = [τi, τf ]× [0,π] yields:∫
Σ′

d(?j) =
∫

∂Σ′

?j = 0 ⇔
π∫

0

dσ jτ

∣∣∣∣τ=τi

τ=τf

=
τf∫
τi

dτ jσ

∣∣∣∣σ=0

σ=π
. (3.14)

The current jτ(τ, σ) is thus conserved in time if
τf∫
τi

dτ
(

jσ

∣∣∣∣
σ=π
− jσ

∣∣∣∣
σ=0

)
= 0. (3.15)

In this case we can define

Q =
π∫

0

dσ jτ(τ, σ) (3.16)

as conserved quantity (that is ∂τQ = 0). We now consider explicitly the symmetries of the
action (3.4). We focus on diffeomorphism invariance and U(Nf ) flavour symmetries of the bulk
theory leading to the stress-energy tensor and a vector current.

3.3.2 Flavour Vector Current

Consider first the U(Nf ) vector current of the flavour symmetry in (3.1). We write it as

ja
α(τ, σ) = (Ta)i

j ψi(τ, σ)γαψj(τ, σ), (3.17)

where Ta is a generator of U(Nf ) such that a = 1, 2, . . . , N2
f .23 In components we have:

ja
τ(τ, σ) = (Ta)i

j

(
ψ∗+, iψ

j
+ +ψ∗−, iψ

j
−

)
(3.18)

ja
σ(τ, σ) = (Ta)i

j

(
ψ∗+, iψ

j
+ −ψ∗−, iψ

j
−

)
. (3.19)

23The results however are more general and hold for a generic matrix M taking the place of any of the generators
Ta. Spinors ψ and ψ can also be generalized to two different and arbitrary solutions of the e.o.m. (3.5) while
keeping the current conserved.
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In order to define a conserved charge, we require:
τf∫
τi

dτ
(

ja
σ

∣∣∣∣
σ=π
− ja

σ

∣∣∣∣
σ=0

)
= 0, (3.20)

where
ja
σ(τ, σ)

∣∣∣∣
σ=π
≡ 0 (3.21)

using the boundary conditions (3.6). Moreover we have:

ja
σ(τ, σ)

∣∣∣∣
σ=0

=
[
ψ∗+

(
Ta −R†(t)T

aR(t)

)
ψ+

]
σ=0

, τ ∈
(
τ̂(t), τ̂(t−1)

)
. (3.22)

In general
ja
σ(τ, σ)

∣∣∣∣
σ=0

= 0 ⇔ Ta ∝ 1 (3.23)

so that R†(t)Ta = TaR†(t). This shows that the presence of the point-like defects on the worldsheet
breaks the U(Nf ) symmetry down to a U(1) phase.24 The U(1) vector current then defines a
conserved charge for a restricted class of functions.

Let α and β be two arbitrary (bosonic) solutions to the e.o.m. (3.5), we define a product

〈α,β〉 = N
π∫

0

dσ
(
α∗+, iβ

i
+ + α∗−, iβ

i
−
)
, (3.24)

where N ∈ R is a normalisation constant and the integrand must not present non integrable
singularities. The product is such that 〈α,β〉 = 〈α,β〉∗. We can also rewrite the result to the
double fields defined in (3.9). Let in fact A and B be the “double fields” corresponding to α and
β respectively:

〈α,β〉 = N
2π∫
0

dφ A∗i (τ+ φ) Bi(τ+ φ). (3.25)

3.3.3 Stress-Energy Tensor

Consider the stress-energy tensor of the bulk theory. Using the usual Nöther’s procedure we get
the on-shell non vanishing components:

T++(ξ+) = −i
T

4 ψ
∗
+, i(ξ+)

↔
∂+ψ

i
+(ξ+),

T−−(ξ−) = −i
T

4 ψ
∗
−, i(ξ−)

↔
∂−ψ

i
−(ξ−).

(3.26)

As always the boundary of Σ breaks the symmetry for translations in the σ direction, while
the defects break the time translations: the Hamiltonian is therefore time-dependent but it is

24The symmetry is SO(Nf )× SO(Nf ) if we consider Majorana-Weyl fermions.
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constant between two consecutive point-like defects. In fact, from the definition of the stress-
energy tensor, we can in principle build the hypothetical charges:

H(τ) =
π∫

0

dσ Tττ(τ, σ) =
π∫

0

dσ (T++(τ+ σ) + T−−(τ− σ)), (3.27)

P(τ) =
π∫

0

dσ Tτσ(τ, σ) =
π∫

0

dσ (T++(τ+ σ)− T−−(τ− σ)), (3.28)

which are conserved if (3.15) holds.

We order the point-like defects as τ̂(t0−1) < τi ≤ τ̂(t0) < τ̂(tN ) ≤ τf < τ̂(tN +1). For the linear
momentum P the condition of conservation reads:25

τf∫
τi

dτ (T++(τ+ σ) + T−−(τ− σ))
∣∣∣∣σ=π

σ=0

= −i
T

4

∫
∆τ

(
2 ψ∗+, i

↔
∂τψ

i
+

∣∣∣∣σ=π

σ=0
− ψ∗+, i

(
R†(t)

↔
∂τR(t)

)i

j

ψj
+

∣∣∣∣∣
σ=0

)
6= 0.

(3.29)

The corresponding condition for the Hamiltonian H is:
τf∫
τi

dτ (T++(τ+ σ)− T−−(τ− σ))
∣∣∣∣σ=π

σ=0

= −i
T

4

∫
∆τ

(
ψ∗+, i

(
R†(t)

↔
∂τR(t)

)i

j

ψj
+

∣∣∣∣∣
σ=0

)
= 0 ⇔ (τi, τf ) ∈

(
τ̂(t), τ̂(t−1)

)
.

(3.30)

In both cases we used the shorthand graphical notation

∫
∆τ =


τ̂t0∫
τi

+
tN−1∑
t=t0

τ̂(t+1)∫
τ̂(t)

+
τf∫
τ̂N

 dτ (3.31)

for simplicity.

These relations therefore prove that the generator of the σ-translations (3.28) is not conserved
in time because of the boundary conditions, while the time evolution operator H is only piecewise
conserved and therefore globally time dependent.

3.4 Basis of Solutions and Dual Modes

Let
{
ψi

n,±
}

n∈Z be a complete basis of modes such that:{
ψi

n, +(τ, 0) =
(
R(t)

)i

j
ψj

n,−(τ, 0) for τ ∈
(
τ̂(t), τ̂(t−1)

)
ψi

n, +(τ,π) = −ψi
n,−(τ,π) for τ ∈ R

. (3.32)

25Notice that in the second term of the second line the differentiation with respect to τ is acting only on R(t)

and R†(t).
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3.4 Basis of Solutions and Dual Modes

These fields are related to a complete basis of the modes of the “double field” Ψi
n as in (3.9). The

modes ψn (and their counterparts Ψn) are a basis of solutions of the e.o.m. and the boundary
conditions for τ ∈ R \

{
τ̂(t)
}

0≤t≤N
. The fields ψi (and the fields Ψi) are then a superposition of

such modes:

ψi
±(ξ±) =

+∞∑
n=−∞

bnψ
i
n,±(ξ±) ⇒ Ψi(ξ) =

+∞∑
n=−∞

bn Ψ
i
n(ξ). (3.33)

In order to extract the “coefficients” bn we first introduce the dual basis ψ∗ n,± (and Ψ∗ n) in
an abstract sense such that:

• the dual fields ψ∗ n,± (and Ψ∗ n) must be solutions to the e.o.m.,

• the dual fields ψ∗ n,± (and Ψ∗ n) can differ from ψn,± (and Ψn) in their behavior at the
boundary,

• the functional form of ψ∗ n,± (and Ψ∗ n) is fixed by the request of time invariance of the
usual anti-commutation relations

[
bn, b†m

]
+ (that is bn and b†n can evolve in time, but their

anti-commutation relations must remain constant).

We then define the conserved product for the “double fields” (3.25) in such a way that:

〈〈 Ψ∗ n , Ψm〉
∣∣∣∣
τ=τ0

= N
2π∫
0

dσ Ψ∗ ∗n, i(τ+ σ)Ψi
m(τ+ σ) = δn, m. (3.34)

In the previous expression we changed the notation of the product. We are in fact dealing with
the space of solutions whose basis is {Ψn} and a dual space with basis { Ψ∗ n} which is not
required to span entirely the original space but only to be a subset of it in order to be able to
compute the anti-commutation relations among the annihilation and construction operators in
a well defined way as in (3.38). Given the previous product we can extract the operators as

〈〈 Ψ∗ n , Ψ〉 = bn, (3.35)
〈〈 Ψ∗ ∗n , Ψ∗〉 = b†n. (3.36)

As a consequence of the canonical anti-commutation relations[
Ψi(τ, σ),Ψ∗j (τ, σ′)

]
+ = 2

T
δi

j δ(σ− σ′), (3.37)

we have then: [
bn, b†m

]
+

∣∣∣∣
τ=τ0

= 2
T
N 〈〈 Ψ∗ n , Ψ∗ m〉

∣∣∣∣
τ=τ0

. (3.38)

By definition the product (3.34) is time independent as long as the integrand Ψ∗ ∗nΨm is free of
singularities at τ = τ̂(t) for t = 1, 2, . . . , N . Such request on the dual basis automatically fixes
its functional form. Clearly this does not exclude the possibility to have singularities in Ψm or
Ψ∗ n separately: they are instead deeply connected to the boundary changing primary operator
hidden in the discontinuity of the boundary conditions, that is different singularities will be
shown to be in correspondence to the excited spin fields. Using the definition of the conserved
product we therefore moved the focus from finding a consistent definition of the Fock space to
the construction of the dual basis of modes. This task is however easier to address in a Euclidean
formulation.
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3.5 Point-like Defect CFT: the Euclidean Formulation

In the Euclidean reformulation the solution to the e.o.m. might be easier to study than its
Lorentzian worldsheet form. This is specifically the case when R(t) ∈ U(1)Nf ⊂ U(Nf ). The
presence of a time dependent Hamiltonian is not standard and we can neither blindly apply the
usual Wick rotation nor the usual cft techniques.

3.5.1 Fields on the Strip

Performing the Wick rotation as τE = iτ such that eiS = e−SE , the Minkowskian action (3.4)
becomes:

SE = T

2

∫∫
dξ dξ 1

2

(
ψ̂∗E, +, i

↔
∂
ξ
ψ̂i

E, + + ψ̂∗E,−, i

↔
∂ξψ̂

i
E,−

)
, (3.39)

where the Euclidean fermion on the strip is connected to the Minkowskian formulation through

ψ̂i
E,±(ξ, ξ) = ψi

±(−iξ, −iξ). (3.40)

In the previous expressions we defined the coordinates ξ = τE + iσ, ξ̄ = τE − iσ such that
ξ = ξ∗. Moreover we get ∂ξ = ∂

∂ξ = 1
2 (∂τE

− i ∂σ), ∂
ξ

= ∂

∂ξ
= 1

2 (∂τE
+ i ∂σ). As a consequence

the Euclidean “complex conjugation” ? (defined off-shell) acts as[
ψ̂i

E,±(ξ, ξ)
]?

= ψ̂∗E,±i(−ξ, −ξ). (3.41)

The e.o.m. are as usual

∂ξψ̂
i
E,−(ξ, ξ) = ∂

ξ
ψ̂i

E, +(ξ, ξ) = 0, (3.42)

∂ξψ̂
∗
E,−, i(ξ, ξ) = ∂

ξ
ψ̂∗E, +, i(ξ, ξ) = 0, (3.43)

whose solutions are the holomorphic functions ψ̂E, +(ξ) and ψ̂E,−(ξ), together with ψ̂∗E, +(ξ)
and ψ̂∗E,−(ξ). In these coordinates the boundary conditions (3.7) translate to:ψ̂

i
E,−(τE − i 0+) =

(
R(t)

)i

j
ψ̂j

E, +(τE + i 0+)

ψ̂∗E,−, i(τE − i 0+) =
(

R∗(t)

) j

i
ψ̂∗E, +, j(τE + i 0+)

(3.44)

for τE ∈
(
τ̂E, (t), τ̂E, (t−1)

)
and{
ψ̂i

E,−(τE − iπ) = −ψ̂i
E, +(τE + iπ)

ψ̂∗E,−, i(τE − iπ) = −ψ̂∗E, +, i(τE + iπ)
, (3.45)

where t = 1, 2, . . . , N and τ̂E, (t) are the Wick-rotated locations of the N zero-dimensional
defects, analytically continued to a real value.

The conserved product on the strip becomes:

〈
α̂∗E , β̂E

〉
= N

π∫
0

dσ
(
α̂∗E, +, iβ̂

i
E, + + α̂∗E,−, iβ̂

i
E,−

)
, (3.46)
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3.5 Point-like Defect CFT: the Euclidean Formulation

where α̂∗E and β̂E are the Euclidean counterparts of the generic solutions in the original definition
of the product in (3.24). In the Euclidean context we have to explicitly write α̂∗E because it is
no longer the “complex conjugate” of α̂E in the traditional sense. The product is conserved only
when it couples two solutions which have different boundary conditions as in (3.44).

The definition of the stress-energy tensor in (3.26) requires a change in the numerical pre-
factor to use the usual cft normalisation. Introducing a spacetime variable central charge as
well the components of the stress-energy tensor become:26

Tξξ(ξ) = −πT

2 ψ̂∗E, +, i(ξ)
↔
∂ξψ̂

i
E, +(ξ) + Ĉ(ξ),

T
ξξ

(ξ) = −πT

2 ψ̂∗E,−, i(ξ)
↔
∂
ξ
ψ̂i

E,−(ξ) + Ĉ(ξ),
(3.49)

where Ĉ and Ĉ are the leftover terms after the regularization of the singularities due to the normal
ordering. The canonical anti-commutation relations are then[

ψ̂i
E,±(ξ1, ξ1), ψ̂∗E,±, j(ξ2, ξ2)

]
+

∣∣∣∣
Reξ1=Reξ2

= 2
T
δi

j δ(Im ξ1 − Im ξ2). (3.50)

Given the Euclidean modes ψ̂i
E,±, n and ψ̂∗E,±, n, i where n ∈ Z, we can then define the dual

modes ψ̂∗ i
E, n and ψ̂∗ ∗

E, n, i such that the conserved product (3.46) between them gives:〈〈
ψ̂∗ ∗

E, n , ψ̂E, m

〉
=
〈〈
ψ̂∗ E, n , ψ̂∗E, m

〉
= δn,m. (3.51)

We can then expand the fields as
ψ̂i

E, +(ξ) =
+∞∑

n=−∞
bn ψ̂

i
E, +, n(ξ)

ψ̂i
E,−(ξ) =

+∞∑
n=−∞

bn ψ̂
i
E,−, n(ξ)

(3.52)

and 
ψ̂∗E, +, i(ξ) =

+∞∑
n=−∞

b∗n ψ̂
∗
E, +, n, i(ξ)

ψ̂∗E,−, i(ξ) =
+∞∑

n=−∞
b∗n ψ̂

∗
E,−, n, i(ξ)

(3.53)

in order to extract the operators through the conserved product

bn =
〈〈
ψ̂∗ ∗

E, n , ψ̂E

〉
, b∗n =

〈〈
ψ̂∗ E, n , ψ̂∗E

〉
, (3.54)

26The canonical coefficient in front of the cft stress-energy tensor is such that the Euclidean Hamiltonian L0
is normalized such that

Tζζ(ζ) =
∑

n

Lne−nζ (3.47)

(we are anticipating the double strip notation defined in the next subsection for simplicity). We thus get:

HE = L0 =

2π∫
0

dφ
2π
Tζζ(τE + iφ) (3.48)

therefore Tζζ(ζ) = 2π T (can)
ζζ

(ζ).
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and get the anti-commutation relations at fixed Euclidean time as

[bn, b∗m]+
∣∣∣∣
τE=τE, (0)

= 2N
T

〈〈
ψ̂∗ ∗

E, n , ψ̂∗ E, m

〉
. (3.55)

3.5.2 Double Strip Formalism and Doubling Trick

It is natural to use the doubling trick on the strip to simplify the previous expressions by gluing
the holomorphic and anti-holomorphic fields along the σ = π boundary. Define the coordinate
ζ = τE + iφ with 0 ≤ φ ≤ 2π. We then have

Ψ̂(ζ) =
{
ψ̂E, +(ζ) for φ = σ ∈ [0,π]
−ψ̂E,−(ζ− 2πi) for φ = 2π− σ ∈ [π, 2π]

(3.56)

on-shell (and similarly for Ψ̂∗(ζ) with the substitution ψ̂E,± → ψ̂∗E,±). The “complex conjuga-
tion” ? acts on the off-shell double fields as[

Ψ̂i(ζ, ζ)
]?

= Ψ̂∗i (−ζ, −ζ), (3.57)

while the boundary conditions are translated intoΨ̂
i(τE + 2πi−) = −

(
R(t)

)i

j
Ψ̂j(τE + i 0+)

Ψ̂∗i(τE + 2πi−) = −
(

R∗(t)

)i

j
Ψ̂∗j(τE + i 0+)

(3.58)

for τE ∈
(
τ̂E, (t), τ̂E, (t−1)

)
. The conserved product can then be defined as

〈
Â∗, B̂

〉
= N

2π∫
0

dφ Â∗i (τE + iφ) B̂i(τE + iφ), (3.59)

where Â∗ and B̂ are the double fields connected to α̂∗E and β̂E in the previous definition on the
strip. The holomorphic stress-energy tensor is then

Tζζ(ζ) = −πT

2 Ψ̂∗i (ζ)
↔
∂ζΨ̂

i(ζ) + Ĉ(ζ) (3.60)

and the canonical anti-commutation relations are now[
Ψ̂i(ζ1), Ψ̂∗j (ζ2)

]
+

∣∣∣∣
Re ζ1=Re ζ2

= 2
T
δi

jδ(Im ζ1 − Im ζ2). (3.61)

The double field formulation shows that we need only one coefficient bn (or b∗n) for both ψE, +

and ψE,− (or for both ψ∗E, + and ψ∗E,−). In fact, given the Euclidean modes Ψ̂i
n and Ψ̂∗n, i where

n ∈ Z, we define the dual modes Ψ̂∗ i
n and Ψ̂∗ ∗n, i such that:〈〈

Ψ̂∗ ∗n , Ψ̂m

〉
=
〈〈
Ψ̂∗ n , Ψ̂∗m

〉
= δn,m. (3.62)
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0
x

y

x(t+1) x(t) x(t−1)

Figure 3.2: Fields are glued on the x < 0 semi-axis with non trivial discontinuities for x(t) < x <

x(t−1) for t = 1, 2, . . . , N and where x(t) = exp
(
τ̂E, (t)

)
.

We expand the double fields as

Ψ̂i(ζ) =
+∞∑

n=−∞
bnΨ̂

i
n(ζ), Ψ̂∗i (ζ) =

+∞∑
n=−∞

b∗nΨ̂
∗
n(ζ) (3.63)

Operators are then extracted as

bn =
〈〈
Ψ̂∗ ∗n , Ψ̂

〉
, b∗n =

〈〈
Ψ̂∗ n , Ψ̂∗

〉
. (3.64)

Finally we get the anti-commutation relations as

[bn, b∗m]+
∣∣∣∣
τE=τE, 0

= 2N
T

〈〈
Ψ̂∗ ∗n , Ψ̂∗ m

〉
. (3.65)

3.6 Fields on the Upper Half Plane

We consider a set of coordinates on the upper half H of the complex plane:

u = eξ ∈H , (3.66)

where ξ = τE + iσ and σ ∈ [0,π] define the usual strip, and H = {w ∈ C | Im w ≥ 0}. These
coordinates can then be extended to the entire complex plane by considering

z = eζ ∈ C, (3.67)

where ζ = τE + iφ and φ ∈ [0, 2π] define the double strip. Under this change of coordinates the
Euclidean action (3.39) becomes

SE = T

2

∫∫
du du

1
2

(
1
u
ψ̂∗E, +, i

↔
∂uψ̂

i
E, + + 1

u
ψ̂∗E,−, i

↔
∂uψ̂

i
E,−

)
= T

2

∫∫
du du

1
2

(
ψ∗E, +, i

↔
∂uψ

i
E, + +ψ∗E,−, i

↔
∂uψ

i
E,−

)
,

(3.68)

where we introduce the off-shell field redefinitions:

ψi
E, +(u, u) = 1√

u
ψ̂i

E, +(ξ, ξ), ψi
E,−(u, u) = 1√

u
ψ̂i

E,−(ξ, ξ). (3.69)
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Fields with the hat sign on top thus represent strip and double strip definitions, while fields
without the hat sign are defined on H or C.27 Notice that this is the result one would expect
from the engineering dimension: in this case it works since the theory is essentially free. Using
the redefinitions (3.69), the off-shell “complex conjugation” ? then becomes

[ψE, +, i(u, u)]? = 1
u
ψ∗E, +, i

(
1
u

,
1
u

)
, [ψE,−, i(u, u)]? = 1

u
ψ∗E,−, i

(
1
u

,
1
u

)
. (3.71)

We choose to insert the cut of the square root on the real negative axis. The boundary
conditions are then translated intoψ

i
E,−(x− i 0+) =

(
R(t)

)i

j
ψj

E, +(x + i 0+)

ψ∗E,−, i(x− i 0+) =
(

R∗(t)

) j

i
ψ∗E, +, j(x + i 0+)

(3.72)

for x ∈
(
x(t), x(t−1)

)
, where x(t) = exp

(
τ̂E, (t)

)
> 0, and

ψi
E,−(x− i 0+) = ψi

E, +(x + i 0+), ψ∗E,−, i(x− i 0+) = ψ∗E, +, i(x + i 0+) (3.73)

for x < 0.

The product (3.46) is then

〈α∗,β〉 = −iN

∫
Σ̂

duα∗+, i(u)βi
+(u)−

∫
Σ̂

duα∗−, i(u)βi
−(u)

, (3.74)

where integrations are computed over two semi-circles Σ̂ = {u ∈ C | |u| = exp(τ̂E), 0 ≤ Im u ≤ π}
and Σ̂ = {u ∈ C | |u| = exp(τ̂E), −π ≤ Im u ≤ 0}. The stress-energy tensor becomes:28

Tuu(u) = −πT

2 ψ∗E, +, i(u)
↔
∂uψ

i
E, +(u) + Ĉ(u),

Tuu(u) = −πT

2 ψ∗E,−, i(u)
↔
∂uψ

i
E,−(u) + Ĉ(u).

(3.77)

27We could have anticipated these redefinitions from a cft argument where

ψ(u) =
(du

dξ

)− 1
2
ψ̂(ξ)

∣∣∣∣
ξ=ln(u)

, (3.70)

but we cannot and do not rely on cft properties since we have not shown that the theory is a cft yet.
28While rewriting the operator part of the stress-energy tensor from the strip formulation into the coordinates

in H we actually get
Tξξ(ξ(u)) = u2 Tuu(u). (3.75)

The reason of the presence of u2 factor can be explained in two ways. Using GR we know that Tξξ(ξ) dξ2 =
Tuu(u) du2. Another way is to notice that a translation in ξ is a dilatation of u: the infinitesimal generator of ξ
translation must be the infinitesimal generator of u dilatation, that is:

Pξ ∼
∫

dσ Tξξ ∼ Du ∼
∫

du u Tuu. (3.76)
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Finally the anti-commutation relations are
[
ψi

E, +(u1, u1),ψ∗E, +, j(u2, u2)
]

+

∣∣∣
|u1|=|u2|

= 2
T u1

δi
j δ(arg(u1)− arg(u2))[

ψi
E,−(u1, u1),ψ∗E,−, j(u2, u2)

]
+

∣∣∣
|u1|=|u2|

= 2
T u1

δi
j δ(arg(u1)− arg(u2)),

(3.78)

which despite the strange look of the expression are perfectly compatible with the definition (3.64)
leading to:

[bn, b∗m]+ = 2N
T

〈〈
ψ̂∗ ∗

E, n , ψ̂∗ E, m

〉
= 2N

T

〈〈
ψ∗ ∗

E, n , ψ∗ E, m

〉
(3.79)

when the product 〈〈· , ·〉 is defined according to (3.74). We expand the fields in modes as:
ψi

E, +(u) =
+∞∑

n=−∞
bnψ

i
E, +, n(u)

ψi
E,−(u) =

+∞∑
n=−∞

bnψ
i
E,−, n(u)

(3.80)

and 
ψ∗E, +, i(u) =

+∞∑
n=−∞

b∗nψ
∗
E, +, n, i(u)

ψ∗E,−, i(u) =
+∞∑

n=−∞
b∗nψ

∗
E,−, n, i(u)

(3.81)

and ψ∗ E, n and ψ∗ ∗
E, n are the corresponding dual modes on the upper half plane.

3.7 Fields on the Complex Plane and the Doubling Trick

We use again the doubling trick to define the fields on the subset C \
[
x(N), x(1)

]
:

Ψ(z) =
{
ψE, +(u) for z = u ∈H \

[
x(N), x(1)

]
ψE,−(u) for z = u ∈H \

[
x(N), x(1)

] (3.82)

where z = exp(τE + iφ) = x + iy and H = {w ∈ C | Im w ≤ 0}. The same procedure applies
also to Ψ∗ with the exchange ψE,± ↔ ψ∗E,±.

In this case the “complex conjugation” ? acts off-shell as[
Ψi(z, z)

]? = 1
z
Ψ∗i

(
1
z

,
1
z

)
. (3.83)

The boundary conditions then become:Ψ
i(x− i 0+) =

(
R(t)

)i

j
Ψj(x + i 0+),

Ψ∗ i(x− i0+) =
(

R∗(t)

)i

j
Ψ∗ j(x + i 0+),

(3.84)

for x ∈
(
x(t), x(t−1)

)
, where x(t) = exp

(
τ̂E, (t)

)
> 0 for t ∈ {1, 2, . . . , N}. When x < 0 we get{

Ψ(x− i 0+) = Ψ(x + i 0+),
Ψ∗(x− i 0+) = Ψ∗(x + i 0+)

. (3.85)
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3.8 Algebra of Creation and Annihilation Operators

Given the relations dz = i z dφ, we can write the conserved product (3.74) as:

〈A∗, B〉 = 2πN
∮

|z|=exp(τE)

dz

2πi
A∗i (z) Bi(z), (3.86)

where we explicitly stressed that the integral has to be performed at a fixed Euclidean time τE :
in the new coordinate on the plane the conserved product becomes a contour integral at a fixed
radius from the origin.

In the same way we can recast the stress-energy tensor components (3.26) in the new co-
ordinates:

T (z) = −πT

2 Ψ∗i (z)
↔
∂zΨ

i(z) + C(z), (3.87)

where T = Tzz for simplicity.

Finally the canonical anti-commutation relations between the fields are:

[
Ψi(z1), Ψ∗j (z2)

]
+

∣∣∣∣
|z1|=|z2|

= 2
Tz1

δi
j δ(arg(z1)− arg(z2)). (3.88)

The fields expansion in modes thus reads

Ψi(z) =
+∞∑

n=−∞
bn Ψ

i
n(z), Ψ∗i (z) =

+∞∑
n=−∞

b∗n Ψ
∗
n.i(z). (3.89)

The anti-commutation relations among the operators are

[bn, b∗m]+ = 2N
T
〈〈 Ψ∗ ∗n , Ψ∗ m〉 , (3.90)

when we introduce the dual modes Ψ∗ n(z) and Ψ∗ ∗n(z) whose normalisation is

〈〈 Ψ∗ ∗n , Ψm〉 = 〈〈 Ψ∗ n , Ψ∗m〉 = δm,n. (3.91)

3.8 Algebra of Creation and Annihilation Operators

In this section we find the explicit expression of the modes which satisfy the e.o.m. and the
boundary conditions. We then compute the dual fields and finally the algebra of the creators
and annihilators.

3.8.1 NS Complex Fermions

We start from NS complex fermions to show that the formalism can recover known results.
Consider the usual definition: {

ψi
−(τ, 0) = ψi

+(τ, 0),
ψi
−(τ,π) = −ψi

+(τ,π)
(3.92)
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3.8 Algebra of Creation and Annihilation Operators

for τ ∈ R, which can be recovered from (3.7) setting R(t) ≡ 1. In the Euclidean formulation we
use (3.84) and (3.85) to get: {

Ψ(x− i 0+) = Ψ(x + i 0+)
Ψ∗(x− i 0+) = Ψ∗(x + i 0+)

(3.93)

for x ∈ R.

We define:

Ψi
(n, i0)(z) = NΨ δi

i0
z−n, (3.94)

Ψ∗ (m, j0), j(z) = (2πN NΨ)−1
δj,j0 zm−1 (3.95)

to recover the definition of the dual modes (3.34) using the Euclidean conserved product (3.86).
We then proceed similarly for Ψ∗ in such a way that〈〈

Ψ∗ ∗(n, i0) , Ψ(m, j0)

〉
=
〈〈
Ψ∗ (m, j0) , Ψ∗(n, i0)

〉
= δn,m δi0,j0 . (3.96)

As a consequence we find〈〈
Ψ∗ ∗(n, i0) , Ψ∗ (m, i1)

〉
= 1

2πN N 2
Ψ

δi0,i1 δn+m,1. (3.97)

Consider the NS expansion in modes of the double fields:

Ψi(z) =
+∞∑

n=−∞

∑
i0

b(n, i0) Ψ
i
(n, i0)(z), (3.98)

Ψ∗i (z) =
+∞∑

n=−∞

∑
i0

b∗(n, i0) Ψ
∗
(n, i0), i(z), (3.99)

then

b(n, i0) =
〈〈
Ψ∗ ∗(n, i0) , Ψ

〉
, (3.100)

b∗(n, i0) =
〈〈
Ψ∗ (n, i0) , Ψ∗

〉
, (3.101)

and [
b(n,i0), b∗(m,j0)

]
+

= 1
πTN 2

Ψ

δi0,j0 δn+m,1. (3.102)

3.8.2 Twisted Complex Fermions: Preliminaries

We can then generalise the discussion about Nf = 1 complex fermions in the presence of N
point-like defects which we will show to be primary boundary changing operators (i.e. plain and
excited spin fields). Let {

R(t) = eiπα(t) ∈ U(1)
R∗(t) = e−iπα(t) ∈ U(1)

(3.103)
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3.8 Algebra of Creation and Annihilation Operators

such that 0 < α(t) < 2. The boundary conditions are:{
Ψ(x− i 0+) = eiπα(t)Ψ(x + i 0+)
Ψ∗(x− i 0+) = e−iπα(t)Ψ∗(x + i 0+)

, (3.104)

for x ∈ (x(t), x(t−1)), and {
Ψ(x− i 0+) = Ψ(x + i 0+)
Ψ∗(x− i 0+) = Ψ∗(x + i 0+)

, (3.105)

for x < 0. These boundary conditions can be recast in the form of monodromy factors. With a
loop around x(t) we find

Ψ
(

x(t) + δei0+
)

= eiπ(α(t)−α(t+1)) Ψ(x(t) + δe2πi), (3.106)

where δ ∈ R+ is small enough and the ± in the phase represents the position relative to the real
axis (+ is in the upper half plane H , while − in the lower half plane H ).29 We then define
the convenient combination:

ε(t) = α(t+1) − α(t) + θ(α(t) − α(t+1) − 1)− θ(α(t+1) − α(t) − 1) (3.107)

such that:30

−1 < ε(t) < 1, ∀t = 1, 2, . . . , N. (3.108)

The previous loop around x(t) induces a monodromy{
Ψ(x(t) + δei0+) = e−iπε(t)Ψ(x(t) + δe2iπ+)
Ψ∗(x(t) + δei0+) = e−iπε(t)Ψ∗(x(t) + δe2iπ+),

(3.109)

where ε(t) = −ε(t) ⇒ −1 < ε(t) < 1, thus showing a symmetry under the exchange of:

Ψ←→ Ψ∗ ⇒ ε(t) ←→ ε(t). (3.110)

3.8.3 Usual Twisted Fermions

As a reference for future discussion, we consider the case of one complex fermion in the presence
of one twisted boundary condition with the defects located at zero and infinity. We take N = 2
and x(1) = ∞ and x(2) = 0. For simplicity we denote with ε the argument of the monodromy
factor arising from the presence of the cut on the interval (0, +∞).

In order to fulfill the requests (3.109) we write the modes as:

Ψ(E)
n = NΨ z−n+E,

Ψ∗ (E)
n = NΨ z−n+E,

(3.111)

29More precisely 0 < δ < min
(∣∣x(t−1) − x(t)

∣∣, ∣∣x(t) − xt+1
∣∣).

30 Notice that the choice of the range for ε(t) is not unique. We can choose 0 < α(t) < 2 leading to ε(t) =
α(t+1) − α(t) + 2θ(α(t) − α(t+1)). Then in this case ε(t) = 2− ε(t) and ε(t), ε(t) ∈ (0, 2). We will however stick
to the first definition in the following sections since it allows us to consider the NS case as special.
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3.8 Algebra of Creation and Annihilation Operators

such that

E = nE + ε

2 , nE ∈ Z,

E = nE + ε

2 , nE ∈ Z.
(3.112)

Together with the integer factor nE and nE we also define a third integer for later convenience:31

L = E + E = nE + nE ∈ Z. (3.113)
To extract creation and annihilation operators with the conserved product (3.86), we define the
dual basis as:

Ψ∗ (E)
n (z) = 1

2πN NΨ
zn−1−E, (3.114)

Ψ∗ ∗ (E)
n (z) = 1

2πN NΨ
zn−1−E. (3.115)

This way we compute the usual anti-commutation relations as〈〈
Ψ∗ ∗ (E)

n , Ψ∗ (E)
m

〉
= δn+m,1+L

2πN N 2
Ψ

⇒ [bn, b∗m]+ = 1
πTN 2

Ψ

δn+m,1+L, (3.116)

which are constant in time independently from E or E since the only possible singularities are
located at z = 0 and z =∞. We can then expand the fields Ψ(z) and Ψ∗(z) using this or a more
conventional basis:

Ψ(z) =
+∞∑

n=−∞
b(E)

n Ψ(E)
n (z) =

+∞∑
n=−∞

bn+nEΨ
(ε2 )
n (z), (3.117)

Ψ∗(z) =
+∞∑

n=−∞
b∗ (E)

n Ψ∗ (E)
n (z) =

+∞∑
n=−∞

b∗n+nE
Ψ
∗ (−ε2 )
n (z), (3.118)

where we used the notation b = b(ε2 ) and b∗ = b∗ (ε2 ).

3.8.4 Generic Case With Defects

We consider one complex fermion in the presence of N defects such that the modes satisfy:

Ψn(x(t) + δe2πi+
) = eiπε(t) Ψn(x(t) + δei0+

) (3.119)

for t = 1, 2, . . . , N and δ > 0. We define the basis of solutions as:

Ψn(z;
{

x(t), E(t)
}

) = NΨ z−n
N∏

t=1

(
1− z

x(t)

)E(t)

, (3.120)

Ψ∗n(z;
{

x(t), E(t)
}

) = NΨ z−n
N∏

t=1

(
1− z

x(t)

)E(t)

, (3.121)

31The choice discussed in Footnote 30 implies L = nE + nE + 1. We can swap the definitions by exchangin
ε(t) ↔ ε(t) + 2 and nE ↔ nE − 1.
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where we generalise the definition of

E(t) = nE(t) +
ε(t)

2 , nE(t) ∈ Z, (3.122)

E(t) = nE(t)
+
ε(t)

2 nE(t)
∈ Z (3.123)

and we define N integer factors analogous to (3.113):

L(t) = E(t) + E(t) = nE(t) + nE(t)
∈ Z, ∀t ∈ {1, 2, . . . , N}. (3.124)

From the definition of the conserved product (3.86), we compute the dual basis:

Ψ∗ n(z) = 1
2πN NΨ

zn−1
N∏

t=1

(
1− z

x(t)

)−E(t)

, (3.125)

Ψ∗ ∗n(z) = 1
2πN NΨ

zn−1
N∏

t=1

(
1− z

x(t)

)−E(t)

, (3.126)

and the conserved products between dual modes:

〈〈 Ψ∗ ∗n , Ψ∗ m〉 = 1
2πN N 2

Ψ

∮ dz

2πi
zn+m−2

N∏
t=1

(
1− z

x(t)

)−L(t)

. (3.127)

Notice that the products are radially invariant only if

L(t) ≤ 0, ∀t ∈ {1, 2, . . . , N}, (3.128)

since the integrand must not present time dependent singularities on the integration path, thus

〈〈 Ψ∗ ∗n , Ψ∗ m〉 = 1
2πN N 2

Ψ

∮ dz

2πi

N∏
t=1

|L(t)|∑
kt=0

(∣∣L(t)
∣∣

kt

)(
− 1

x(t)

)kt

zkt+n+m−2

= 1
2πN N 2

Ψ

p1−n−m,

(3.129)

where we defined

pk =
N∏

t=1

|L(t)|∑
kt=0

(∣∣L(t)
∣∣

kt

)(
− 1

x(t)

)kt

δ N∑
t=1

kt, k

(3.130)

such that

p
0≤k≤

N∑
t=1
|L(t)|

6= 0, (3.131)

pk≤−1 = p
k≥

N∑
t=1
|L(t)|+1

= 0. (3.132)

We can finally write

[bn, b∗m]+ = 1
πTN 2

Ψ

p1−n−m, 1−
N∑

t=1

∣∣L(t)
∣∣ ≤ n + m ≤ 1. (3.133)
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3.9 Representation of the Algebra: Definition of the In-Vacuum

In the previous section we computed the algebra of the operators for different theories. We
now define in-vacua where they are represented to be able to compute the relevant amplitudes.
We show how to recover the NS vacuum and the usual twisted vacuum. Finally we discuss the
vacuum in the presence of a generic number of defects.

3.9.1 NS Fermions

The in-vacuum can be correctly obtained either requiring Ψ(z) and Ψ∗(z) to be non singular as
z → 0 when applied on the vacuum. The same request can also be made on Ψ̂(ξ) and Ψ̂∗(ξ). In
both cases we get the same vacuum which turns out to be SL2(R) invariant:

b(n, i0) |0〉SL2(R) = b∗(n, i0) |0〉SL2(R) = 0, n ≥ 1. (3.134)

The spectrum of the theory is constructed acting with operators b(n, i0) and b∗(n, i0) with n ≤ 0.

3.9.2 Twisted Fermion

Consider the case of the usual twisted fermion in Section 3.8.3. Define the excited vacuum
∣∣∣TE, E

〉
as:

b(E)
n

∣∣∣TE, E

〉
= b∗ (E)

n

∣∣∣TE, E

〉
= 0, n ≥ 1. (3.135)

The introduction of E and E is necessary to define the vacuum as in previous cases, that is with
a range of n independent from them and without singularities as z → 0. Explicitly we have:

Ψ(z)
∣∣∣TE, E

〉
∼ zE (. . . ), Ψ∗(z)

∣∣∣TE, E

〉
∼ zE (. . . ). (3.136)

Comparing with (3.120) and (3.121), the behavior suggests the existence of a hidden operator in
x(t) creating

∣∣∣TE, E

〉
with E = E(t) and E = E(t).

These relations are subject to consistency conditions since∣∣∣TE, E

〉
= πTN 2

Ψ

[
b(E)

n , b
∗ (E)
L+1−n

]
+

∣∣∣TE, E

〉
, (3.137)

that is we cannot have two in-annihilators (namely both b
(E)
n and b

∗ (E)
L+1−n) with non vanishing

anti-commutation relations. Specifically we have:

1 ≤ n ≤ L ⇒ b(E)
n

∣∣∣TE, E

〉
= 0, b

∗ (E)
L+1−n

∣∣∣TE, E

〉
= 0, (3.138)

that is ∣∣∣TE, E

〉
= πTN 2

Ψ

[
b(E)

n , b
∗ (E)
L+1−n

]
+

∣∣∣TE, E

〉
= 0, (3.139)

which is not consistent (see Figure 3.3 for a graphical reference): the theory does not exist. We
shall therefore consider only cases such that

L ≤ 0, (3.140)
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Overlap
Region
inconsistent

theories n
· · · −1 0 1 · · · L L + 1 · · ·

in-annihilators
bn

out-annihilators
b∗L+1−n

Figure 3.3: As a consistency condition, we have to exclude the values of L for which both b
(E)
n

and b
∗ (E)
L+1−n are in-annihilators with a non vanishing anti-commutation relation.

analogously to (3.128).

Moreover notice that for L ≤ −1 both b
(E)
L≤n≤0 and b

∗ (E)
L≤n≤0 are in- and out-creation operators.

The vacuum
∣∣∣TE, E

〉
is not however associated to the lowest energy. In fact the usual way

to build the vacuum would be to require Ψ(z) and Ψ∗(z) to be non singular as z → 0 for the
in-vacuum so that b

(E)
n |T〉 = 0 for n > E, and b

∗ (E)
n |T〉 = 0 for n > E. However this procedure

almost always fails to give a good definition of the vacuum. In fact it works only for NS fermions.
For example when ε > 0 we have:

0 = πTN 2
Ψ

[
b

(E)
1+nE

, b∗ (E)
nE

]
+
|T〉 = |T〉 , (3.141)

which is not consistent since both b
(E)
1+nE

and b
∗ (E)
nE

are annihilators as 1 + nE > E and nE > E.

The minimum energy vacuum is instead defined in a proper way on the strip. Requiring that
the action of Ψ̂(ξ) and Ψ̂∗(ξ) for ξ→ −∞ on the vacuum is well defined we get

b(E)
n |T〉 = 0, n > E + 1

2 , (3.142)

b∗ (E)
m |T〉 = 0, m > E + 1

2 . (3.143)

This is a good definition of the vacuum as − 1
2 < ε

2 = −ε2 < 1
2 implies that b

(E)
n and b

∗ (E)
m are

annihilation operators for n ≥ nE + 1 > E + 1
2 and m ≥ nE + 1 > E + 1

2 so that

0 = πTN 2
Ψ

[
b(E)

n , b∗ (E)
m

]
+
|T〉 = δn+m, E+E+1 |T〉 = 0. (3.144)

This way we get a consistent definition of the twisted vacuum. This is however not generally
SL2(R) invariant as we will show later when defining stress-energy tensor.32

The vacua
∣∣∣TE, E

〉
and |T〉 are related. Consider for example the case nE ≥ 1 and the

definition:

b(E)
n

∣∣∣TE, E

〉
= 0, n ≥ 1, (3.145)

b(E)
n |T〉 = 0, n ≥ 1 + nE. (3.146)

32Notice that the second choice of ε interval discussed in Footnote 30 needs to distinguish between two cases:
0 < ε

2 < 1
2 (and 1

2 < ε
2 < 1) and 1

2 < ε
2 < 1 (and 0 < ε

2 < 1
2 ).
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Then for 1 ≤ n ≤ nE the modes b
(E)
n act as a annihilation operator on

∣∣∣TE, E

〉
and as a creation

operator on |T〉: ∣∣∣TE, E

〉
∝ b(E)

nE
b

(E)
nE−1 . . . b

(E)
1 |T〉 . (3.147)

Moreover, since L = nE + nE ≤ 0⇒ nE ≤ −1, we have:

b∗ (E)
m

∣∣∣TE, E

〉
= 0, m ≥ 1, (3.148)

b∗ (E)
n |T〉 = 0, m ≥ 1−

∣∣nE
∣∣, (3.149)

which leads to:
|T〉 ∝ b

∗ (E)
0 b

∗ (E)
1 . . . b

∗ (E)
1−|nE|

∣∣∣TE, E

〉
. (3.150)

The consistency of the definition can be checked requiring∣∣∣TE, E

〉
=
(
πTN 2

Ψ

)nE
b(E)

nE
b

(E)
nE−1 . . . b

(E)
1 b

∗ (E)
0 b

∗ (E)
1 . . . b

∗ (E)
1−|nE|

∣∣∣TE, E

〉
, (3.151)

where the number of b operators has to match the number of b∗ operators:

nE + nE = E + E = L = 0. (3.152)

The same procedure applies also in the case nE ≤ 0, leading to the same result. As a consequence
of (3.152), we express the twisted vacuum as:

b(E)
n |T〉 = 0, n ≥ 1 + nE, (3.153)

b∗ (E)
m |T〉 = 0, m ≥ 1− nE. (3.154)

3.9.3 Generic Case with Defects

Since the fields in presence of defects behave as NS fields in the limit z → 0, we define the
vacuum in the usual fashion by requiring a finite limit lim

z→0
Ψ(z)

∣∣∣Ω{x(t), E(t), E(t)}
〉
. As in the NS

we get the representation:

bn

∣∣∣Ω{x(t), E(t), E(t)}
〉

= b∗n

∣∣∣Ω{x(t), E(t), E(t)}
〉

= 0, n ≥ 1. (3.155)

3.10 Asymptotic Fields and Vacua

In this section we define the asymptotic in-field and out-field and discuss how their vacua are
related to the theory with defects. The relation is “radial time dependent” explicitly showing that
an interaction is hidden in the defects. In particular the vacuum for the theory with defects can
be identified with SL2(R) in-field vacuum while it is connected by a Bogoliubov transformation
to the SL2(R) out-field vacuum.

In the following we use the expansion of

P
(
z;
{

x(t), E(t)
})

=
N∏

t=1

(
1− z

x(t)

)E(t)

, (3.156)
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around the origin and infinity with coefficients

Ck

(
0,
{

x(t), E(t)
})

=
∑

{kt}∈NN

N∏
t=1

[(
E(t)
kt

)(
− 1

x(t)

)kt
]
δ N∑

t=1

kt,k

(3.157)

Ck

(
∞,

{
x(t), E(t)

})
=

∑
{kt}∈NN

N∏
t=1

[(
E(t)
kt

)(
−x(t)

)kt−E(t)

]
δ N∑

t=1

kt,k

, (3.158)

so that we can write

P
(
z;
{

x(t), E(t)
})

=


+∞∑
k=0

Ck

(
0,
{

x(t), E(t)
})

zk, for |z| < x(N)

+∞∑
k=0

Ck

(
∞,

{
x(t), E(t)

})
z
−k+

N∑
t=1

E(t)

, for |z| > x(1)

(3.159)

We do not discuss intermediate fields, that is expansions for x(t) < |z| < x(t−1), as it is not
possible to disentangle the effects of defects before and after this range. The vacuum in the
presence of defects is in fact related to the radial ordering of the operators associated with the
defects as we argue later on.

3.10.1 Asymptotic In-field and Its Vacuum

Consider the definitions of the basis of solutions (3.120) and expand around z = 0.33 We get
for 0 ≤ |z| < x(N):

Ψn(z) =
+∞∑
k=0

Ck

(
0,
{

x(t), E(t)
})
Ψ

(0)
n−k(z), (3.160)

where Ψ(0)
n (z) = NΨz−n as in (3.111) with E = 0 which are the modes of a untwisted fermion,

i.e. a plain NS fermion. The previous expansion connects the asymptotic behavior of the modes
of the fermion with defects with the modes of a NS fermion close to the origin. We can now
connect the operators of the system with defects with those of the asymptotic in-field. To this
purpose we substitute the expansion (3.160) with the usual expression of the modes (3.89):

Ψ(z) =
+∞∑

n=−∞
bn Ψn(z) =

|z|<x(N)
Ψ(in)(z) =

+∞∑
n=−∞

b(0)
n Ψ(0)

n (z) (3.161)

thus leading to

b(0)
n =

+∞∑
k=0

bn+k Ck

(
0,
{

x(t), E(t)
})

. (3.162)

These expressions can be inverted writing Ψ(0)
n (z) = Ψn(z) P

(
z;
{

x(t), −E(t)
})

. We then get:

bn =
+∞∑
k=0

Ck

(
0,
{

x(t), −E(t)
})

b
(0)
n+k, (3.163)

33Similarly we could have considered (3.121) to begin with. Analogous relations can in fact be written for
b
∗ (0)
n with the substitutions of E(t) with E(t).
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3.10 Asymptotic Fields and Vacua

Annihilation operators of the asymptotic theory, i.e. operators with positive index, are therefore
expressed only using annihilation operators of the theory with defects. We can thus set∣∣∣Ω{x(t), E(t), E(t)}

〉
=
∣∣0(in)

〉
SL2(R) . (3.164)

3.10.2 Asymptotic Vacua and Bogoliubov Transformations

Revisiting the previous section, we can also explicitly compute the expansion for |z| > x(1).

Define for simplicity M =
N∑

t=1
E(t)). We then get:

Ψn(z) =
+∞∑
k=0

Ck

(
∞,

{
x(t), E(t)

})
Ψ

(0)
n+k−M(z). (3.165)

The formula connects the asymptotic behavior of the modes of the fermion with defects to modes
of a NS fermion which can be seen close to the infinity.

Out-operators can thus be connected to the theory with defect through:34

Ψ(z) =
+∞∑

n=−∞
bn Ψn(z) =

|z|>x1
Ψ(out)(z) =

+∞∑
n=−∞

b(∞)
n Ψ(0)

n (z). (3.166)

We get:

b(∞)
n =

+∞∑
k=0

bn+M−k Ck

(
∞,

{
x(t), E(t)

})
. (3.167)

The inverse of the expression is:

bn =
+∞∑
k=0

Ck

(
∞,

{
x(t), −E(t)

})
b

(∞)
n+M−k. (3.168)

As we will show later however M = 0. Annihilation operators of the asymptotic theory, i.e.
operators with positive index, are thus expressed using both annihilation and creation operators
of the theory with defects while creators, i.e. operators with non negative index, are expressed
by means of creation operators only. It follows from the vacuum definition that:(

C̃0 b
(∞)
1 + creation op.

) ∣∣∣Ω{x(t), E(t), E(t)}
〉

= 0,(
C̃0 b

(∞)
2 + C̃1 b

(∞)
1 + creation op.

) ∣∣∣Ω{x(t), E(t), E(t)}
〉

= 0,

...

(3.169)

where C̃n = Cn

(
∞,

{
x(t), −E(t)

})
for brevity. This means that the vacuum for the asymptotic

out-field is non trivially connected to the vacuum of the theory with defects. More explicitly we
34To avoid a redundant notation we do not introduce an object Ψ(∞)

n (z). Even though it would have been in
principle correct, we would have also found that Ψ(∞)

n (z) = Ψ
(0)
n (z).

85



3.11 Contractions and Stress-energy Tensor

have: ∣∣∣Ω{x(t), E(t), E(t)}
〉

= N(out)(
{

x(t), E(t), E(t)
}

)

× e

0∑
m=−∞

0∑
n=−∞

M(out)
mn ({x(t), E(t), E(t)}) b∗ (∞)

m b(∞)
n ∣∣0(out)

〉
SL2(R) ,

(3.170)

so that the two SL2(R) vacua are connected by a Bogoliubov transformation. More precisely we
get (see appendix C for details)(

Ψ(out, +)(z) + L(1)

[
Ψ(out,−)

]
(z)
) ∣∣∣Ω{x(t), E(t), E(t)}

〉
= 0, |z| > x(1), (3.171)

where

L(t)[Ψ] (z) =
∮

|w|>x(t)

dw

2πi

P
(
z;
{

x(t), E(t)
})

P
(
w;
{

x(t), −E(t)
})
− 1

z − w
Ψ(w). (3.172)

The corresponding equation for Ψ∗ (out)(z) can be found with the substitution E → E. Notice
that the kernel of the integral is nothing else (up to a multiplicative constant) but the regularised
propagator, that is the propagator in the presence of the defects to which the NS propagator has
been subtracted. The previous equation is solved explicitly by:∣∣∣Ω{x(t), E(t), E(t)}

〉
= N

({
x(t), E(t), E(t)

})
× e

∮
|z|>x(1)

dz
2πiΨ

∗ (out,−)(z) L [Ψ(out,−)](z) ∣∣0(out)
〉

SL2(R) .

(3.173)

In the previous equation there is no need to specify the relation between |z| and |w| since
Ψ∗ (out,−)(z) and Ψ(out,−)(w) anti-commute. From the same expression for Ψ∗ (out,−)(z) we deduce
that E(t) = −E(t).

3.11 Contractions and Stress-energy Tensor

Given the definition of the algebra of the operators and its representation, we can finally define
the normal ordering operation and proceed to compute the contractions and o.p.e. of the
operators. The procedure ultimately leads to the definition of the stress-energy tensor. This is
enough to show that the theory is a time dependent cft since the stress-energy tensor satisfies
the canonical o.p.e.

3.11.1 NS Complex Fermion

First of all we deal with the simple case of NS fermions. Using the algebra (3.102) we compute
the o.p.e. of fermion fields as:

Ψi(z)Ψ∗j (w) =: Ψi(z)Ψ∗j (z) : + 1
πT

δi
j

z − w
, |w| < |z|, (3.174)
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3.11 Contractions and Stress-energy Tensor

where the operation : · : is the normal ordering with respect to the SL2(R) vacuum defined
in (3.134). We then get the expression of the stress-energy tensor:

T (z) = lim
w→z

[
−πT

2
(
Ψ∗i (z) ∂wΨ

i(w)− ∂zΨ
∗
i (z)Ψi(w)

)
+ Nf

(z − w)2

]
= −πT

2 : Ψ∗i (z)
↔
∂zΨ

i(z) : .

(3.175)

We are then able to derive the necessary minimal subtraction:

h(z − w) = Nf

(z − w)2 . (3.176)

3.11.2 Twisted Fermion

We now focus on Nf = 1 theories. First of all we consider the simplest case of the usual
twisted fermion with the mode expansion (3.117) and (3.118). Using the anti-commutation
relations (3.116) we can compute the o.p.e.:

Ψ(z)Ψ∗(w) = NE, E[Ψ(z)Ψ∗(w)] + 1
πT

( z

w

)E 1
z − w

, |w| < |z|, (3.177)

and
Ψ∗(w)Ψ(z) = NE, E[Ψ∗(w)Ψ(z)] + 1

πT

(w

z

)E 1
w − z

, |w| > |z|. (3.178)

If we require that the previous results can be assembled in a well defined continuous radial
ordering R(Ψ(z)Ψ∗(w)) we need to set E = −E so we can write

R(Ψ(z)Ψ∗(w)) = NE, E[Ψ(z)Ψ∗(w)] + 1
πT

( z

w

)E 1
z − w

. (3.179)

The same result can be reached by computing the stress-energy tensor starting from the
previous expressions. We have two ways to construct it depending on the ordering of the classical
expression:

T (z) = lim
w→z
|w|<|z|

[
−πT

2 (Ψ∗(z)∂wΨ(w)− ∂zΨ
∗(z)Ψ(w)) + 1

(z − w)2

]

= −πT

2 : Ψ∗(z)
↔
∂zΨ(z) : + E2

2z2 ,

(3.180)

or

T (z) = lim
w→z
|w|<|z|

[
−πT

2 (−∂zΨ(z)Ψ∗(w) + Ψ(z) ∂wΨ
∗(w)) + 1

(z − w)2

]

= −πT

2 : Ψ∗(z)
↔
∂zΨ(z) : + E2

2z2 ,

(3.181)

which however must coincide for consistency. Since

: Ψ(z)
↔
∂zΨ

∗(z) : =: Ψ∗(z)
↔
∂zΨ(z) : (3.182)
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3.11 Contractions and Stress-energy Tensor

then we must then require E2 = E2. We can get a stronger constraint by computing the o.p.e.
T (z) T (w). In fact the cancellation of the cubic divergence requires E + E = 0. From now on we
will therefore use the notation |TE〉 instead of

∣∣∣TE, E

〉
.

From the usual definition of the stress-energy tensor in terms of the Virasoro generators

T (z) =
+∞∑

k=−∞
Lkz−k−2, we extract the operators Lk from any of the previous definitions:

L(E)k = −πT

2 N
2
Ψ

+∞∑
k=−∞

NE, E

[
b∗ (E)

n b
(E)
k+1−n

]
(2n− k + 2E− 1) + E2

2 δk,0

= πT

2 N
2
Ψ

+∞∑
n=1

[
(2n− k + 2E− 1)NE, E

[
b

(E)
k+1−n b∗ (E)

n

]
+ (2n− k − 2E− 1)NE, E

[
b
∗ (E)
k+1−n b(E)

n

]]
+ E2

2 δk,0.

(3.183)

We already hinted to the fact that the vacua state involved are not in general SL2(R) invariant.
In particular we can see that that the excited vacua |TE〉 is a primary field

L(E) k |TE〉 = 0, k > 0,

L(E) 0 |TE〉 = E2

2 |TE〉 ,
(3.184)

with non trivial conformal dimensions ∆(|TE〉) = E2

2 . This operator is an excited spin field
SE(t)(x) inserted at x = 0. Its equivalent expression using bosonization is:

SE(x) = eiEφ(x), (3.185)

where φ is such that
〈φ(z)φ(w)〉 = − 1

(z − w)2 . (3.186)

The minimal conformal dimension is achieved for nE = nE = 0, i.e. ∆(|T〉) = ε2

8 , and identifies
a plain spin field. We can further check this idea by showing that the conformal dimensions are
consistent. Using (3.150) we get:

L(E) 0 |T〉 = L0

(
b
∗ (E)
0 b

∗ (E)
−1 . . . b

∗ (E)
2−nE

|TE〉
)

=
[

nE∑
n=1

(
n− E + 1

2

)
+ E2

2

]
|T〉 = ε2

8 |T〉 .
(3.187)

3.11.3 Generic Case With Defects

We then consider the generic case of one complex fermion in the presence of an arbitrary number
of spin fields with respect to the vacuum we introduced in (3.155). We consider the mode
expansion (3.120) and (3.121) as well as the anti-commutation relations (3.133).
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3.11 Contractions and Stress-energy Tensor

As in the usual twisted case we first consider the contraction of the field Ψ and Ψ∗ and then
move to the stress-energy tensor. Using the anti-commutation relations and

+∞∑
k=−∞

pkzk =
N∏

t=1

(
1− z

x(t)

)−L(t)

(3.188)

where pk is defined in (3.130). We have:

Ψ(z)Ψ∗(w) =: Ψ(z)Ψ∗(w) : + 1
πT

1
z − w

N∏
t=1

(
1− z

x(t)

)E(t)(
1− w

x(t)

)−E(t)

, (3.189)

as well as

Ψ∗(z)Ψ(w) =: Ψ∗(z)Ψ(w) : + 1
πT

1
z − w

N∏
t=1

(
1− z

x(t)

)E(t)(
1− w

x(t)

)−E(t)

, (3.190)

both for |w| < |z|. To assemble the expressions in a well defined continuous radial ordering
R[Ψ(z)Ψ∗(w)] we need to set E(t) = −E(t) such that we can write

R[Ψ(z)Ψ∗(w)] =: Ψ(z)Ψ∗(w) : + 1
πT

1
z − w

N∏
t=1

(
1− z

x(t)

)E(t)(
1− w

x(t)

)−E(t)

. (3.191)

We can then expand the results around z:
R[Ψ(z)Ψ∗(w)] =: (ΨΨ∗)(z) : +: (Ψ ∂Ψ∗)(z) : (w − z)

+ 1
πT

[
−1

w − z
+

N∑
t=1

E(t)

z − x(t)

−1
2

 N∑
t=1

∑
u 6=t

E(t) E(u)

(z − x(t))(z − x(u))
+

N∑
t=1

E(t)
(
E(t) − 1

)
(z − x(t))2

(w − z)


+O

(
(w − z)2),

(3.192)

and around w

R[Ψ(z)Ψ∗(w)] =: (ΨΨ∗)(w) : +: (∂ΨΨ∗)(w) : (z − w)

+ 1
πT

[
1

z − w
+

N∑
t=1

E(t)

w − x(t)

+1
2

 N∑
t=1

∑
u 6=t

E(t) E(u)

(w − x(t))(w − x(u))
+

N∑
t=1

E(t)
(
E(t) − 1

)
(w − x(t))2

(z − w)


+O

(
(z − w)2),

(3.193)

so that the stress-energy tensor becomes:

T (z) = −πT

2 : Ψ(z)
↔
∂zΨ

∗(z) : + 1
2

(
N∑

t=1

E(t)

z − x(t)

)2

= πT

2 N
2
Ψ

+∞∑
n, m=−∞

: bn b∗m : z−n−m

[
m− n

z
+ 2

N∑
t=1

E(t)

z − x(t)

]
+ 1

2

(
N∑

t=1

E(t)

z − x(t)

)2

.

(3.194)
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The last expression shows that the energy momentum tensor T (z) is radial time dependent but
it satisfies the usual o.p.e.

First of all we notice that the vacuum
∣∣∣Ω{x(t), E(t), E(t)}

〉
is actually

∣∣∣Ω{x(t), E(t)}
〉
, i.e. it

depends only on x(t) and E(t). We can try to interpret the previous result in the light of the
usual cft approach. In particular we can refine the idea we discussed after (3.136) that the
singularity in the modes (3.120) and (3.121) at the point x(t) is associated with a primary
conformal operator which creates |TE〉 with E = E(t). By comparison with the stress energy
tensor of an excited vacuum (3.180), from the second order singularity we learn that at the
points x(t) there is an operator which creates the excited vacuum

∣∣∣Ω{x(t), E(t)}
〉
from the SL2(R)

vacuum |0〉SL2(R). Given the discussion in the previous section this is an excited spin field
SE(t)

(
x(t)
)

= eiE(t)φ(x(t)). The first order singularities in x(u) − x(t) are then the result of the
interaction between two of the previous excited spin fields. Using the cft operator approach we
postulate that the following identification holds∣∣∣Ω{x(t), E(t)}

〉
= N (

{
x(t), E(t)

}
) SE(1)

(
x(1)

)
SE(2)

(
x(2)

)
. . . SE(N)

(
x(N)

)
|0〉SL2(R)

= N (
{

x(t), E(t)
}

) R
[

N∏
t=1

SE(t)

(
x(t)
)]
|0〉SL2(R) ,

(3.195)

then we get

T (z)
∣∣∣Ω{x(t), E(t)}

〉
= N (

{
x(t), E(t)

}
) R
[
T (z)

N∏
t=1

SE(t)

(
x(t)
)]
|0〉SL2(R) . (3.196)

The fact that T (z) enters the radial ordering may seem strange but the left hand side is well
defined for all z and the only well defined expression for the right hand side is with the radial
ordering. In fact an operator expression like T (z)R

[
∂x(1)φ(x(1)) ∂x(2)φ(x(2))

]
|0〉SL2(R) is only

defined for |z| > x(1), (2). It then follows that

T (z)
∣∣∣Ω{x(t), E(t)}

〉
=

N∑
t=1

(
E2

(t)/2
(z − x(t))2 +

∂x(t) − ∂x(t) logN
z − x(t)

)∣∣∣Ω{x(t), E(t)}
〉

+O(1), (3.197)

which allows us to write

N (
{

x(t), E(t)
}

) R

∂x(t)SE(t)

(
x(t)
)∏

u6=t

SE(u)

(
x(u)

) |0〉SL2(R)

=E(t)

πTN 2
Ψ

+∞∑
n, m=0

bn b∗m
xn+m

(t)
+
∑
u 6=t

E(u)

x(t) − x(u)

 ∣∣∣Ω{x(t), E(t)}
〉

.

(3.198)

This result shows the way non primary operators are represented in this formalism.

3.12 Hermitian Conjugation

Before we can define the amplitudes involving spin and matter fields, we still need to introduce
some of the necessary tools. In this section we focus on the operation of “Hermitian conjugation”

90



3.12 Hermitian Conjugation

in a broad sense: the usual Hermitian conjugation requires the existence of an inner product
which is not yet available since we have not defined the out-vacuum. The operation we define
is similar to the ? operator of C? algebras even though the ? operator sends an element of an
algebra to another element of the same algebra. This is not what happens in the generic case
since the ? is essentially associated with the inversion z → z−1, i.e. in evolving from τ = +∞ to
τ = −∞ so that the order of boundary singularities is reversed.

3.12.1 Usual Twisted Fermions

In general for a chiral primary conformal operator of dimension ∆ in z coordinates the Euclidean
Hermitian conjugation is

[O(z)]† =
(
w2∆O(w)

)∣∣∣∣
w=z−1

. (3.199)

As a matter of fact we cannot use the words “Euclidean Hermitian conjugation” since we do
not have an inner product. We define the operation ? which mimics its behavior. Therefore we
define

[Ψ(z; E)]? =
[
w Ψ̃∗

(
w;−Ẽ

)]∣∣∣∣
w=z−1

, [Ψ∗(z; E)]? =
(

w Ψ̃
(

w; Ẽ
))∣∣∣∣

w=z−1
. (3.200)

In the last expression we did not assume that the action of ? is an automorphism and we wrote
Ψ(z; E) to explicitly show the dependence on the parameter E which enters in the modes. The
previous action agrees with (3.83). In terms of the basis (3.111) we write:35

[
Ψ(E)

n (z)
]?

=
[
wΨ

∗ (−E)
1−n (w)

]∣∣∣∣
w=z−1

,
[
Ψ(−E)

n (z)
]?

=
[
wΨ

∗ (E)
1−n (w)

]∣∣∣∣
w=z−1

, (3.201)

which shows that in this case the image of the ? operator is the same as the support. Using the
mode expansion of (3.200) it follows that[

b(E)
n

]?

= b
∗ (E)
1−n ,

[
b∗ (E)

n

]?

= b
(E)
1−n. (3.202)

The ? action is compatible with the anti-commutation relations as we can show by explicitly
computing them: ([

b(E)
n , b∗ (E)

m

]
+

)?

=
[
b
∗ (E)
1−n , b

(E)
1−m

]
+

= 1
πTN 2

Ψ

δn+m,1. (3.203)

Furthermore ? is involutive since:[
Ψ(E)

n (z)
]??

= Ψ(E)
n (z) ⇒

[
b(E)

n

]??

= b(E)
n . (3.204)

35The second possibility
[
Ψ

(E)
n (z)

]?

=
[

wΨ
∗ (−E−1)
−n (w)

]∣∣∣
w=z−1

is inconsistent with the anti-commutation

relations.
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3.12.2 Generic Case With Defects

Consider the modes (3.120). We define the action of the ? operator on them as:

[
Ψn

(
z;
{

x(t), E(t)
})]? = NΨ z−n

N∏
t=1

(
1− z

x(t)

)E(t)

=
(

w

N∏
t=1

(
− 1

x(t)

)E(t)

Ψ̃∗M+1−n

(
w;
{

x̃(t), Ẽ(t)

}))∣∣∣∣∣
w=z−1

(3.205)

where we used M =
N∑

t=1
E(t) and Ψ̃l(w; {y, F}) = NΨ w−l

N∏
t=1

(
1− w

y

)−F
. In this case the image

of the ? operator is a different space where the defects are located in x̃(t) and the critical exponents
are Ẽ(t) and Ẽ(t) with

x̃(t) = 1
x(t)

, Ẽ(t) = −E(t) = E(t), Ẽ(t) = E(t) = −E(t), (3.206)

where we used E(t) +E(t) = 0. We can then compute the action of the ? operator on the creation
and annihilation operators:

b?
n =

N∏
t=1

(
− 1

x(t)

)−E(t)

b̃∗M+1−n, (b∗n)? =
N∏

t=1

(
− 1

x(t)

)E(t)

b̃−M+1−n. (3.207)

As in the previous situation the anti-commutation relations are preserved by the ? operator.
Explicitly we have: (

[bn, b∗m]+
)? =

[
b̃−M+1−m, b̃∗M+1−n

]
+

= 1
πTN 2

Ψ

δn+m,1. (3.208)

Finally the ? operator is involutive.

3.13 Definition of the Out-Vacuum

With the definition of the ? operator we can now proceed to define the out-vacuum to as the
Hermitian conjugation in the usual cases. It is a conceptually separated step from the definitions
of the algebra of operators and their representation on the in-vacuum. We first consider the
usual twisted theory from which we learn how to define the out-vacuum and then move to the
generic case in the presence of multiple defects.

3.13.1 Usual Twisted Fermions

Consider the definition of the in-vacuum (3.135) for the fields image of the ? operator, i.e.
Ψ̃
(

w; Ẽ
)
and Ψ̃∗

(
w; Ẽ

)
. It is defined as

b̃(Ẽ)
n

∣∣∣∣T̃Ẽ,Ẽ

〉
= b̃∗ (Ẽ)

n

∣∣∣∣T̃Ẽ,Ẽ

〉
= 0, n ≥ 1. (3.209)
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3.13 Definition of the Out-Vacuum

The usual Hermitian conjugation gives〈
T̃

Ẽ,Ẽ

∣∣∣∣ (b̃(Ẽ)
n

)†
=
〈

T̃
Ẽ,Ẽ

∣∣∣∣ (b̃∗ (Ẽ)
n

)†
= 0, n ≥ 1. (3.210)

Given the action of the ? operator (3.202), the identification with the Hermitian conjugate is
possible if

〈TE| b(E)
n = 〈TE| b∗ (E)

n = 0, n ≤ 0. (3.211)

3.13.2 Generic Case With Defects

We can now analyse the case of an arbitrary number of defects. Following the steps of the
previous section we define the in-vacuum for the tilded theory as

b̃n

∣∣∣Ω{x(t), E(t)}
〉

= b̃n

∣∣∣Ω{x(t), E(t)}
〉

= 0, n ≥ 1, (3.212)

and interpret it as the out-vacuum of the initial theory. The definition of the out-vacuum is
therefore: 〈

Ω{x(t), E(t)}
∣∣∣ bn = 0, n ≤ M, (3.213)〈

Ω{x(t), E(t)}
∣∣∣ b∗n = 0, n ≤ −M. (3.214)

Since the action of the ? operator is compatible with the anti-commutation relations, the defini-
tion of the out-states is consistent. If we assume that〈

Ω{x(t), E(t)}
∣∣∣Ω{x(t), E(t)}

〉
6= 0, (3.215)

using the anti-commutation relations we get
1

πTN 2
Ψ

〈
Ω{x(t), E(t)}

∣∣∣Ω{x(t), E(t)}
〉

=
〈
Ω{x(t), E(t)}

∣∣∣ [bM, b∗−M+1
]

+

∣∣∣Ω{x(t), E(t)}
〉

=
〈
Ω{x(t), E(t)}

∣∣∣ b∗−M+1 bM

∣∣∣Ω{x(t), E(t)}
〉
6= 0,

(3.216)

which requires bM

∣∣∣Ω{x(t), E(t)}
〉
6= 0. A similar condition exists for b∗−M, thus we must require

M ≤ 0 and −M ≤ 0:

M =
N∑

t=1
E(t) = 0. (3.217)

The situation is therefore analogous to the case depicted in Figure 3.3 where M and M have the
same role of L for the twisted fermion.

3.13.3 Asymptotic vacua

The discussion is essentially the same as in Section 3.10 with the role of asymptotic in- and
out-fields swapped. In particular we get〈

Ω{x(t), E(t)}
∣∣∣ =

〈
0(out)

∣∣
SL2(R) , (3.218)
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and

〈
Ω{x(t), E(t)}

∣∣∣ = N(in)
({

x(t), E(t)
}) 〈

0(in)
∣∣

SL2(R) e

+∞∑
m, n=1

Mmn({x(t), E(t)}) b∗ (0)
m b(0)

n

. (3.219)

3.14 Correlators in the Presence of Spin Fields

The definitions of the in- and out-vacua and the stress-energy tensor are critical to compute any
correlation function of operators in the presence of the point-like defects. In fact we need to know
both the algebra of the operators and their representation, usually defined on the in-vacuum (the
ket vector), as well as their Hermitian conjugation in order to build the action of the operators
on the out-vacuum (the bra vector).

Starting from (3.195) we can compute the spin field correlators

〈
Ω{x(t), E(t)}

∣∣∣Ω{x(t), E(t)}
〉

= N (
{

x(t), E(t)
}

)
〈

R
[

N∏
t=1

SE(t)

(
x(t)
)]〉

. (3.220)

At first sight both
∣∣∣Ω{x(t), E(t)}

〉
and

〈
Ω{x(t), E(t)}

∣∣∣might seem to contain R
[

N∏
t=1

SE(t)

(
x(t)
)]
.

However this it is not the case and it can be seen in different ways. The simplest is to realise that
such a square would be divergent while the product seems to be perfectly finite. A more rigorous
way is to consider what the previous product is from the point of view of asymptotic out field: we

have
∣∣∣Ω{x(t), E(t)}

〉
= N(out) R

[
N∏

t=1
SE(t)

(
x(t)
)] ∣∣0(out)

〉
SL2(R) and

〈
Ω{x(t), E(t)}

∣∣∣ =
〈
0(out)

∣∣
SL2(R)

so that N(out) = N . Moreover T (z) =
|z|>x(1)

T(out)(z) when the two energy momentum tensors

are normal ordered with respect to their different sets of operators which are related in (3.167).
Hence all the expressions are surely valid for |z| > x(1) and can be analytically extended to the
whole plane. The same result can be obtained from the point of view of asymptotic in-fields.

Unfortunately the normalisation factor cannot be uniquely fixed. The result depends on the
normalisation chosen for the single spin field and effectively shows only when we relate the N
points to N −1 points correlators, recursively down to two points correlators. Therefore we need
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to consider quantities where the normalisation is not present. In particular we consider

∂

∂x(t)
ln
〈

R

SE(t)

(
x(t)
) N∏

u=1
u 6=t

SE(u)

(
x(u)

)〉

=
∮

|z|=x(t)

dz

2πi

〈
R
[
T (z)

N∏
t=1

SE(t)

(
x(t)
)]〉

〈
R
[

N∏
t=1

SE(t)

(
x(t)
)]〉

=

 ∮
|z|>x(t)

dz

2πi
−

∮
|z|<x(t)

dz

2πi


〈
Ω{x(t), E(t)}

∣∣∣ T (z)
∣∣∣Ω{x(t), E(t)}

〉
〈
Ω{x(t), E(t)}

∣∣∣Ω{x(t), E(t)}
〉

=

〈
Ω{x(t), E(t)}

∣∣∣ (L
x+

(t)
−1 − L

x−(t)
−1

) ∣∣∣Ω{x(t), E(t)}
〉

〈
Ω{x(t), E(t)}

∣∣∣Ω{x(t), E(t)}
〉

, (3.221)

since [L−1, Oh(z)] = ∂zOh(z) for a quasi-primary operator Oh. From the definition of T (z) it
follows that:

L
x+

(t)
−1 − L

x−(t)
−1 =

∮
Cx(t)

dz

2πi
T (z) = πT N 2

Ψ E(t)

+∞∑
n, m=−∞

: bn b∗m : x−m−n
(t) +

N∑
u=1
u6=t

E(u)E(t)

x(t) − x(u)
, (3.222)

where Cx(t) is a small loop around x(t). Therefore we have

∂

∂x(t)
ln
〈

R

SE(t)

(
x(t)
) N∏

u=1
u 6=t

SE(u)

(
x(u)

)〉 =
∑
u6=t

E(u)E(t)

x(t) − x(u)
, (3.223)

which can be solved by

ln
〈

R

SE(t)

(
x(t)
) N∏

u=1
u 6=t

SE(u)

(
x(u)

)〉 = N0
({

E(t)
}) N∏

t=1t>u

(
x(u) − x(t)

)E(u)E(t) . (3.224)

The constant N0
({

E(t)
})

which depends on the E(t) only can be fixed by using the o.p.e. The
last equation reproduces the usual bosonization procedure.

In similar way we can compute all correlators〈
Ω{x(t), E(t)}

∣∣∣R[∏
i

Ψ(xi)
∏
j

Ψ∗(xj)
] ∣∣∣Ω{x(t), E(t)}

〉
〈
Ω{x(t), E(t)}

∣∣∣Ω{x(t), E(t)}
〉

=

〈
R
[∏

i

Ψ(xi)
∏
j

Ψ∗(xj)
N∏

t=1
SE(t)

(
x(t)
)]〉

〈
R
[

N∏
t=1

SE(t)

(
x(t)
)]〉 ,

(3.225)
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using Wick’s theorem since the algebra and the action of creation and annihilation operators
is the usual. In particular taking one Ψ(z) and one Ψ∗(w) we get the Green function which is
nothing else but the contraction in equation (3.191).

4 Summary and Conclusion

We thus showed that the specific geometry of the intersecting D-branes leads to different results
when computing the value of the classical action, that is the leading contribution to the Yukawa
couplings in string theory. In particular in the Abelian case the value of the action is exactly the
area formed by the intersecting D-branes in the R2 plane, i.e. the string worldsheet is completely
contained in the polygon on the plane. The difference between the SO(4) case and SU(2) is
more subtle as in the latter there are complex coordinates in R4 for which the classical string
solution is holomorphic in the upper half plane. In the generic case presented so far this is in
general no longer true. The reason can probably be traced back to supersymmetry, even though
we only dealt with the bosonic string. In fact when considering SU(2) rotated D-branes part of
the spacetime supersymmetry is preserved, while this is not the case for SO(4) rotations.

In the general case there does not seem to be any possible way of computing the action (2.136)
in term of the global data. Most probably the value of the action is larger than in the holomorphic
case since the string is no longer confined to a plane. Given the nature of the rotation its
worldsheet has to bend in order to be attached to the D-brane as pictorially shown in Figure 2.7
in the case of a 3-dimensional space. The general case we considered then differs from the known
factorised case by an additional contribution in the on-shell action which can be intuitively
understood as a small “bump” of the string worldsheet in proximity of the boundary.

In a technical and direct way we also showed the computation of amplitudes involving an
arbitrary number of Abelian spin and matter fields. The approach we introduced does not
generally rely on cft techniques and can be seen as an alternative to bosonization and old
methods based on the Reggeon vertex. Starting from this work the future direction may involve
the generalisation to non Abelian spin fields and the application to twist fields. In this sense
this approach might be the only way to compute the amplitudes involving these complicated
scenarios. This analytical approach may also shed some light on the non existence of a technique
similar to bosonisation for twist fields.
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Part II

Cosmological Backgrounds and
Divergences

97



98



5 Introduction

In the previous part we mainly focused on the mathematical tools needed to compute amp-
litudes in a (semi-)phenomenologically viable string theory framework of particle physics. This
ultimately led to the introduction of intersecting D-branes and point-like defects to perform the
calculation of correlation functions involving twist and spin fields, inevitably necessary when con-
sidering chiral matter fields. While this is indeed a good starting point to build an entire string
phenomenology, the theory cannot be limited to the study of particle physics models. String
theory is in fact considered to be one of the candidate theories for the description of quantum
gravity alongside the nuclear interactions. As a theory of everything it is therefore fascinating to
analyse cosmological implications as seen from its description. In this part of the thesis we focus
on the implications of the string theory when considering for instance the Big Bang singularity,
or, broadly speaking, singularities which exist in one point in time (i.e. space-like).36 Among
the different possible descriptions of such space-like singularities [87] we concentrate on string
theory solutions on time-dependent orbifolds as they represent the simplest models describing
such phenomena. Before delving into the subject we briefly present their definition and the
reason behind their relevance in what follows [88]–[90].

5.1 Quotient Spaces and Orbifolds

First of all we recall the formal definition of orbifold to better introduce the idea of a manifold
locally isomorphic to a quotient space. Let therefore M be a topological space and G a group
with an action G : G×M →M defined by G (g, p) = gp for g ∈ G and p ∈M . Then the isotropy
subgroup (or stabiliser) of p ∈ M is Gp = {g ∈ G | gp = p} such that Ggp = g−1 Gp g. Given an
element p ∈ M its orbit is Gp = {gp ∈M | g ∈ G}. The action of the group is said transitive if
Gp = M and effective if its kernel is trivial, i.e. ker G = {1}. The orbit space M/G is the set of
equivalence classes given by the orbital partitions and inherits the quotient topology from M .

Let now M be a manifold and G a Lie group acting continuously and transitively on M . For
every point p ∈M we can define a continuous bijection λp : G/Gp → Gp = M .37 Such map is a
diffeomorphism if M and G are locally compact spaces and M/G is in turn a manifold itself. If
G is a discrete or finite group the action is called properly discontinuous, that is for every U ⊂M
then {g ∈ G | U ∩ gU 6= ∅} is finite.

The definition of orbifold intuitively includes quotient manifolds such as M/G: analogously
to manifold which are locally Euclidean, in the broad sense orbifolds are locally modelled by
quotients with actions given by finite groups. An orbifold chart

(
Ũ , G, φ

)
of dimension n ∈ N

for an open subset U ∈M is made of:

• a connected open subset Ũ ⊂ Rn,

• a finite group G acting acting on Ũ ,
36They are intended as distinct from time-like singularities such as black holes which are present for extended

periods of time in one spatial point. The space-like singularities we consider are the opposite: they exist in a
given instant in time but could in principle cover an extended hypersurface in space.

37For any U ⊂ M and a given p ∈ M then λ−1
p (U) = πp({g ∈ G | gp ∈ U}) where πp : G → G/Gp is the

projection map. Thus λ−1
p (U) is an open subset if U is open: the bijection is continuous.
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• a map φ : Ũ →M defined by the composition φ = π ◦P where P : Ũ → Ũ/G defines the
orbits and π : Ũ/G→M .

An embedding η :
(

Ũ2, G1, φ1

)
↪→
(

Ũ2, G2, φ2

)
between two charts is such that φ2 ◦ η = φ1.

Suppose now Ui = φi

(
Ũi

)
for i = 1, 2 and take p ∈ U1 ∩ U2. The charts are compatible if

there exist an open subset V such that p ∈ V ⊂ U1 ∩ U2 and a chart
(

Ṽ , G, φ
)

admitting
two embeddings in the previous charts. A n-dimensional orbifold atlas is then a collection
{(Ui, Gi, φi)}i∈I of compatible n-dimensional orbifold charts covering M . The n-dimensional
orbifold O is finally defined as a paracompact Hausdorff topological space together with a n-
dimensional orbifold atlas.38

5.1.1 Orbifolds and Strings

In string theory the notion of orbifold has a more stringent characterisation with respect to pure
mathematics. Differently from the general definition, orbifolds in physics usually appear as a
global orbit space M/G where M is a manifold and G the group of its isometries, often leading
to the presence of fixed points (i.e. points in the manifold which are left invariant by the action
of G) where singularities emerge due to the presence of additional degrees of freedom given by
twisted states of the string [91], [92]. They are commonly introduced as singular limits of CY
manifolds [18], which in turn can be recovered using algebraic geometry to smoothen the singular
points. However they can also be used to model peculiar time-dependent backgrounds [89], [90],
[93]–[97]. They are in fact good toy models to study Big Bang scenarios in string theory. We
focus specifically on the study of such cosmological singularities in the framework of string theory
defined on time-dependent orbifolds.

6 Time Dependent Orbifolds

6.1 Motivation

Unfortunately and puzzlingly the first attempts to consider space-like [98] or light-like singu-
larities [99], [100] by means of orbifold techniques yielded divergent four points closed string
amplitudes (see [96], [97] for reviews).

These singularities are commonly assumed to be connected to a large backreaction of the
incoming matter into the singularity due to the exchange of a single graviton [101], [102]. This
claim was already questioned in the literature where the O-plane orbifold was constructed. This
orbifold should in fact be stable against the gravitational collapse but it exhibits divergences
in the amplitudes (see the discussion in [96]). In what follows we show a direct computation
showing that the presence of the divergence is not related to a gravitational response.

38In this context paracompact refers to a topological space M which admits open covers with a locally finite
refinement. In other words let U = {Ui}i∈I be a cover and V = {Vj}j∈J be its refinement (i.e. ∀j ∈ J , ∃i ∈ I |
Vj ⊂ Ui). Then U is locally finite if ∀p ∈M there is a neighbourhood B(p) of p such that {i ∈ I | Ui ∩B(p) 6= ∅}
is finite.
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6.1 Motivation

Unnoticed in the Null Boost Orbifold (nbo) [99], even the four open string tachyons amplitude
is divergent. Since we are working at tree level gravity is not an issue. In fact in [99] the four
tachyons amplitude in the divergent region reads

A4 ∼
∫

q∼∞

dq

|q|
A (q) (6.1)

where Aclosed(q) ∼ q4−α′‖~p⊥‖2 and Aclosed(q) ∼ q1−α′‖~p⊥‖2 tr
(
[T1, T2]+ [T3, T4]+

)
(Ti for i =

1, 2, 3, 4 are Chan-Paton matrices). Moreover divergences in string amplitudes are not limited
to four points: interestingly we show that the open string three point amplitude with two tachyons
and the first massive state may be divergent when some physical polarisations are chosen. The
true problem is therefore not related to a gravitational issue but to the non existence of the
effective field theory. In fact when we express the theory using the eigenmodes of the kinetic
terms some coefficients do not exist, not even as a distribution. This holds true for both open
and closed string sectors since it manifests also in the four scalar contact term. The issue can be
roughly traced back to the vanishing volume of a subspace and the existence of a discrete zero
mode of the Laplacian on this subspace.

As an introduction to the problem we first deal with singularities of the open string sector.
We try to build a consistent scalar qed and show that the vertex with four scalar fields is ill
defined. Divergences in scalar QED are due to the behaviour of the eigenfunctions of the scalar
d’Alembertian near the singularity but in a somehow unexpected way. Near the singularity u = 0
in lightcone coordinates almost all eigenfunctions behave as 1√

|u|
eiAu with A 6= 0. The product

of N eigenfunctions gives a singularity |u|−N/2 which is technically not integrable. However
the exponential term eiAu allows for an interpretation as distribution when A = 0 is not an
isolated point. When A = 0 is isolated the singularity is definitely not integrable and there is no
obvious interpretation as a distribution. Specifically in the nbo we find A ∼ l2

k+
where l is the

momentum along the compact direction. As a consequence we find the eigenfunction associated
to the discrete momentum l = 0 along the orbifold compact direction with an isolated A = 0. It
is the eigenfunction which is constant along that direction and it is the root of all divergences.

We then check whether the most obvious ways of regularizing the theory by making A not
vanishing may work. The first regularisation we try is to use a Wilson line along the compact
direction even though the diverging three point string amplitude involves an anti-commutator
of the Chan-Paton factor therefore it is divergent also for a neutral string, i.e. for a string
with both ends attached to the same D-brane. This kind of string does not feel Wilson lines.
Moreover anti-commutators are present in amplitudes with massive states in unoriented and
supersymmetric strings and therefore neither worldsheet parity nor supersymmetry can help.
The second obvious regularisation is the introduction of higher derivatives couplings to the Ricci
tensor which is the only non vanishing tensor associated to the (regularised) metric. In any case
it seems that a sensible regularisation must couple to all open string in the same way and this
suggests a gravitational coupling. We then give a cursory look to whether closed string winding
modes could help [103], as already suggested in [98], [100] in analogy to the resolution of static
singularities. Twisted closed strings become massless near the singularity and they should in
some way be included. They generate a background potential Bµν which is equivalent to a
electromagnetic background from the open string perspective. Under a plausible modification of
the scalar action which is suggested by the two-tachyons—two-photons amplitude the problems
seem to be solvable.
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In any case the origin of the string divergence seems to originate from the lack of contact
terms in the effective field theory. Since these terms arise from string theory also through the
exchange of massive string states we examine three point amplitudes with one massive state. A
deeper understanding of the subject requires the study of the polarisations of the massive state
on the orbifold as seen from the covering Minkowski space before the computation of the overlap
of the wave functions. We then go back to string theory and we verify that in the nbo the open
string three points amplitude with two tachyons and one first level massive string state does
indeed diverge when some physical polarisation are chosen.

We then introduce the generalised Null Boost Orbifold (gnbo) as a generalisation of the nbo
which still has a light-like singularity and is generated by one Killing vector. However in this
model there are two directions associated with A, one compact and one non compact. We can
then construct the scalar qed and the effective field theory which extends it with the inclusion
of higher order terms since all terms have a distributional interpretation. However if a second
Killing vector is used to compactify the formerly non compact direction, the theory has again
the same problems as in the nbo. In the literature there are however also other attempts at
regularizing the nbo such as the Null Brane. This kind of orbifold was originally defined in
[94], [96] and studied in perturbation theory in [100]. The Null Brane shares with the gnbo the
existence of a non compact direction on the orbifold. In this case it is indeed possible to build
single particle wave functions which leads to the convergence of the smeared amplitudes.

We finally present also a brief examination of the Boost Orbifold (bo) where the divergences
are generally milder [93]. The scalar eigenfunctions behave in time t as |t|±i l

∆ near the singularity
but there is one eigenfunction which behaves as log(|t|) and again it is the constant eigenfunction
along the compact direction which is the origin of all divergences. In particular the scalar qed
on the bo can be defined and the first term which gives a divergent contribution is of the form∣∣φ φ̇∣∣2, i.e. divergences are hidden into the derivative expansion of the effective field theory.
Again three points open string amplitudes with one massive state diverge.

6.2 Scalar QED on NBO and Divergences

As discussed the four open string tachyons amplitude diverges in the nbo. The literature on
the subject (see for instance [96] and references therein) suggests that this can be cured by the
eikonal resummation. We therefore consider the scalar qed on the nbo as a first approach. In
this case all eigenmodes can be written using elementary functions thus making the issues even
more evident. Its action is given by

Ssqed =
∫
Ω

dDx
√
−det g

(
−(Dµφ)∗Dµφ−M2(φ∗)φ− 1

4fµν fµν −
g4

4 |φ|
4
)

, (6.2)

with
Dµφ = (∂µ − i e aµ)φ, fµν = ∂µaν − ∂νaµ. (6.3)

We reserve small letters for quantities defined on the orbifold and capital letters for those defined
in flat space. Moreover Ω denotes the orbifold. We will construct directly both the scalar and
the spin-1 eigenfunctions which we can use as a starting point for the perturbative computations.
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6.2 Scalar QED on NBO and Divergences

6.2.1 Geometric Preliminaries

In Minkowski spacetime M 1,D−1 with coordinates (xµ) =
(
x+, x−, x2, ~x

)
and metric

ds2 = −2 dx+ dx− +
(
dx2)2 + ηij dxi dxj , (6.4)

we consider the following change of coordinates to (xα) = (u, v, z, ~x)
x− = u

x2 = ∆uz

x+ = v + 1
2∆

2uz2
⇔


u = x−

z = x2

∆ x−

v = x+ − 1
2

(x2)2

x−

. (6.5)

Then the metric becomes:

ds2 = −2 du dv + (∆u)2(dz)2 + ηij dxi dxj , (6.6)

along with the non vanishing geometrical quantities

−det g = (∆u)2
, (6.7)

and
Γ v

z z = ∆2u, Γ z
u z = u−1. (6.8)

Riemann and Ricci tensor components however vanish since at this stage we only performed a
change of coordinates from the original Minkowski spacetime. Locally it is the same as the nbo
and they must have the same local differential geometry.

The nbo is introduced by identifying points along the orbits of the Killing vector:

κ = −i(2π∆)J+2

= (2π∆) (x2∂+ + x−∂2)
= 2π∂z,

(6.9)

in such a way that
xµ ≡ Kn xµ, n ∈ Z, (6.10)

where Kn = enκ, leads to the identifications

x =


x−

x2

x+

~x

 ≡ Knx =


x−

x2 + n(2π∆)x−
x+ + n(2π∆)x2 + 1

2 n2(2π∆)2
x−

~x

 (6.11)

or to
(u, v, z, ~x) ≡ (u, v, z + 2πn, ~x) (6.12)

in coordinates (xα) where κ = 2π∂z is a global Killing vector.

As a reference for the future, we notice that we could regularise the metric as

ds2 = −2 du dv + ∆2(u2 + ε2)(dz)2 + ηij dxi dxj . (6.13)
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The non vanishing geometrical quantities are then:

−det g = ∆2(u2 + ε2), (6.14)

and
Γ v

z z = ∆2u, Γ z
u z = u

u2 + ε2 , (6.15)

which lead to the following Riemann and Ricci tensor components:

Rz
uzu = − ε2

(u2 + ε2)2 , Rv
zzu = − ∆2ε2

u2 + ε2 , Ricuu = − ε2

(u2 + ε2)2 . (6.16)

Since δreg(u) = 1
π

ε
u2+ε2 then Rz

uzu = −π2[δreg(u)]2.

6.2.2 Free Scalar Action

We study the eigenmodes of the Laplacian operator to diagonalize the scalar kinetic term given
by:39

S(kinetic)
sqed [φ] =

∫
Ω

dDx
√
−det g

(
−gαβ∂αφ

∗ ∂βφ−M2φ∗φ
)

=
∫

RD−3

dD−3~x

+∞∫
−∞

du

+∞∫
−∞

dv

2π∫
0

dz |∆u|

×

(
∂uφ

∗ ∂vφ + ∂vφ
∗ ∂uφ −

1
(∆u)2 ∂zφ

∗ ∂zφ − ∂iφ
∗ ∂iφ−M2φ∗φ

)
.

(6.17)

The solution to the equation of motion is enough when we want to perform the canonical quantiz-
ation. Since we use Feynman diagrams we consider the path integral approach: we take off-shell
modes and solve the eigenvalue problem �φr = rφr. Comparing with the flat case we see that
r is 2 k− k+ −

∥∥∥~k∥∥∥2
when k is the impulse in flat coordinates. We therefore have

−2∂u∂vφr −
1
u

∂vφr + 1
(∆u)2 ∂2

zφr + ∂2
i φr = rφr. (6.18)

Using Fourier transforms it follows that the eigenmodes are

φk−kr(u, v, z, ~x) = eik+v+ilz+i~k·~x φ̃k−kr(u), (6.19)

with

φ̃k−kr(u) = 1√
(2π)D |2∆k+ u|

e
−i l2

2∆2k+
1
u +i
‖~k‖2+r

2k+
u
, (6.20)

39The factor −gαβ is due to the choice of the East coast convention for the metric, namely:

−gαβ∂αφ
∗ ∂βφ−M2φ∗ φ ∼

∣∣φ̇∣∣2 −M2|φ|2 ∼ E2 −M2.
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6.2 Scalar QED on NBO and Divergences

and
φ∗k−kr(u, v, z, ~x) = φ{−k+,−l,−~k, r}(u, v, z, ~x). (6.21)

We chose the numeric factor in order to get a canonical normalisation:(
φk−krN1, φk−krN2

)
=
∫

RD−3

dD−3~x

+∞∫
−∞

du

+∞∫
−∞

dv

2π∫
0

dz |∆u|φk−krN1φk−krN2

=δD−3(~k(1) + ~k(2)) δ(r(1) − r(2)) δ(k(1) + + k(2) +) δl(1)+l(2), 0.

(6.22)

We can then perform the off-shell expansion

φ(u, v, z, ~x) =
∫

RD−3

dD−3~k

+∞∫
−∞

dk+

+∞∫
−∞

dr

+∞∑
l=−∞

Ak−kr φk−kr(u, v, z, ~x), (6.23)

such that the scalar kinetic term becomes

S(kinetic)
sqed [A] =

∫
RD−3

dD−3~k

+∞∫
−∞

dk+

+∞∫
−∞

dr

+∞∑
l=−∞

(
r −M2)Ak−krA∗k−kr. (6.24)

6.2.3 Free Photon Action

The action of the free photon can be written as

S(kinetic)
sqed [a] =

∫
Ω

dDx
√
−det g

(
−1

2gαβgγδDαaγ(Dβaδ −Dδaβ)
)

. (6.25)

We choose to enforce the Lorenz gauge:40

Dαaα = − 1
u

av − ∂uav − ∂vau + 1
∆2u2 ∂zaz + ηij∂iaj = 0. (6.26)

As covariant derivatives commute since we are locally flat, the e.o.m. read (�a)α = 0. Explicitly
we have:

(�a)u = 1
u2 av −

2
∆2u3 ∂zaz +

[
−2∂u∂v −

1
u

∂v + 1
∆2u2 ∂2

z + ηij∂i∂j

]
au,

(�a)v =
[
−2∂u∂v −

1
u

∂v + 1
∆2u2 ∂2

z + ηij∂i∂j

]
av,

(�a)z = − 2
u

∂zav +
[
−2∂u∂v + 1

u
∂v + 1

∆2u2 ∂2
z + ηij∂i∂j

]
az,

(�a)i =
[
−2∂u∂v −

1
u

∂v + 1
∆2u2 ∂2

z + ηij∂i∂j

]
ai.

(6.27)

40Indeed it is exactly the usual Lorenz gauge since locally the space is Minkowski.
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6.2 Scalar QED on NBO and Divergences

As in the previous scalar case we are actually interested in solving the eigenmodes problem
(�ar)α = r arα. We proceed hierarchically: first we solve for av and ai whose equations are the
same as in the scalar field, then we insert the solutions as a source in the equation for az and
eventually we solve for au.41 We get the solutions:

∥∥ãk−krα(u)
∥∥ =


ãu

ãv

ãz

ãi

 =
∑

α∈{u,v,z,i}

E{k+, l, ~k, r}α
∥∥∥ã
α

k−krα(u)
∥∥∥

= E{k+, l, ~k, r}u


1
0
0
0

 φ̃k−kr(u)

+ E{k+, l, ~k, r} v


i

2k+u + 1
2

(
l

∆k+

)2
1

u2

1
l

k+

0

 φ̃k−kr(u)

+ E{k+, l, ~k, r} z


l

∆k+|u|
0
∆|u|

0

 φ̃k−kr(u)

+ E{k+, l, ~k, r} j


0
0
0
δij

 φ̃k−kr(u),

(6.28)

then we can expand the off-shell fields as

aα(u, v, z, ~x) =
∫

Dk
∑

α∈{u,v,z,i}

+∞∑
l=−∞

E{k+, l, ~k, r}α a
α

k−krα(u, v, z, ~x), (6.29)

where
a
α

k−krα(u, v, z, ~x) = ã
α

k−krα(u) ei (k+v+lz+~k·~x) (6.30)

and
∫

Dk =
∫

RD−3
dD−3~k

+∞∫
−∞

dk+
+∞∫
−∞

dr.

We can also compute the normalisation as

(
a(1), a(2)

)
=

∫
RD−3

dD−3~x

+∞∫
−∞

du

+∞∫
−∞

dv

2π∫
0

dz |∆u|

× gαβ ak−krN1α ak−krN2β

= E{k(1) +, l(1), ~k(1), r(1)} ◦ E{k(2) +, l(2), ~k(2), r(2)}
× δD−3(~k(1) + ~k(2)) δ(r(1) − r(2)) δ(k(1) + + k(2) +) δl(1)+l(2), 0,

(6.31)

41Notice that inside the square brackets of the differential equation for az there is a different sign for the term
1
u

∂v with respect to the equation for the scalar field.
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where:42

E(1) ◦ E(2) = −E(1) u E(2) v − E(1) v E(2) u + E(1) z E(2) z + ηij E(1) i E(2) j . (6.32)

Finally the Lorenz gauge reads

ηij ki E{k+, l, ~k, r} j − k+ E{k+, l, ~k, r}u −

∥∥∥~k∥∥∥2
+ r

2 k+
E{k+, l, ~k, r} v = 0, (6.33)

which does not impose any constraint on the transverse polarisation E{k+, l, ~k, r} z. The photon
kinetic term becomes

S(kinetic)
sqed [E ] =

∫
RD−3

dD−3~k

+∞∫
−∞

dk+

+∞∫
−∞

dr

+∞∑
l=−∞

r

2 Ek−kr ◦ E∗k−kr. (6.34)

6.2.4 Cubic Interaction

With the definition of the d’Alembertian eigenmodes we can now examine the cubic vertex which
reads

S(cubic)
sqed [φ, a] =

∫
Ω

dDx
√
−det g

(
−i e gαβaα(φ∗ ∂βφ− ∂βφ

∗φ)
)
. (6.35)

Its computation involves integrals such as

∫
du |∆u|

(
l

u

)2 3∏
i=1
φ̃k−krNi ∼

∫
u∼0

du

(
l2

|u|
5
2

)
e
−i

3∑
i=1

l2
(i)

2∆2k(i) +)
1
u

, (6.36)

and ∫
du |∆u|

(
1
u

) 3∏
i=1
φ̃k−krNi ∼

∫
u∼0

du

(
1

u |u|
1
2

)
e
−i

3∑
i=1

l2
(i)

2∆2k(i) +
1
u

, (6.37)

which can be interpreted as hints that the theory is troublesome. The first integral diverges
if the exponential functions are all equal to unity. Fortunately it happens when all factors l(i)
(where i = 1, 2, 3) vanish. In this case however the integral vanishes if we set l(i) = 0 before
its evaluation. This however suggests that when all l(i) = 0, i.e. when the eigenfunctions are
constant along the compact direction z, something suspicious is happening. On the other side
when at least one l is different from zero we have an integral such as:∫

u∼0

du |u|−ν eiAu ∼
∫

t∼∞

dt tν−2 eiAt. (6.38)

All l(i) are discrete but k(i) + are not thus A has an isolated zero. Otherwise it has continuous
value and may be given a distributional meaning, similar to a derivative of the Dirac delta

42We use a shortened version of the polarisations E for the sake of readability. We write E(n)α =
E{k(n) +, l(n), ~k(n), r(n)}α thus hiding the understood dependence of the components of E(n) on the momenta.
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function. The second integral has the same issues when all l(∗) = 0 but, since it is not proportional
to any l as it stands, it is divergent unless we consider a principal part regularization.

We can give in any case meaning to the cubic terms and we get:43

S(cubic)
sqed [A, E ] =

3∏
i=1

 ∫
RD−3

dD−3~k(i)

+∞∫
−∞

dr(i)

+∞∫
−∞

dk(i) +
∑
l(i)

 (2π)D−1

× e δ

( 3∑
i=1

~k(i)

)
δ

( 3∑
i=1

k(i) +

)
δ 3∑

i=1

l(i), 0

×
(
A{−k(2) +,−l(2),−~k(2), r(2)}

)∗
Ak−krN3

×

{
E{k(1) +, l(1), ~k(1), r(1)}u k(2) + I

[0]
{3}

+ E{k(1) +, l(1), ~k(1), r(1)} z

k(2) +l(1) − l(2)k(1) +

∆k(1) +
J [−1]
{3}

+ E{k(1) +, l(1), ~k(1), r(1)} v F
(

k(1) +, l(1), k(2) +, l(2), r(2), ~k(2)

)
− ηi j E{k(1) +, l(1), ~k(1), r(1)} i k(2)j

I [0]
{3} − ((2)→ (3))

}
,

(6.39)

where

F
(

k(1) +, l(1), k(2) +, l(2), r(2), ~k(2)

)
=

∥∥∥~k(2)

∥∥∥2
+ r(2)

2 k(2) +
I [0]
{3} + i

k(2) +

2 k(1) +
I [−1]
{3}

+ 1
2

k(2) +

∆2

(
l(1)

k(1) +
−

l(2)

k(2) +

)2
I [−2]
{3} .

(6.40)

In the previous expressions we also defined for future use:

I [ν]
(1)...(N) = I [ν]

{N} =
+∞∫
−∞

du |∆u|uν
N∏

i=1
φ̃k−krNi (6.41)

J [ν]
{N} =

+∞∫
−∞

du |∆| |u|1+ν
N∏

i=1
φ̃k−krNi. (6.42)

For the sake of brevity from now on we use

φ̃(i) = φ̃k−krNi, (6.43)
φ̃(i) = φ̃k−krNi (6.44)

when not causing confusion.
43The notation (2)→ (3) meaning is that all previous terms inside the curly brackets appear again in exactly

the same structure but with momenta of particle (3) in place of those of particle (2).
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6.2.5 Quartic Interactions and Divergences

The issue with the divergent vertex is even more visible when considering the quartic terms:

S(quartic)
sqed [φ, a] =

∫
Ω

dDx
√
−det g

(
e2 gµν aµaν |φ|2 −

g4

4 |φ|
4
)

, (6.45)

which can be expressed using the modes as:

S(quartic)
sqed [φ, a] =

4∏
i=1

∫ dD−3~k(i) dk(i) + dr(i)
∑
l(i)

 (2π)D−1

× δ

( 4∑
i=1

~k(i)

)
δ

( 4∑
i=1

k(i) +

)
δ 4∑

i=1

l(i), 0

×

{
e2
(
A{−k(3) +,−l(3),−~k(3), r(3)}

)∗
Ak−krN4

×

[(
E{k(1) +, l(1), ~k(1), r(1)} ◦ E{k(2) +, l(2), ~k(2), r(2)}

)
I [0]
{4}

− i

2E{k(1) +, l(1), ~k(1), r(1)} v E{k(2) +, l(2), ~k(2), r(2)} v

(
1

k(2) +
+ 1

k(1) +

)
I [−1]
{4}

+ 1
2
E{k(1) +, l(1), ~k(1), r(1)} vE{k(2) +, l(2), ~k(2), r(2)} v

∆2

(
l(1)

k(1) +
−

l(2)

k(2) +

)2
I [−2]
{4}

]

− g4

4 A
({

k+, l, ~k, r
})
I [0]
{4}

}
,

(6.46)

where

A
({

k+, l, ~k, r
})

=
(
A{−k(1) +,−l(1),−~k(1), r(1)}

)∗ (
A{−k(2) +,−l(2),−~k(2), r(2)}

)∗
×Ak−krN3Ak−krN4.

(6.47)

When setting l(∗) = 0 all the surviving terms are divergent. The explicit behaviour is I [0]
{4} ∼∫

du |u|1−4× 1
2 and I [−1]

{4} ∼
∫

du u−1 |u|1−4× 1
2 since φ̃

∣∣∣
l=0
∼ |u|−

1
2 . Higher order terms in the

effective field theory have even worse behaviour. This makes the theory ill defined and the string
theory which should give this effective theory ill defined too.

6.2.6 Failure of Obvious Divergence Regularizations

From the discussion in the previous section the origin of the divergences is the sector l = 0.
When l = 0 the highest order singularity of the Fourier transformed d’Alembertian equation
vanishes. Explicitly we have:

A ∂uφ̃k−kr + B(u) φ̃k−kr = A e−
∫ u B(u)

A du ∂u

[
e+
∫ u B(u)

A du
φ̃k−kr

]
= 0, (6.48)
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with
A = (−2 i k+), B(u) = −

(∥∥∥~k∥∥∥2
+ r

)
− i k+

1
u
− l2

∆2
1
u2 . (6.49)

This implies the absence of the oscillating factor eiAu when l vanishes. It follows that any
deformation which prevents the coefficient of the highest order singularity from vanishing will
do the trick.

The first and easiest possibility is to add a Wilson line along z, i.e. a = θ dz. This shifts
l→ l− e θ and regularises the scalar qed. Unfortunately this does not work in the string theory
where Wilson lines on D25-branes are not felt by the neutral strings starting and ending on the
same D-brane. In fact not all interactions involve commutators of the Chan-Paton factors which
vanish for neutral strings. For instance the interaction of two tachyons with the first massive
state involves an anti-commutator as we discuss later. The anti-commutators are present also in
amplitudes of supersymmetric strings with massive states and therefore the issue is not solved
by supersymmetry.

A second possibility is to include higher derivative couplings to curvature as natural in the
string theory. If we regularise the metric in a minimal way as shown at the end of Section 6.2.1,
only Ricuu does not vanish. We can introduce:

S
(higher R)
HE [φ, g]

=
∫
Ω

dDx
√
−det g

+∞∑
k=1

(α′)2k−1
k∏

j=1
gµjνj gρjσj Ricµjρj

( 2k∑
s=0

cks ∂2k−s
νj

φ∗ ∂s
σj
φ

)
=
∫
Ω

dDx
√
−det g

(
α′ gµν gρσRicµρ

(
c12φ

∗ ∂2
νσφ+ c11∂νφ

∗ ∂σφ+ c10∂2
νσφ

∗φ
))

,

(6.50)

where α′ has been introduced after dimensional analysis and in order to have all adimensional c
factors. Since only Ricuu is non vanishing and it depends only on u, the regularised d’Alembertian
eigenmode problem now reads:

−2∂u∂vφr −
u

u2 + ε2 ∂vφr + 1
∆2(u2 + ε2)∂2

zφr

+
+∞∑
k=1

(α′)2k−1
Ck Ricuu

k ∂2k
v φ+ ∂2

i φr − rφr = 0,

(6.51)

with Ck =
2k∑

s=0
(−1)s cks. We can perform the usual Fourier transform and the function B(u)

becomes

B(u) = −
(∥∥∥~k∥∥∥2

+ r

)
− i k+

u

u2 + ε2 −
l2

∆2
1

u2 + ε2

+
+∞∑
k=1

(α′)2k−1
Ck

(
ε2

(u2 + ε2)2

)k

(−ik+)2k.

(6.52)

When u = 0 we have:

B(0) ∼ − l2

∆2
1
ε2 +

+∞∑
k=1

(α′)2k−1
Ck

(−ik+)2k

ε2k
. (6.53)
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Though the correction seems to lead to a cure for the divergence, ff we consider α′ and ε2

uncorrelated we lose predictability. However if α′ ∼ ε2 as natural in string theory we do not
solve the problem since

B(0) α
′∼ε2

∼ − l2

∆2
1
ε2 +

+∞∑
k=1

Ck (−ik+)2kε2k−2 (6.54)

and the curvature terms are no longer singular.

6.2.7 A Hope from Twisted State Background

The issue with the divergences is associated with the dipole string and its charge neutral states
since the charged ones can be cured rather trivially by a Wilson line.

On the other hand we know that the usual time-like orbifolds are well defined because of
a presence of a Bµν background and this field is sourced by strings. We may switch on such
a background in the open string. For open strings F is equivalent to such B field so we can
consider what happens to an open string in an electromagnetic background.

The choice of such a background is limited first of all by the request that it must be an exact
string solution, i.e. it needs to obey the e.o.m. derived from the Dirac–Born–Infeld action. If
a closed string winds the compact direction z then it is coupled to Bzu, Bzv and Bzi but if we
choose

1
2πα′B(u) = f(u) du ∧ dz . (6.55)

then
det(g + 2πα′f(u)) = det(g). (6.56)

It is therefore a solution of the open string e.o.m. for any f
(
u, v, z, xi

)
. As the two-tachyons—

two-photons amplitude suggests, suppose that the action for a real neutral scalar φ is given by:

S
(kinetic)
scalar [φ] =

∫
Ω

dDx
√
−det g

1
2

(
−gαβ∂αφ ∂βφ−M2φ2 + c1(α′)2

∂µφ ∂νφfµκfνκ

)

=
∫

RD−3

dD−3~x

+∞∫
−∞

du

+∞∫
−∞

dv

2π∫
0

dz |∆u| 12

(
2 ∂uφ ∂vφ

− 1
(∆u)2 (∂zφ)2 − ηij∂iφ ∂jφ−M2φ2 + c1(α′)2 1

(∆u)2 (∂vφ)2
f2(u)

)
,

(6.57)

Performing the same steps as before we get

B(u) = −
(∥∥∥~k∥∥∥2

+ r

)
− i k+

1
u

+

(
c1(α′)2

f(u)2k2
+ − l2

)
∆2 u2 , (6.58)

so even for a constant f(u) = f0 we get a solution which solves the issues. Notice however
that the “trivial” solution f = f0 du ∧ dz is not trivial in Minkowski coordinates where it reads
f = f0

x− dx− ∧ dx2. Though appealing, the study of the string in the presence of this non trivial
background needs a deeper analysis and it surely is a direction to cover in the future.
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6.3 NBO Eigenfunction from the Covering Space

We recover the eigenfunctions from the covering Minkowski space in order to elucidate the
connection between the polarisations in nbo and in Minkowski. Moreover we generalise the
result to a symmetric two index tensor which is the polarisation of the first massive state to
compute the two-tachyons–one-massive-state amplitude in the next section and to show that it
diverges.

6.3.1 Spin-0 Wave Function from Minkowski space

We start with the usual plane wave in flat space and we express it in the new coordinates (we
do not write the dependence on ~x since it is trivial):

ψk+ k− k2

(
x+, x−, x2) = ei (k+x++k−x−+k2x2)

= e
i

[
k+v+

2 k+k−−k2
2

2k+
u+ 1

2∆
2k+u

(
z+ k2

∆k+

)2
]

= ψk+ k− k2(u, v, z).

(6.59)

The corresponding wave function on the nbo is obtained by the periodicity of z. This can be
done in two ways either in (xµ) coordinates or in (xα) = (u v z). From the first we study how
the map to the orbifold gives the function a dependence on the equivalence class of momenta.
Implementing the projection on periodic z functions we get:

Ψ[k+ k− k2]
([

x+, x−, x2]) =
+∞∑

n=−∞
ψk+ k− k2

(
Kn
(
x+, x−, x2))

=
+∞∑

n=−∞
ψK−n(k+ k− k2)

(
x+, x−, x2), (6.60)

where we write [k+ k− k2] since the function depends on the equivalence class of (k+ k− k2) only.
The equivalence relation is given by

k =

k+
k−
k2

 ≡ K−nk =

 k+
k− + n(2π∆)k2 + 1

2 n2(2π∆)2
k+

k2 + n(2π∆)k+

. (6.61)

It allows us to choose a representative with{
0 ≤ k2

∆|k+| < 2π, k+ 6= 0
0 ≤ k−

∆|k2| < 2π, k+ = 0, k2 6= 0
. (6.62)

If we perform the computation in (u, v, z) coordinates we get:

Ψ[k+ k− k2](u, v, z) =
+∞∑

n=−∞
ψk+ k− k2(u, v, z + 2πn)

=
+∞∑

n=−∞
e

i

[
k+v+ r

2k+
u+ 1

2 (2π∆)2k+u
[

n+ 1
2π

(
z+ k2

∆k+

)]2
]
,

(6.63)
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with r = 2 k+k−−k2
2 and Im(k+u) > 0, i.e. k+u = |k+u|eiε and π > ε > 0. There is no separate

dependence on z and on k2
∆k+

: we could fix the range 0 ≤ z + k2
∆k+

< 2π. However this symmetry
is broken when considering the photon eigenfunction.

We can now use the Poisson resummation
+∞∑

n=−∞
ei a (n+b)2

=
∫

ds δP (s)ei a (s+b)2
= (2π)2 e−i (π4 + 1

2 arg(a))

2
√
π|a|

+∞∑
m=−∞

e−i π
2m2
a +i 2πbm, (6.64)

to finally get:44

Ψ[k+ k− k2 ~k](u, v, z, ~x) =
√

2π 2e−iπ4

∆

×
+∞∑

l=−∞

[
1√
|k+u|

e
i

[
k+v+lz− l2

2∆2k+
1
u + r+‖~k‖2

2k+
u+~k·~x

]]
e

i l
k2
∆k+

= N
+∞∑

l=−∞
φk−kr(u, v, z, ~x)ei l

k2
∆k+ ,

(6.65)

when k+ 6= 0 and where

N =

√
(2π)D

π∆

e−iπ4

π
. (6.66)

The fact that Ψ depends only on the equivalence class [k+ k− k2 k] allows us to restrict 0 ≤
k2

∆ |k+| < 2π so that we can invert the previous expression and get:

φk−kr(u, v, z, ~x) = 1
N

1
2π∆|k+|

2π∆|k+|∫
0

dk2 e
−i l

k2
∆k+ Ψ[k+ k− k2 k](u, v, z, ~x). (6.67)

6.3.2 Spin-1 Wave Function from Minkowski space

We go through the steps in the previous case for an electromagnetic wave. We concentrate on
x+, x− and x2 coordinates and reinstate ~x at the end. We start with the usual plane wave in
flat space ψ[1]

k+ k− k2;ε+ ε− ε2
and we express it in both Minkowski and orbifold coordinates. We

use the notation ψ[1]
k+ k− k2;ε+ ε− ε2

to stress that it is the eigenfunction and not the field which
is obtained as

Aµ(x) dxµ =
∫
R3

d3k
∑

{ε+,ε−,ε2}

ψ
[1]
k+ k− k2;ε+ ε− ε2

, (6.68)

44In the expression we insert the variables ~k and ~x for completeness. We also set r = 2 k+k− − k2
2 −
∥∥~k
∥∥2

.
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where the sum is performed over ε+, ε−, ε2 independent and compatible with k. The explicit
expression for the eigenfunction with constant ε+, ε− and ε2 is:45

N ψ[1]
k+ k− k2;ε+ ε− ε2

(
x+, x−, x2) =

(
ε+ dx+ + ε− dx− + ε2 dx2) ei (k+x++k−x−+k2x2)

= (εu du + εz dz + εv dv)

× e
i

[
k+v+

2 k+k−−k2
2

2k+
u+ 1

2∆
2k+u

(
z+ k2

∆k+

)2
]

= Nψ[1]
k+ k− k2;ε+ ε− ε2

(u, v, z),

(6.69)

with

εv = ε+,

εu(z) = ε− + (∆z) ε2 + (1
2∆

2z2) ε+,

εz(u, z) = (∆u) (ε2 + ∆z ε+).

(6.70)

Notice that we are not imposing any gauge condition. Moreover if (ε+, ε−, ε2) are constant
then (εu, εv, εz) are generic functions. It is worth stressing that they are not the polarisations
in the orbifold which are in any case constant: the fact that they depend on the coordinates is
simply the statement that not all eigenfunctions of the vector d’Alembertian are equal.

Building the corresponding function on the orbifold amounts to summing the images created
by the orbifold group:

N Ψ[1]
[k,ε]([x]) =

+∞∑
n=−∞

~ε · (Kn dx) ψk(Knx) =
+∞∑

n=−∞
K−n~ε · dx ψK−nk(x). (6.71)

Under the action of the Killing vector ε transforms exactly as the k since it is induced by
ε · Kn dx = K−nε · dx, that is:

ε =

ε+
ε2
ε−

 ≡ K−nε =

 ε+
ε2 + n (2π∆) ε+

ε− + n (2π∆) ε2 + 1
2 n2(2π∆)2

ε+

. (6.72)

However the pair
(
~k, ~ε

)
transforms with the same n since both are “dual” to x, i.e. their

transformation rules are dictated by x. There is therefore only one equivalence class
[
~k, ~ε

]
and

not two separate classes
[
~k
]
, [~ε]. In other words, a representative of the combined equivalence

class is the one with 0 ≤ k2 < 2π∆|k+| when k+ 6= 0.

In order to write the eigenfunctions on the orbifold in orbifold coordinates we notice that
45We introduce the normalisation factor N in order to have a less cluttered relation between ε and E.
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du , dv and dz are invariant. We write

N Ψ[1]
[~k, ~ε]([x]) =

+∞∑
n=−∞

ε · (Kn dx)ψk(Knx)

= dv

[
ε+

+∞∑
n=−∞

ψk(Knx)
]

+ dz (∆u)
[
ε2

+∞∑
n=−∞

ψk(Knx) + ε+ ∆

+∞∑
n=−∞

(z + 2πn)ψk(Knx)
]

+ du

[
ε−

+∞∑
n=−∞

ψk(Knx) + ε2 ∆

+∞∑
n=−∞

(z + 2πn)ψk(Knx)

+ 1
2ε+ ∆

2
+∞∑

n=−∞
(z + 2πn)2

ψk(Knx)
]

.

(6.73)

From a direct computation we get:46

+∞∑
n=−∞

(z + 2πn)ψk(Knx) =
(

1
i∆u

∂

∂k2
− k2

∆k+

)
Ψ[k]([x])

+∞∑
n=−∞

(z + 2πn)2
ψk(Knx) =

(
1

i∆u

∂

∂k2
− k2

∆k+

)2
Ψ[k]([x]).

(6.74)

Then it follows that

N Ψ[1]
[~k, ~ε]([x]) = dv

[
ε+ Ψ[k]([x])

]
+ dz (∆u)

[
ε2k+ − ε+k2

k+
Ψ[k]([x])− ε+

i

u

∂

∂k2
Ψ[k]([x])

]
+ du

[(
ε− − ε2

k2

k+
+ 1

2ε+

(
k2

k+

)2
)
Ψ[k]([x]) + i

2u

ε+

k+
Ψ[k]([x])

− ε2k+ − ε+k2

k+

i

u

∂

∂k2
Ψ[k]([x])− 1

2ε+
1
u2

∂2

∂k2
2
Ψ[k]([x])

]
.

(6.75)

Many coefficients of Ψ or its derivatives contain k2. They cannot be expressed using the quantum
numbers k−kr of the orbifold but are invariant on it. They are new orbifold quantities we

46These expressions may be written using Hermite polynomials.
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interpret as orbifold polarisations. Using (6.65) we can finally write

Ψ
[1]
[k,ε]([x]) =

+∞∑
l=−∞

φk−kr(u, v, z, ~x)ei l
k2
∆k+

×

{
dv ε+

+ dz (∆u)
[
ε2k+ − ε+k2

k+
+ ε+

1
∆u

l

k+

]
+ du

[(
ε− − ε2

k2

k+
+ 1

2ε+

(
k2

k+

)2
)

+ i

2u

ε+

k+

+ ε2k+ − ε+k2

k+

1
u

l

∆k+
+ ε+

1
2u2

(
l

∆k+

)2
]}

.

(6.76)

If we compare the last expression with (6.28) we find:

E{k+, l, ~k, r} v = ε+

E{k+, l, ~k, r} z = sign(u)ε2k+ − ε+k2

k+

E{k+, l, ~k, r}u = ε− − ε2
k2

k+
+ 1

2ε+

(
k2

k+

)2
,

(6.77)

which implies that the true polarisations (ε+, ε−, ε2) and E{k+, l, ~k, r} ∗ are constant as it turns
out from direct computation. A different way of reading the previous result is that the polarisa-
tions on the orbifold are the coefficients of the highest power of u.

We can also invert the previous relations to get:

ε+ = E{k+, l, ~k, r} v

ε2 = E{k+, l, ~k, r} z sign(u) + E{k+, l, ~k, r} v

k2

k+

ε− = E{k+, l, ~k, r}u + E{k+, l, ~k, r} z sign(u) k2

k+
+ E{k+, l, ~k, r} v

1
2

(
k2

k+

)2
,

(6.78)

and use them in Lorenz gauge ~k · ~ε = 0 in order to get the gauge conditions expressed with
the orbifold polarisations. If the definition of orbifold polarisations is right the result cannot
depend on k2 since it is not a quantum number of orbifold eigenfunctions. Taking into account
k− = ‖~k‖2+k2

2+r

2k+
in ~k · ~ε = 0 we get exactly the expression for the Lorenz gauge for orbifold

polarisations (6.26).

6.3.3 Tensor Wave Function (Spin-2) from Minkowski space

We can use the analysis of the previous section in the case of a second order symmetric tensor
wave function. Again we suppress the dependence on ~x and ~k with a caveat: the Minkowskian
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polarisations S+ i, S− i and S2 i transform non trivially, therefore we give the full expressions in
Appendix D even if these components behave effectively as a vector of the orbifold.

We start with the usual wave in flat space and we express either in the Minkowskian coordin-
ates

N ψ[2]
k S

(
x+, x−, x2) = Sµνψk(x) dxµ dxν

=
(

S++ dx+ dx+ + 2 S+ x dx+ dx2 + 2 S+− dx+ dx−

+ 2 S2 2 dx2 dx2 + 2 S2− dx2 dx−

+ 2 S−− dx− dx−
)

ei (k+x++k−x−+k2x2),

(6.79)

or in orbifold coordinates

N ψ[2]
k S(x) = Sαβψk(x) dxα dxβ

=
{

dv2 S+ +

+ dv dz ∆u[2 S+ 2 + S+ +∆z]
+ dv du

[
2 S+− + 2 S+ 2∆z + S+ +∆

2z2]
+ dz2 ∆2u2 [S2 2 + 2 S+ 2∆z + S+ +∆

2z2]
+ dz dv ∆u

[
2 S− 2 + 2 (S2 2 + S+−)∆z + 3 S+ 2∆

2z2 + S+ + ∆
3z3]

+ du2
[
S−− + 2 S− 2∆z + (S2 2 + S+−)∆2z2 + S+ 2∆

3z3 + 1
4S+ +∆

4z4
]}

× e
i

[
k+v+

2 k+k−−k2
2

2k+
u+ 1

2∆
2k+u

(
z+ k2

∆k+

)2
]
.

(6.80)

Now we define the tensor on the orbifold as a sum over all images as

N Ψ[2]
[k S]([x]) =

+∞∑
n=−∞

(Kn dx) · S · (Kn dx) ψk(Knx)

=
+∞∑

n=−∞
dx · (K−n S) · dx ψK−nk(x).

(6.81)

In the last line we have defined the induced action of the Killing vector on
(
~k, S

)
which can be

explicitely written as:

K−n


S+ +
S+ 2
S+−
S2 2
S2−
S−−

 =


S+ +

S+ 2 + n∆S+ +
S+− + n∆S+ 2 + 1

2 n2∆2S+ +
S2 2 + 2n∆S+ 2 + n2∆2S+ +

S2− + n∆(S2 2 + S+−) + 3
2 n2∆2S+ 2 + 1

2 n3∆3S+ +
S−− + 2n∆S− 2 + n2∆2(S2 2 + S+−) + n3∆3S+ 2 + 1

4 n4∆4S+ +

. (6.82)

Computing the tensor on the orbifold in its own coordinates is equivalent to summing over all
the shifts z → (z + 2πn) and the use of a generalisation of (6.74), i.e. to substitute (∆ z)j

ψk →
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(
1

i u
∂

∂k2
− k2
∆ k+

)j

Ψ[k]([x]). When expressing all in the φ basis, the last step is equivalent to

(∆ z)j
ψk →

(
l

∆u k+

)j

+ . . . . We identify the basic polarisations on the orbifold by considering
the highest power in u:

Su u = 1
4K4 S+ + + K2 S+− −K3 S+ 2 + S−− − 2 K S− 2 + S2 2 K2

Su v = 1
2K2 S+ + + S+− −K S+ 2

Su z = −1
2K3 S+ + −K S+− + 3

2K2 S+ 2 + S− 2 −K S2 2

Sv v = S+ +

Sv z = S+ 2 −K S+ +

Sz z = K2 S+ + − 2 K S+ 2 + S2 2.

(6.83)

where K = k2
k+

. The previous equations can be inverted to get:

S−− = K2 (Sz z + Su v) + K3 Sv z + 1
4K4 Sv v + 2 K Su z + Su u

S+− = K Sv z + 1
2K2 Sv v + Su v

S− 2 = K (Sz z + Su v) + 3
2 K2 Sv z + 1

2K3 Sv v + Su z

S+ + = Sv v

S+ 2 = Sv z + K Sv v

S2 2 = Sz z + 2 K Sv z + K2 Sv v.

(6.84)

Since we plan to use the previous quantities in the case of the first massive string state we
compute the relevant quantities. In particular we have the trace:

tr(S) = Sz z − 2Su v (6.85)

and the transversality conditions

trans Sv =
(
~k · S

)
+

= −

(
r +

∥∥∥~k∥∥∥2
)

2 k+
Sv v − k+ Su v,

trans Sz =
(
~k · S

)
2
−K

(
~k · S

)
+

= −

(
r +

∥∥∥~k∥∥∥2
)

2 k+
Sv z − k+ Su z,

trans Su =
(
~k · S

)
−
−K

(
~k · S

)
2

+ 1
2K2

(
~k · S

)
+

= −

(
r +

∥∥∥~k∥∥∥2
)

2 k+
Su v − k+ Su u

(6.86)

where we used k− =
(

r+‖~k‖2+k2
2

)
(2k+) . These conditions do not depend on K since k2 is not an

orbifold quantum number.
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The final expression for the orbifold symmetric tensor is

Ψ
[2]
[~k, S]([x]) =

+∞∑
l=−∞

φk−kr(u, v, z, ~x)ei l
k2
∆k+

×

{
dv2 Sv v

+ 2∆u dv dz

[
Sv z +

(
LSv v

∆

)
1
u

]
+ 2 dv du

[
Su v +

(
LSv z

∆
+ iSv v

2 k+

)
1
u

+
(

L2 Sv v

2∆2

)
1
u2

]
+ (∆u)2 dz2

[
Sz z +

(
2 LSv z

∆
+ iSv v

k+

)
1
u

+
(

L2 Sv v

∆2

)
1
u2

]
+ 2∆u dz du

[
Su z +

(
LSz z

∆
+ 3 iSv z

2 k+
+ LSu v

∆

)
1
u

+
(

3 L2 Sv z

2∆2 + 3 i LSv v

2∆ k+

)
1
u2

+
(

L3 Sv v

2∆3

)
1
u3

]
+ du2

[
Su u +

(
iSz z

k+
+ 2 LSu z

∆
+ iSu v

k+

)
1
u

+
(

L2 Sz z

∆2 + 3 i LSv z

∆ k+
− 3Sv v

4 k2
+

+ L2 Su v

∆2

)
1
u2

+
(

L3 Sv z

∆3 + 3 i L2 Sv v

2∆2 k+

)
1
u3 +

(
L4Sv v

4∆4

)
1
u4

]}
,

(6.87)

where L = l
k+

.

6.4 Overlaps of Wave Functions and Their Derivatives

In this section we compute overlaps of wave functions. We give their expressions using both
integrals over the eigenfunctions and sums of products of delta functions. The latter is the
expression which is naturally obtained by computing tree level string amplitudes on the orbifold
when one starts with Minkowski amplitudes and adds the images. This is equivalent to computing
emission vertices on the orbifold and then their correlation functions since this amounts to
transfer the sum over the spacetime images to the sum of the polarisations images.

6.4.1 Overlaps Without Derivatives

We start from the simplest case of the overlap of N scalar wave functions. We compute the overlap
of orbifold wave functions and then we express it as sum of images of the corresponding Minkowski
overlap thus establishing a dictionary between Minkowski and orbifold spaces. Explicitly we
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consider the following overlap where all the polarisations A(i) have been set to one

I(N) =
∫
Ω

d3x
√
− det g

N∏
i=1
Ψ[k(i) + k(i)− k(i) 2]

([
x+, x−, x2]))

=
∫

M 1,2

d3x
√
−det g ψk(1) + k(1)− k(1) 2

(
x+, x−, x2))

×
N∏

i=2

+∞∑
m(i)=−∞

ψk(i) + k(i)− k(i) 2(Km(i)
(
x+, x−, x2))

=
∫

M 1,2

d3x
√
−det g ψk(1) + k(1)− k(1) 2

(
x+, x−, x2))

×
N∏

i=2

+∞∑
m(i)=−∞

ψKm(i)(k(i) + k(i)− k(i) 2)
(
x+, x−, x2)

= (2π)3
δ

( +∞∑
i=−∞

k(i) +

)

×
N∏

i=2

+∞∑
m(i)=−∞

δ

( +∞∑
i=−∞

Km(i) k(i) 2

)
δ

( +∞∑
i=−∞

Km(i) k(i)−

)∣∣∣∣∣∣
m(1)=0

,

(6.88)

where Ω = M 1,2/Γ is the fundamental region identifying the orbifold. We used the unfolding
trick to rewrite the integral as an integral over M 1,2 thus dropping the sum over the images of
particle (1). We then moved the action of the Killing vector from x to k and finally we used the
usual δ definition. The previous integral can be expressed as:

I(N) = NN
∑

{l(i)}∈ZN

e
i

N∑
i=1

l(i)
k(i) 2
∆k(i) +

∫
Ω

d3x
√
−det g

N∏
i=1
φk−rNi([x])

= NN
∑

{l(i)}∈ZN

e
i

N∑
i=1

l(i)
k(i) 2
∆k(i) + (2π)2

δ

(
N∑

i=1
k(i) +

)
δ N∑

i=1

l(i), 0
I [0]
{N}.

(6.89)
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From the last expression we recover the overlap of the wave functions as:∫
Ω

d3x

N∏
i=1
φk−rNi([x])

= 1
NN

N∏
i=1

2π∆|k(i) +|∫
0

dk(i) 2

2π∆
∣∣k(i) +

∣∣ e
−i l(i)

k(i) 2
∆k(i) i I(N)

=(2π)3
δ

( +∞∑
i=−∞

k(i) +

)
1
NN

N∏
i=1

2π∆|k(i) +|∫
0

dk(i) 2

2π∆
∣∣k(i) +

∣∣ e
−i l(i)

k(i) 2
∆k(i) +

×
N∏

j=2

+∞∑
m(j)=−∞

δ

 N∑
j=2
Km(j)k(j) 2

 δ
 N∑

j=2
Km(j)k(j)−

.

(6.90)

It follows from the explicit expression of I [0]
{n} that all overlaps I(N) for N ≥ 4 diverge.

Intuitively we are in fact summing over infinite distributions with accumulation points of
their support. Nevertheless the existence of the accumulation point is not sufficient since the
three scalars overlap, i.e. the three tachyons amplitude, converges.

6.4.2 An Overlap With One Derivative

Since we will also compute the amplitude involving two tachyons and one photon, as a preliminary
step we consider the overlap in Minkowski space:

JMink = i (2π)3 (
ε(1) · k(2) 2

)
δ

( +∞∑
i=−∞

k(i) +

)
δ

( +∞∑
i=−∞

k(i) 2

)
δ

( +∞∑
i=−∞

k(i)−

)
. (6.91)

Summing over momenta and polarisations we then get to an expression which depends on equi-
valence classes as:

J
([

k(1), ε(1)
]
,
[
k(2)

]
,
[
k(3)

])
= i (2π)3

δ

( +∞∑
i=−∞

k(i) +

)
×

∑
{m(i)}∈Z3

δm(1), 1
(
Km(1)ε(1) · Km(2)k(2) 2

)

× δ

( +∞∑
i=−∞

Km(i)k(i) 2

)
δ

( +∞∑
i=−∞

Km(i)k(i)−

)
.

(6.92)

The expression depends only on equivalence classes.47

The previous expression can be written as

J =
∫
Ω

d3x ηµν Ψ
[1]
[k(1),ε(1)]µ([x]) ∂νΨ[k(2)]([x])Ψ[k(3)]([x]) (6.93)

47In order to prove it, under
(

k(1), ε(1)
)
→ Ks

(
k(1), ε(1)

)
we can use Ksa · b = a · K−sb and the invariance of

deltas δ3(Ksa) = δ3(a).
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6.4 Overlaps of Wave Functions and Their Derivatives

where we performed the unfolding using a[k(1),ε(1)]µ([x]).48 Notice that the previous expression
is invariant despite the fact that the derivatives ∂µ are not well defined on the orbifold. The fact
that Ψ[1]

µ is not invariant in turns helps in recovering the required invariance.

We can then evaluate the previous expression with Minkowskian polarisations using (6.76)
which is nothing else but a rearrangement of terms of (6.92). We have:

J = iN 2
∑

{l(i)}∈Z3

e
i

3∑
i=1

l(i)
k(i) 2
∆k(i) + (2π)2

δ

( 3∑
i=1

k(i) +

)
δ 3∑

i=1

l(i)

×
∫
Ω

d3x

3∏
i=1
φk−rNi([x]))

{
ε(1) +

[
i

2u
+

l2
(2)

k(2) +

1
2∆2 u2 +

r(i)

2k(2) +

]

+ 1
∆u

[
ε(1) 2 + 1

∆u
ε(1) +

l(1)

k(1) +

]
l(2)

+
[
ε(1)− + ε(1) 2

1
∆u

l(1)

k(1) +
+ ε(1) +

1
2(∆u)2

l2
(1)

k2
(1) +

]
k(2) +

}
.

(6.94)

Divergences occur when l = 0 because of the absence of the factor ei A
u . However all explicit

factors 1
u come always with l: when l = 0 they do not give any contribution. The divergence in

this case comes actually only from the contribution of the first line ∂uφ
∣∣
l=0 = − 1

2u φ
∣∣
l=0. Since

we still have to subtract the contribution of the exchange (2)↔ (3) the contribution is cancelled
in scalar qed or with Abelian tachyons. It does not cancel when considering the non Abelian
case and the related colour factors unless one uses a kind of principal part regularisation since

replacing
|b|∫
−|a|

du sign(u)
|u|

3
2

with lim
δ→0

[
−|δ|∫
−|a|

du +
|b|∫
−|δ|

du

]
sign(u)
|u|

3
2

gives a finite result.

6.4.3 An Overlap With Two Derivatives

We can generalise the previous expressions to more general cases. Since we use the results
from Section 6.3 we miss some non trivial contributions from polarisations like Sv i. These
contributions do not alter the final result. However for completeness we give the lengthy full
expression in Appendix E.

We consider:49

K =
∫
Ω

d3x
√
−det g ηµν ηρσ Ψ

[2]
[k(3),S(3)]µρ([x]) ∂ν∂σΨ[k(2)]([x])Ψ[k(1)]([x]), (6.95)

in Minkowskian coordinates or

K =
∫
Ω

d3x
√
−det g gαβ gγδ Ψ

[2]
[k(3),S(3)]αγ([x]) Dβ∂δΨ[k(2)]([x])Ψ[k(1)]([x]) (6.96)

48Clearly we can perform the unfolding using whichever other field and this amount to keep the corresponding
m(i) fixed in place of m(1).

49The underlying idea is to compute the amplitudes involving two tachyons and one massive state.
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in orbifold coordinates where we need to use covariant derivatives. Using the unfolding trick over
(3) we get

K = (2π)3
δ

( +∞∑
i=−∞

k(i) +

)
N∏

i=2

+∞∑
m(i)=−∞

S(3)µρ
(
Km(2)k(2) 2

)µ(Km(2)k(2) 2
)ρ

× δ

( +∞∑
i=−∞

Km(i)k(i) 2

)
δ

( +∞∑
i=−∞

Km(i)k(i)−

)
.

(6.97)

Explicitly in orbifold coordinates we can write

K =
∫
Ω

d3x
√
−det g

[
Ψ

[2]
[k(3),S(3)] uu

∂2
vΨ[k(2)] −

2
(∆u)2Ψ

[2]
[k(3),S(3)] uz

∂v∂zΨ[k(2)]

+ 2Ψ[2]
[k(3),S(3)] uv

∂v∂uΨ[k(2)] + 1
(∆u)4Ψ

[2]
[k(3),S(3)] zz

(
∂2

zΨ[k(2)] − ∆
2u ∂vΨ[k(2)]

)
− 2

(∆u)2Ψ
[2]
[k(3),S(3)] zv

(
∂z∂uΨ[k(2)] −

1
u

∂zΨ[k(2)]

)
+ Ψ[2]

[k(3),S(3)] vv
∂2

uΨ[k(2)]

]
Ψ[k(1)].

(6.98)

Keeping the terms which do not vanish when all l = 0 and considering only the leading order in
1
u we get

K ∼
∫

du |u| 34

(
k(2) + + k(3) +

)2

k2
(3) +

S(3) vv
1
u2

3∏
i=1
φ(i)

∣∣∣∣∣
l(∗)=0

, (6.99)

which is divergent as |u|−
5
2 .

6.5 Three Points Amplitudes with One Massive State in String Theory

We consider string amplitudes including massive states. They are obtained using the inheritance
principle and therefore they are connected to the integrals and relations derived in Section 6.4.3.
In particular we want to use the inheritance principle on the momenta and polarisations, i.e.
we start form amplitudes in Minkowski expressed with momenta and polarisations and then we
implement on them the projection on the orbifold. In particular it is worth stressing that, as
there is one Killing vector acting on the spacetime coordinates, there is only one common Killing
vector action on all the momenta and polarisations of each field as discussed for spin-1 and
spin-2 cases. Moreover this approach gives the complete answer only for tree level amplitudes
since inside the loops twisted states may be created in pairs. The final result is that the open
string amplitude with two tachyons and the first massive (level 2) state diverges and there is no
obvious way of curing it since the divergence is also present in the Abelian sector. The open
string expansion we use is

X(u, u) = x0 − i 2α′ p ln(|u|) + i

√
α′

2
∑

n∈Z\{0}

αn

n

(
u−n + u−n

)
. (6.100)

123



6.5 Three Points Amplitudes with One Massive State in String Theory

6.5.1 First Massive State in String Theory

Before computing the amplitude we would like to review the possible polarisations of the first
massive state in open string. The first massive vertex is:

VM (x; k, S, ξ) =:
(

i√
2α′

ξ · ∂2
xX(x, x) +

(
i√
2α′

)2
Sµν ∂xXµ(x, x) ∂xXν(x, x)

)
× ei k·X(x, x) : .

(6.101)

The corresponding state is:

lim
x→0

VM (x; k, S, ξ) |0〉 = |k, S, ξ〉 = (ξ · α−2 + α−1 · S · α−1) |k〉 . (6.102)

For the state to be physical we require:

(L0 − 1) |k, S, ξ〉 = 0 ⇒ α′k2 = −1
L1 |k, S, ξ〉 = 0 ⇒ S · k + ξ = 0
L2 |k, S, ξ〉 = 0 ⇒ k · ξ+ tr S = 0.

(6.103)

String gauge invariance allows us to add:

L−1(χ · α−1 |k〉) = (χ · α−2 + χ · α−1 k · α−1) |k〉 , (6.104)

subject to the physical constraints α′k2 + 1 = 0 and χ · k = 0. In critical string theory there is
another gauge invariance generated by L−2 + 3

2 L2
−1. We can add a multiple of(

L−2 + 3
2L2
−1

)
|k〉 =

(
5
2k · α−2 + 3

2(k · α−1)2 + 1
2α

2
−1

)
|k〉 , (6.105)

to set a = 0. Therefore the only non trivial d.o.f. refer to ST T , that is:

tr ST T = k · ST T = ξ = 0. (6.106)

We check that, given k =
(

k+, k−, k2, ~k
)
such that −2 k+k−+k2

2 +
∥∥∥~k∥∥∥2

= −1, we can find a
non trivial ST T with non vanishing components in the directions ±, 2 only. In fact we find a two
parameters family of solutions. The parameters may be taken to be S+ + and S+ 2. Explicitly
we have 

S+ +
S+−
S+ 2
S−−
S− 2
S2 2

 =



1
−k−

k+

0
k−(k−k+−2k2

2)
k3

+

−2 k−k2
k2

+

−2 k−
k+


S+ + +



0
k2
k+

1
2k2(−k−k++k2

2)
k3

+
k−k+−2k2

2
k2

+

2 k2
k+


S+ 2 (6.107)

There is even a non trivial solution for the special case k =
(

k+, k− = 1
k+

, k2 = 0,~k = ~0
)
.
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6.5 Three Points Amplitudes with One Massive State in String Theory

Using the expressions for ST T in orbifold coordinates, we check that there are two possible
indepdendent polarisations Sv v and Sv z which correspond to the those used above. The non
trivial solution is:


Sv v

Su v

Sv z

Su u

Su z

Sz z

 =



1
− r+‖~k‖2

2k2
+

0(
r+‖~k‖2

2k2
+

)2

0
−2 r+‖~k‖2

2k2
+


Sv v +



0
− r+‖~k‖2

2k2
+

1
0
0
0


Sv z. (6.108)

6.5.2 Two Tachyons and the First Massive State

This Minkowskian amplitude is given by the sum of two colour ordered sub-parts as:

AT T M = AT(1)T(2)M(3) tr
(
T(1)T(2)T(3)

)
+ AT(2)T(1)M(3) tr

(
T(2)T(1)T(3)

)
. (6.109)

We find:

AT(1)T(2)M3) =
〈〈

k(1)
∣∣ VT

(
1; k(2)

) (
α−1 · ST T

(3) · α−1
∣∣k(3)

〉)
=
〈〈

k(1)
∣∣ ei k(2)·x0 e−

√
2α′k(2)·α1

(
α−1 · ST T

(3) · α−1
∣∣k(3)

〉)
= (2π)D

(√
2α′
)2
δD

( 3∑
i=1

k(i)

)
k(2) · ST T

(3) · k(2).

(6.110)

The transversality of ST T
(3) finally leads to:

AT T M = 2 (2π)D
(√

2α′
)2
δD

( 3∑
i=1

k(i)

)
k(2) · ST T

(3) · k(2) tr
([

T(1), T(2)
]

+ T(3)

)
. (6.111)

Then we can compute the orbifold amplitude as:

AT T M = (2π)D−2
δD−3

( 3∑
i=1

~k(i)

)
δ

( 3∑
i=1

k(i) +

)

× 2
(√

2α′
)2 ∑
{m(1), m(2), m(3)}∈Z3

δm(3), 1
(
Km(2)k(2)

)
· ST T

(3) ·
(
Km(2)k(2)

)

× δ

( 3∑
i=1

(
Km(i)k(i) 2

))
δ

( 3∑
i=1

(
Km(i)k(i)−

))
tr
([

T(1), T(2)
]

+ T(3)

)
.

(6.112)

125



6.6 Scalar QED on the Generalised NBO and Divergences

Such amplitude can then be expressed using an overlap:

AT T M = 2
(
−i
√

2α′
)2 ∫

Ω

d3x gµν gρσ Ψ
[2]
[k(3), S(3)]µρ([x]) ∂ν∂σΨ[k(2)]([x])Ψ[k(1)]([x])

× tr
([

T(1), T(2)
]

+ T(3)

)
,

= 2
(
−i
√

2α′
)2 ∫

Ω

d3x gαβ gγδ Ψ
[2]
[k(3), S(3)]αγ([x]) Dβ∂δΨ[k(2)]([x])Ψ[k(1)]([x])

× tr
([

T(1), T(2)
]

+ T(3)

)
.

(6.113)

As discussed in Section 6.4.3 the integral is divergent when S+ + = Sv v 6= 0 and the divergence
cannot be avoided even introducing a Wilson line around z since the amplitude involves an
anticommutator which does not vanish in the Abelian sector.

6.6 Scalar QED on the Generalised NBO and Divergences

The issues related to the vanishing volume of the compact directions lead to incurable divergences.
We introduce the gnbo by inserting one additional non compact direction with respect to the
nbo and show that divergences no longer occur. As for the nbo, we first present the geometry
of the gnbo and study scalar and spin-1 eigenfunctions to build the scalar qed on the orbifold.
We then show how the presence of a non compact direction can cure the theory when considering
amplitudes and overlaps.

6.6.1 Geometric Preliminaries

Consider Minkowski spacetime M 1,D−1 and the change of coordinates from the lightcone set
(xµ) = (x+, x−, x2, x3, ~x) to (xα) = (u, v, w, z, ~x):

x− = u

x+ = v + ∆2
2

2 u(z + w)2 + ∆2
3

2 u(z − w)2

x2 = ∆2u(z + w)
x3 = ∆3u(z − w)

⇔


u = x−

v = x+ − 1
2x−

(
(x2)2 + (x3)2)

w = 1
2x−

(
x2

∆2
− x3

∆3

)
z = 1

2x−

(
x2

∆2
+ x3

∆3

)
(6.114)

where we do not perform any change on the transverse coordinates ~x. The metric in these
coordinates is non diagonal:

ds2 = −2 du dv + (∆2
2 + ∆2

3)u2(dw2 + dz2) + 2(∆2
2 − ∆2

3)u2 dw dz + ηij dxi dxj , (6.115)

and its determinant is:
−det g = 4∆2

2∆
2
3 u4. (6.116)
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From the previous expressions we can also derive the non vanishing Christoffel symbols:

Γ v
w w = Γ v

z z = (∆2
2 + ∆2

3)u,

Γ v
w z = (∆2

2 − ∆2
3)u,

Γ w
u w = Γ z

u z = u−1,

(6.117)

which however produce a vanishing Ricci tensor and curvature scalar since we are considering
Minkowski spacetime anyway and (6.114) is just a map from M 1,D−1 to the gnbo.

We introduce the gnbo by identifying points in space along the orbits of the Killing vector:

κ = −2πi (∆2J+2 + ∆3J+3)
= 2π (∆2x2 + ∆3x3)∂+ + 2π∆2x−∂2 + 2π∆3x−∂3

= 2π ∂z

(6.118)

in such a way that
xµ ∼ enκxµ, n ∈ Z (6.119)

leads to the identifications

x =


x−

x2

x3

x+

~x

 ≡ Knx =


x−

x2 + 2πn∆−3
x3 + 2πn∆3x−

x+ + 2πn∆2
3 + 2πn∆3x3 + (2πn)2∆2

2+∆2
3

2 x−

~x

, (6.120)

or to the simpler
(u, v, w, z) ∼ (u, v, w, z + 2πn) (6.121)

using the map to the orbifold coordinates (6.114) where the Killing vector κ = 2π ∂z does not
depend on the local spacetime configuration. As in the previous case, the difference between
Minkowski spacetime and the gnbo is therefore global.

The geodesic distance between the n-th copy and the base point on the orbifold can be
computed in any set of coordinates and is:

∆s2
(n) =

(
∆2

2 + ∆2
3
) (

2πnx−
)2 ≥ 0. (6.122)

Closed time-like curves are therefore avoided on the gnbo, but there are closed null curves on
the surface x− = u = 0 where the Killing vector κ vanishes.

6.6.2 Free Scalar Field

In order to build a quantum theory on the gnbo using Feynman’s approach to quantization, we
first solve the eigenvalue equations for the fields and then build their off-shell expansion. We
start from a complex scalar field and then consider the free photon before moving to the scalar
qed interactions on the gnbo.
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Consider the action for a complex scalar field:

S(kinetic)
sqed [φ] =

∫
Ω

dDx
√
−det g

(
−gµν∂µφ

∗∂νφ−M2φ∗φ
)

=
∫

RD−4

dD−4~x

+∞∫
−∞

du

+∞∫
−∞

dv

+∞∫
−∞

dw

∫ 2π

0
dz 2 |∆2∆3|u2

×

[
∂uφ

∗ ∂vφ+ ∂vφ
∗ ∂uφ−

1
4u2

((
1
∆2

2
+ 1
∆2

3

)
(∂wφ

∗ ∂wφ+ ∂zφ
∗ ∂zφ)

+
(

1
∆2

2
− 1
∆2

3

)
(∂wφ

∗ ∂zφ+ ∂zφ
∗ ∂wφ)

)
− ηij ∂iφ

∗ ∂jφ−M2φ∗φ

]
.

(6.123)

As in the case of the nbo, the solutions to the e.o.m. are necessary to provide the modes
of the quantum fields. We study the eigenvalue equation �φr = rφr, where r is 2 k+k− − ~k
by comparison with the flat case (k is the momentum associated to the flat coordinates). We
therefore need solve: {

− 2 ∂u∂v −
2
u

∂v + 1
4u2

[(
1
∆2

2
+ 1
∆2

3

)(
∂2

w + ∂2
z

)
+ 2

(
1
∆2

2
− 1
∆2

3

)
∂w∂z

]
+ ηij ∂i∂j − r

}
φr = 0.

(6.124)

To this purpose, we introduce a Fourier transformation over v, w, z, ~x:

φr(u, v, w, z, ~x) =
+∞∑

l=−∞

∫
RD−4

dD−4~k

+∞∫
−∞

dk+

+∞∫
−∞

dp ei (k+v+pw+lz+~k·~x)φ̃k−krgen(u), (6.125)

where we defined k+, p, l, ~k as associated momenta to v, w, z, ~x respectively. We find:

φk−krgen(u, v, w, z, ~x) = ei (k+v+pw+lz+~k·~x)φ̃k−krgen(u). (6.126)

where

φ̃k−krgen(u) = 1

2
√

(2π)D|∆2∆3k+|

1
|u|

e
−i

(
1

8k+u

[
(l+p)2

∆2
2

+ (l−p)2

∆2
3

]
−~k2+r

2k+
u

)
. (6.127)

These solutions present the right normalisation, as we can verify through the product:(
φk−krgenN1, φk−krgenN2

)
=

∫
RD−4

dD−4~x

+∞∫
−∞

du

+∞∫
−∞

dv

+∞∫
−∞

dw

2π∫
0

dz 2|∆2∆3|u2

× φk−krgenN1 φk−krgenN2

= δD−4
(
~k(1) + ~k(2)

)
δ
(
k(1) + + k(2) +

)
δ
(
p(1) + p(2)

)
δ
(
r(i) + r(i)

)
δl(1), l(2) .

(6.128)
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Then we have the off-shell expansion:

φr(u, v, w, z, ~x) = 1

2
√

(2π)D|∆2∆3k+|

+∞∑
l=−∞

∫
RD−4

dD−4~k

+∞∫
−∞

dk+

+∞∫
−∞

dp

+∞∫
−∞

dr

×
Ak−krgen

|u|
e

i

(
k+v+pw+lz+~k·~x− 1

8k+u

[
(l+p)2

∆2
2

+ (l−p)2

∆2
3

]
+ ~k2+r

2k+
u

)
.

(6.129)

6.6.3 Free Photon Action

We then study the action of the free photon field a using the Lorenz gauge which in the orbifold
coordinates it reads:

Dαaα = − 2
u

av − ∂vau − ∂uav

+ 1
4u2

((
1
∆2

2
+ 1
∆2

3

)
(∂waw + ∂zaz) +

(
1
∆2

2
− 1
∆2

3

)
(∂waz + ∂zaw)

)
+ ηij ∂iaj = 0.

(6.130)
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We then solve the eigenvalue equations (�ar)ν = rar ν, which in components read:

(�ar)u = 2
u2 ar v

− 1
2u3

[(
1
∆2

2
+ 1
∆2

3

)
(∂war w + ∂zar z) +

(
1
∆2

2
− 1
∆2

3

)
(∂war z + ∂zar w)

]
+
{
−2∂u∂v −

2
u

∂v

+ 1
4u2

[(
1
∆2

2
+ 1
∆2

3

)(
∂2

w + ∂2
z

)
+
(

1
∆2

2
− 1
∆2

3

)
2∂w∂z

]
+∇2

T

}
ar u,

(�ar)v =
{
−2∂u∂v −

2
u

∂v

+ 1
4u2

[(
1
∆2

2
+ 1
∆2

3

)(
∂2

w + ∂2
z

)
+
(

1
∆2

2
− 1
∆2

3

)
2∂w∂z

]
+∇2

T

}
ar v,

(�ar)w = − 2
u

∂war v

+
{
−2∂u∂v

+ 1
4u2

[(
1
∆2

2
+ 1
∆2

3

)(
∂2

w + ∂2
z

)
+
(

1
∆2

2
− 1
∆2

3

)
2 ∂w∂z

]
+∇2

T

}
ar w,

(�a)z = − 2
u

∂zar v

+
{
−2∂u∂v

+ 1
4u2

[(
1
∆2

2
+ 1
∆2

3

)(
∂2

w + ∂2
z

)
+
(

1
∆2

2
− 1
∆2

3

)
2∂w∂z

]
+∇2

T

}
ar z,

(�a)i =
{
−2∂u∂v −

2
u

∂v

+ 1
4u2

[(
1
∆2

2
+ 1
∆2

3

)(
∂2

w + ∂2
z

)
+
(

1
∆2

2
− 1
∆2

3

)
2∂w∂z

]
+∇2

T

}
ar i,

(6.131)

where ∇2
T = ηij ∂i∂j is the Laplace operator in the transverse coordinates ~x. These equations

can be solved using standard techniques through a Fourier transform:

arα(u, v, w, z, ~x) =
+∞∑

l=−∞

∫
RD−4

dD−4~k

+∞∫
−∞

dk+

+∞∫
−∞

dp

× ei (k+v+pw+lz+~k·~x)ãk−krgenα(u).

(6.132)

We first solve the equations for ãk−krgen v and ãk−krgen i since they are identical to the scalar
equation (6.124). We then insert their solutions as sources for the equations for ãk−krgen u,
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ãk−krgen w and ãk−krgen z. The solutions can be written as the expansion:

∥∥ãk−krgenα(u)
∥∥ =


ãu

ãv

ãw

ãz

ãi


=

∑
α∈{u,v,w,z,i}

Ek−krgenα

∥∥∥ã
α

k−krgenα(u)
∥∥∥

= Ek−krgen u


1
0
0
0
0

 φ̃k−krgen

+ Ek−krgen v


i

2k+u + 1
8k2

+u2

(
(l+p)2

∆2
2

+ (l−p)2

∆2
3

)
1
p

k+
l

k+

0

 φ̃k−krgen

+ Ek−krgen w


1

4k+|u|

(
l+p
∆2

2
− l−p
∆2

3

)
0
|u|
0
0

 φ̃k−krgen

+ Ek−krgen z


1

4k+|u|

(
l+p
∆2

2
+ l−p
∆2

3

)
0
0
|u|
0

 φ̃k−krgen

+ Ek−krgen j


0
0
0
0
δij

 φ̃k−krgen

(6.133)

Consider the Fourier transformed functions:

a
α

k−krgenα(u, v, w, z, ~x) = ei (k+v+pw+lz+~k·~x)ã
α

k−krgenα(u), (6.134)

then we can expand the off shell fields as

aα(x) =
+∞∑

l=−∞

∫
RD−4

dD−4~k

+∞∫
−∞

dk+

+∞∫
−∞

dp

+∞∫
−∞

dr

×
∑

α∈{u,v,w,z,i}

Ek−krgenα a
α

k−krgenα(x).
(6.135)
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We can compute the normalisation as:

(
a(1), a(2)

)
=

∫
RD−4

dD−4~x

+∞∫
−∞

du

+∞∫
−∞

dv

+∞∫
−∞

dw

2π∫
0

dz 2|∆2∆3|u2

×
(
gαβ ak−krgenN1α ak−krgenN2β

)
= δD−4

(
~k(1) + ~k(2)

)
δ
(
p(1) + p(2)

)
δ
(
k(1) + + k(2) +

)
δl(1)+l(2),0δ(r1 − r2)

× Ek−krgenN1 ◦ Ek−krgenN2,

(6.136)

where

E(1) ◦ E(2) = −E(1) u E(2) v − E(1) v E(2) u

+ 1
4

[(
1
∆2

2
+ 1
∆2

3

)(
E(1) w E(2) w + E(1) z E(2) z

)
+
(

1
∆2

2
− 1
∆2

3

)(
E(1) w E(2) z + E(1) z E(2) w

)] (6.137)

is independent of the coordinates. The Lorenz gauge now reads:

ηij ki Ek−krgenj − k+Ek−krgen u −
~k2 + r

2k+
Ek−krgen v = 0. (6.138)

As in the previous case, the constraint equation does not pose any condition on the transverse
polarisations Ek−krgen w and Ek−krgen z.

6.6.4 Cubic Interaction

As previously studied on the nbo, we show the scalar qed 3-points vertex computation using the
previously computed eigenmodes. The presence of a continuous momentum in the non compact
direction plays a major role in saving the convergence of the integrals. In the case of the gnbo
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we find:

S(cubic)
sqed [φ, a] =

∫
Ω

dDx
√
−det g (−iegµν aµ(φ∗ ∂νφ− ∂νφ

∗φ))

=
3∏

i=1

+∞∑
l(i)=−∞

∫
RD−4

dD−4~k(i)

+∞∫
−∞

dk(i) +

+∞∫
−∞

dp(i)

+∞∫
−∞

dr(i)

× (2π)D−1
δD−4

( 3∑
i=1

~k(i)

)
δ

( 3∑
i=1

p(i)

)
δ

( 3∑
i=1

k(i) +

)
δ 3∑

i=1

l(i), 0

× e A∗{−k(2) +,−p(2),−l(2),−~k(2), r(2)}Ak−krgenN3

×

{
Ek−krgenN1 u k(2) + I

[0]
{3}

+ Ek−krgenN1 v

[(
~k2

(2) + r(2)

2k(2) +

)
I [0]
{3} + i

k(2) +

k(1) +
I [−1]
{3}

+
k(2) +

8

[
1
∆2

2

(
l(1) + p(1)

k(1) +
+

l(2) + p(2)

k(2) +

)2

+ 1
∆2

3

(
l(1) − p(1)

k(1) +
+

l(2) − p(2)

k(2) +

)2
]
I [−2]
{3}

]
+
(
Ek−krgenN1 w − Ek−krgenN1 z

)
×

[
1
∆2

2

(
k(1) +

(
l(2) + p(2)

)
+ k(2) +

(
l(1) + p(1)

)
k(1) +

)

− 1
∆2

3

(
k(1) +

(
l(2) − p(2)

)
+ k(2) +

(
l(1) − p(1)

)
k(1) +

)]
J [−1]
{3}

+ ((2)↔ (3))
}

(6.139)

where we defined:

I [ν]
{N} =

+∞∫
−∞

du 2 |∆2∆3|u2 uν
N∏

i=1
φ̃k−krgenNi,

J [ν]
{N} =

+∞∫
−∞

du 2 |∆2∆3|u2 |u|ν
N∏

i=1
φ̃k−krgenNi.

(6.140)

While in the nbo case we need to regularise the integrals at least taking their principal part
when all l(∗) = 0 in (6.37), the gnbo does not need any specific manipulation. In fact the form
of φ̃k−krgenNi in (6.127) prevents the formation of isolated zeros in the phase factor proportional
to u−1: the presence of the continuous momentum p, contrary to the nbo where all momenta
are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac
δ function.
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6.6.5 Quartic Interactions

As for the nbo, we consider the quartic interaction for the scalar qed action:

S(quartic)
sqed [φ, a] =

∫
Ω

dDx
√
−det g

(
e2 gµν aµaν|φ|2 −

g4

4 |φ|
4
)

=
3∏

i=1

 1

4π
√

(2π)D∣∣∆2∆3k(i) +
∣∣


×
+∞∑

l(i)=−∞

∫
RD−4

dD−4~k(i)

+∞∫
−∞

dk(i) +

+∞∫
−∞

dp(i)

+∞∫
−∞

dr(i)

× (2π)D−1
δD−4

( 3∑
i=1

~k(i)

)
δ

( 3∑
i=1

p(i)

)
δ

( 3∑
i=1

k(i) +

)
δ 3∑

i=1

l(i), 0

×

{
e2A∗{−k(3) +,−p(3),−l(3),−~k(3), r(3)}Ak−krgenN4

×

[
Ek−krgenN1 ◦ Ek−krgenN2 I [0]

{4}

− iEk−krgenN1 v Ek−krgenN2 v

×

((
1

k(1) +
+ 1

k(2) +

)
I [−1]
{4}

− i

(G+ (1,2)

∆2
2

+
G− (1,2)

∆2
3

)
I [−2]
{4}

)

+ 1
4

(
Ẽ+ (1,2)

G+ (1,2)

∆2
2
− Ẽ− (1,2)

G− (1,2)

∆2
2

)
J [−1]
{4}

]
− g4

4 A
∗
{−k(1) +,−p(1),−l(1),−~k(1), r(1)}A

∗
{−k(2) +,−p(2),−l(2),−~k(2), r(2)}

× Ak−krgenN3Ak−krgenN4I [0]
{4}

}
,

(6.141)

where we defined:

G± (a,b) =
l(a) ± p(a)

k(a) +
−

l(b) ± p(b)

k(b) +
,

Ẽ± (a,b) = Ek−krgenNa v

×
(
Ek−krgenNb w ± Ek−krgenNb z

)
− Ek−krgenNb v

×
(
Ek−krgenNa w ± Ek−krgenNa z

)
(6.142)

for simplicity.
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As the four points function in the nbo case shows with clear evidence the presence of diver-
gences when all l(∗) = 0, the gnbo allows a distributional interpretation of the integrals I [ν]

{N}

and J [ν]
{N} in the previous expression. In fact the regularization occurs in the same way as in the

three points function in the gnbo: the phase factor proportional to u−1 has a continuous value
due to the continous momentum p and it does not present isolated zeros which would prevent
the interpretation as distribution.

6.6.6 Resurgence of Divergences and Null Brane Regularisation

Looking back at the metric (6.115) and at the identifications (6.121) it seems reasonable to
wonder what would happen if we acted in the same way over w, since 2π∂w is a Killing vector as
well and it commutes with 2π∂z. However from the analysis of nbo and gnbo, in the absence of
at least one continuous transverse direction it is not possible to avoid the divergences associated
with discrete zero energy modes and this is exactly what happens.

As mentioned in the introductory section, there have been attempts to regularise the nbo
using the Null Brane. Differently from the nbo, in this case the orbifold generator (6.9) includes
an additional translation along an extra spatial dimension, namely:

κ = −2πi∆ J+2 − 2πiRP3

= 2π (∆ ∂z + R, ∂3).
(6.143)

with metric
ds2 = −2 du dv + ∆2u2(dz)2 +

(
dx3)2 + ηij dxi dxj . (6.144)

Even though similar in appearance to the gnbo Killing vector, this Killing vector is substantially
different from (6.118).

The scalar field satisfies the same equation of motion as in the nbo:(
−2∂u∂v −

1
u

∂v + 1
(u∆)2 ∂2

z + ∂2
x3 + ηij ∂i∂j

)
φr = rφr, (6.145)

where i, j = 4, 5, . . . D − 1. The solution is:

φ̃{k+ kz k3 ~k r}(u) ∝ 1√
|u|

e
−i

k2
z

2k+
1
u +i

k2
3+~k2+r

2k+
u
. (6.146)

but with different periodicity conditions:

ei2πn(∆kz+Rk3) = 1. (6.147)

This obscures the issue of the presence of a non compact direction. To show the non compact
direction hidden in this system we define the coordinates ẑ = 1

2

(
x3

R + z
∆

)
and x̂3 = 1

2

(
x3

R −
z
∆

)
such that κ = 2π∂

ẑ
and (

ẑ
x̂3

)
≡
(

ẑ + 2πn
x̂3

)
(6.148)
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upon the orbifold identification. Then the momenta are k̂
ẑ

= l̂ ∈ Z and k̂3 ∈ R and they are
related to the momenta of the other coordinates as:

k3 = l̂ + k̂3

2R
, kz = l̂ − k̂3

2∆ , (6.149)

so that the solution can be written as

φ̃{
k+ l̂ k̂3 ~k r

}(u) ∝ 1√
|u|

e
−i

(̂l−̂k3)2

8∆2k+
1
u +i

(2R)−2(̂k3−l̂)2+~k2+r
2k+

u
, (6.150)

which shows in a clear way that there is a non compact direction which allows a distributional
interpretation as discussed in [100]. However this direction cannot be easily decoupled from the
compact one.

6.7 Comments on the BO

In this section we would like to quickly show the analysis performed in the previous sections for
the nbo but in the case of the bo. The results are not very different apart from the fact that
divergences are milder. It is in fact possible to construct the full scalar qed but nevertheless it
is impossible to consider higher derivative terms in the effective theory. Moreover some three
point amplitudes with a massive state diverge.

6.7.1 Geometric Preliminaries

In M 1,1 we consider the change of coordinates:

{
x+ = t e+∆ϕ

x− = σ− t e−∆ϕ
⇔


t = sign(x+)

√
|x+x−|

ϕ = 1
2∆ log

∣∣∣x+

x−

∣∣∣
σ− = sign(x+x−)

(6.151)

where σ− = ±1 and t, ϕ ∈ R. The metric reads:

ds2 = −2 dx+ dx+

= −2σ−
(

dt2 − (∆t)2 dϕ2
)

.
(6.152)

Its determinant is:
−det g = 4∆2t2. (6.153)

In orbifold coordinates the non vanishing Christoffel symbols are:

Γ t
ϕ ϕ = ∆2t, Γ ϕt ϕ = t−1. (6.154)

Using the orbifold coordinates (t, ϕ), the bo is obtained by requiring the identification ϕ ≡
ϕ+2π along the orbit of the global Killing vector κϕ = 2π∂ϕ. We will therefore use the recurrent
parameter Λ = e2π∆ as shorthand notation.
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6.7.2 Free Scalar Action

The action for a complex scalar φ is given by

S(kinetic)
sqed [φ] =

∫
Ω

dDx
√
− det g

(
−gµν ∂µφ

∗ ∂νφ−M2φ∗φ
)

=
∑

σ−∈{±1}

∫
RD−2

dD−2~x

+∞∫
−∞

dt

2π∫
0

dϕ ∆|t|

×

(
1
2σ− ∂tφ

∗ ∂tφ + 1
2
σ−

(∆t)2 ∂ϕφ
∗ ∂ϕφ − ηij ∂iφ

∗∂jφ−M2φ∗φ

)
.

(6.155)

As before we solve the associated eigenfunction problem for the d’Alembertian operator(
−1

2σ− ∂2
t −

1
2σ−

1
t
∂t + 1

2σ−
1

(∆ t)2 ∂2
ϕ + ∂2

i

)
φr = rφr. (6.156)

with
r = 2 k+k− − ~k2 = 2ζ−m2 − ~k2 (6.157)

where for later convenience (see the transformation of k under the induced action of the Killing
vector (6.167)) we parameterise the momenta as:

{
k+ = m e+∆β

k− = ζ−m e−∆β
⇔


m = sign(k+)

√
|k+k−|

β = 1
2∆ log

∣∣∣ k+
k−

∣∣∣
ζ− = sign(k+k−)

(6.158)

where ζ− = ±1 and m, β ∈ R. To solve the problem we use standard techniques and perform
the Fourier transform with respect to ~x and φ as :

φ(t, ϕ, ~x) =
+∞∑

l=−∞

∫
RD−2

dD−2~x ei ~k·~xei lϕH{l, ~k, r,σ−}(t), (6.159)

so that the new function H{l, ~k, r,σ−} satisfies

∂2
t H{l, ~k, r,σ−} + 1

t
∂tH{l, ~k, r,σ−} +

[
l2

(∆ t)2 + 2σ−
(

r + ~k2
)]

H{l, ~k, r,σ−} = 0, (6.160)

which, upon the introduction of the natural quantities (see also (6.169) for an explanation of the
naturalness of λ)

τ = m t, λ = e∆(ϕ+β), σ̂− = σ− ζ−, (6.161)
shows that the actual dependence on parameters is

H{l, ~k, r,σ−}(t) = φ̃
l σ̂−

(τ), (6.162)

so that

∂2
τφ̃l σ̂−

+ 1
τ

∂τφ̃l σ̂−
+
[

l2

(∆τ)2 + 4σ̂−

]
φ̃

l σ̂−
= 0. (6.163)
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The asymptotic behaviour of the solutions is:

φ̃
l σ̂−
∼

{
A+|τ|i

l
∆ + A−|τ|−i l

∆ for l 6= 0
A+ log |τ|+ A− for l = 0

. (6.164)

6.7.3 Eigenmodes on BO from Covering Space

We now repeat the essential part of the analysis performed in the nbo case. As on the nbo we
say “wave function” and not eigenfunction since eigenfunctions for non scalar states require some
constraints on polarisations which we do not impose.

Scalar Wave Function We start as usual from the Minkowskian wave function and we write
only the dependence on x+ and x− since all the other coordinates are spectators

ψk+ k−

(
x+, x−

)
= ei (k+x++k−x−)

= ei m t [e∆(ϕ+β)+σ̂− t e∆(ϕ−β)]

= ψk+ k−(t, ϕ, σ−).

(6.165)

We can compute the wave function on the orbifold by summing over all images:

Ψ[k+ k−]
([

x+, x−
])

=
+∞∑

n=−∞
ψk+ k−

(
Kn
(
x+, x−

))
=

+∞∑
n=−∞

ψk+ k−

(
x+e2π∆n, x−e−2π∆n

)
=

+∞∑
n=−∞

ei{[k+e2π∆n]x++[k−e−2π∆n]x−}

=
+∞∑

n=−∞
ψK−n(k+ k−)

(
x+, x−

)
,

(6.166)

where we write [k+ k−] because the function depends on the equivalence class of k+k− only. The
equivalence relation is given by

k =
(

k+
k−

)
≡ K−nk =

(
k+e2π∆n

k−e−2π∆n

)
. (6.167)

The previous equation explains the rationale for the parametrization (6.158) so that we can
always choose a representative

0 ≤ β < 2π, m 6= 0, (6.168)
or differently said β ≡ β+2π and therefore we can use the dual quantum number l using a Fourier
transform. Using the well adapted set of coordinates we can write the spin-0 wave function in a
way to show the natural variables as

Ψ[k+ k−]
([

x+, x−
])

=
+∞∑

n=−∞
ei τ[λe+2π∆n+σ̂−λ−1e−2π∆n] = Ψ̂(τ, λ, σ̂−). (6.169)
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Again the scalar eigenfunction has a unique equivalence class which mixes coordinates and mo-
menta.

Now we use the basic trick used in Poisson resummation

Ψ[k+ k−]
([

x+, x−
])

=
+∞∫
−∞

ds δP (s) ei{k+x+Λs+k−x−Λ−s}

= 1
2π

+∞∑
l=−∞

∣∣∣∣k+x+

k−x−

∣∣∣∣−i l
2∆

+∞∫
−∞

ds ei 2π l sei sign(k+ x+)
√
|k+k−x+x−|{Λs+σ−ζ−Λ−s}

= 1
2π

+∞∑
l=−∞

(
e∆(ϕ+β)

)−i l
∆

+∞∫
−∞

ds ei 2π l sei mt{Λs+σ−ζ−Λ−s}

= 1
2π

+∞∑
l=−∞

ei lβ

ei lϕ

+∞∫
−∞

ds e−i 2πlsei mt{Λs+σ−ζ−Λ−s}
,

(6.170)

where the last line represents the change of quantum number from mβ to m l and allows us to
identify

NBOφ̃l σ̂−
(τ) = 1

2π

+∞∫
−∞

ds e−i 2π l sei τ{Λs+σ̂−Λ−s}, (6.171)

where NBO is a constant which depends on the normalization chosen for φ̃
l σ̂−

. This expression
gives an integral representation of the o.d.e. solutions.

Tensor Wave Function (Spin-2) We consider the tensor wave function in Minkowski space.
We focus on x+, x− and x2 since all other directions behave as x2. Differently from scalar function
we need to keep the dependence on x2 since it is needed for non trivial physical polarisations
and it enters in the transversality conditions. Explicitly we find

NBOψ
[2]
k S

(
x+, x−, x2) = Sµν dxµ dxν ψk(x)

=
[

S++
(
dx+)2 + 2 S+− dx+ dx− + 2 S+2 dx+ dx2

+ S−− (dx−)2 + 2 S−2 dx2 dx2

+ S22 (dx2)2

]
ei (k+x++k−x−+k2x2),

(6.172)
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which we rewrite in orbifold coordinates

NBOψ
[2]
k S

(
t, ϕ, x2, σ−

)
= Sαβ dxα dxβ ψk(x)

×

[
dt2 (2 S+− σ− + S+ + e2∆ϕ + S−− e−2∆ϕ)

+ 2∆ t dt dϕ
(
S+ + e2∆ϕ − S−− e−2∆ϕ)

+ ∆2 t2 dϕ2 (−2 S+− σ− + S+ + e2∆ϕ + S−− e−2∆ϕ)
+ 2 dt dx2 (S− 2 e−∆ϕ σ− + S+ 2 e∆ϕ

)
+ 2∆ t dx2 dϕ

(
S+ 2 e∆ϕ − S− 2 e−∆ϕ σ−

)
+
(
dx2)2

S2 2

]
ei m t [e∆(ϕ+β)+σ̂−e∆(ϕ−β)]+i k2x2

.

(6.173)

Now we define the tensor wave on the orbifold as a sum over all images as

NBO Ψ
[2]
[k S]([x]) =

+∞∑
n=−∞

(Kn dx) · S · (Kn dx)ψk(Knx)

=
+∞∑

n=−∞
dx ·

(
K−n S

)
· dx ψK−n k(x).

(6.174)

In the last line we have defined the induced action of the Killing vector on (k, S) which can be
explicitly written as:

K−n


S+ +
S+−
S−−
S+ 2
S− 2
S2 2

 =


e2n∆ϕ S+ +

S+−
e−2n∆ϕ S−−

en∆ϕ S+ 2
e−n∆ϕ S− 2

S2 2

, (6.175)

and it amounts to a trivial scaling. In orbifold coordinates computing the tensor wave simply
amounts to sum over all the shifts ϕ → ϕ + 2πn. Then we have to give a close expression for
the sum involving powers e2π∆n. Explicitly we find:

+∞∑
n=−∞

(
e2π∆n

)N
ei τ[λe+2π∆n+σ̂− 1

λ
e−2π∆n]

=


[ 1

2
( 1
λ

∂τ + 1
τ

∂λ
)]N

Ψ̂(τ, λ, σ̂−) for N > 0[
1
2

(
λ∂τ − λ2

τ
∂λ

)]N

Ψ̂(τ, λ, σ̂−) for N < 0
,

(6.176)

where τ derivatives of φ̃
l σ̂−

of order higher than 2 can be reduced with the help of the differential
equation (6.163).

We now have to identify the basic polaritazions on the orbifold. However the quantum
number β is no longer a good quantum number on the orbifold and it is replaced by l. The
relations among orbifold polarisations and Minkowski polarisations may depend on β as long as
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6.7 Comments on the BO

the traceless and transversality conditions on the orbifold are independent of it.50 Finally it
seems reasonable to use the natural variable λ = e∆(ϕ+β). Therefore we have:

St t = e−2∆β S+ +,

Stϕ = S+−,

St 2 = e−∆β S+ 2,

Sϕϕ = e2∆β S−−,

Sϕ 2 = e∆β S− 2,

S2 2 = S2 2,

(6.177)

which can be trivially inverted as

S+ + = e2∆β St t,

S+− = Stϕ,

S+ 2 = e∆β St 2,

S−− = e−2∆β Sϕϕ,

S− 2 = e−∆β Sϕ 2,

S2 2 = S2 2.

(6.178)

We can then compute the trace:

tr(S) = −2Stϕ + S2 2, (6.179)

while the transversality conditions become

(k · S)+ = −e∆β (m σ̂− σ− St t + mStϕ − k2 St 2)
(k · S)− = −e−∆β (m σ̂− σ− Stϕ + mSϕϕ − k2 Sϕ 2)
(k · S)2 = −(m σ̂− σ− St 2 + mSϕ 2 − k2 S2 2),

(6.180)

which are independent from β when it is set to zero.

The final expression of the wave function for the symmetric tensor on the orbifold is:

Ψ
[2]
[k S]([x]) =

+∞∑
l=−∞

ei lβ

[
Sm l, tt dt2 + 2 Sm l, tϕ dt dϕ+ 2 Sm l, t2 dt dx2

+ Sm l,ϕϕ dϕ2 + 2 Sm l,ϕ2 dϕdx2

+ Sm l, 22 dx22
]

,

(6.181)

where the explicit expressions for the components are

Sm l, tt =

− φ̃l σ̂−
(τ) l λ

i l
∆ (l St t + i∆St t + l Sϕϕ − i∆Sϕϕ)

2∆2

 1
τ2

+
[

1
2∆

d
dτ φ̃l σ̂−

(τ) λ i l
∆ (i l St t − i l Sϕϕ − ∆St t − ∆Sϕϕ)

]
1
τ

+
[
φ̃

l σ̂−
(τ) λ i l∆ (σ̂− St t + 2σ− Stϕ + σ̂− Sϕϕ)

]
,

(6.182)

50These conditions may be a linear combinations of the ones in Minkowski.
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Sm l, tϕ =

− φ̃l σ̂−
(τ) l λ

i l∆ (l St t + i∆St t − l Sϕϕ + i∆Sϕϕ)
2∆m

1
τ

+

 d
dτ φ̃l σ̂−

(τ) λ i l∆ (i l St t − ∆St t + i l Sϕϕ + ∆Sϕϕ)
2 m


+

∆ σ̂− φ̃l σ̂−
(τ) λ i l∆ (St t − Sϕϕ)

m

τ,
(6.183)

Sm l,ϕϕ =
[
− 1

2 m2 φ̃l σ̂−
(τ) l λ

i l∆ (l (St t + Sϕϕ) + i∆ (St t − Sϕϕ))
]

+
[

1
2 m2∆

(
d
dτ φ̃l σ̂−

(τ)
)
λ

i l∆ (i l St t − i l Sϕϕ − ∆St t − ∆Sϕϕ)
]
τ

+
[

1
m2∆

2 φ̃
l σ̂−

(τ) λ i l∆ (σ̂− St t + σ̂− Sϕϕ − 2σ− Stϕ)
]
τ2,

(6.184)

together with the effectively vector components in the orbifold directions:

Sm l, t2 =
[

i

2∆φ̃l σ̂−
(τ) l λ

i l∆ (St 2 − Sϕ 2 σ−)
]

1
τ

+
[

1
2

d
dτ φ̃l σ̂−

(τ) λ i l∆ (St 2 + Sϕ 2 σ−)
]
,

(6.185)

and

Sm l,ϕ2 =
[

i

2 m
φ̃

l σ̂−
(τ) l λ

i l∆ (St 2 + Sϕ 2 σ−)
]

+
[

1
2 m

∆

(
d

d τ
φ̃

l σ̂−
(τ)
)
λ

i l∆ (St 2 − Sϕ 2 σ−)
]
τ,

(6.186)

and the effectively scalar component:

Sm l, 22 = S2 2 φ̃l σ̂−
(τ) λ i l

∆ . (6.187)

6.8 Overlaps and Divergent Three Points String Amplitudes

We consider some overlaps as done for the nbo. The connection between the overlaps on the
orbifold and the sums of images remains unchanged when we change the Killing vector K, hence
we can limit ourselves to discuss the integrals on the orbifold space.
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6.8 Overlaps and Divergent Three Points String Amplitudes

6.8.1 Overlaps Without Derivatives

Let us start with the simplest case of the overlap of N scalar wave functions:

I(N) =
∫
Ω

d3x
√
−det g

N∏
i=1
Ψ[k(i) + k(i)−](

[
x+, x−, x2]))

= NN
BO

∑
{l(i)}∈ZN

e
i

N∑
i=1

l(i)β(i)
∫
Ω

d3x
√
−det g

N∏
i=1
φ

l(i) σ̂− (i)
.

(6.188)

This is always a distribution since the problematic l(∗) = 0 sector gives a divergence (log |t|)N

when t ∼ 0. All other sectors have no issues because of the asymptotic behaviours (6.164).

6.8.2 An Overlap With Two Derivatives

We consider in orbifold coordinates the overlap needed for the amplitude involving two tachyons
and one massive state, i.e.:

K =
∫
Ω

d3x
√
−det g gαβ gγδ Ψ

[2]
[k(3),S(3)]αγ([x]) Dβ∂δΨ[k(2)]([x])Ψ[k(1)]([x]). (6.189)

Since we use the traceless condition we need to keep all momenta and polarisations. We write:

K =
∫
Ω

d3x
√
−det g

[
Ψ

[2]
[k(3),S(3)] tt

∂2
tΨ[k(2)]

− 2
(

1
∆t

)2
Ψ

[2]
[k(3),S(3)] tϕ

(
∂t∂ϕΨ[k(2)] −

1
t
∂ϕΨ[k(2)]

)
+
(

1
∆t

)4
Ψ

[2]
[k(3),S(3)]ϕϕ

(
∂2
ϕΨ[k(2)] − ∆

2t∂tΨ[k(2)]
)

− 2Ψ[2]
[k(3),S(3)] t2

∂t∂2Ψ[k(2)]

+ 2
(

1
∆t

)2
Ψ

[2]
[k(3),S(3)]ϕ2

∂ϕ∂2Ψ[k(2)]

+ Ψ[2]
[k(3),S(3)] 22

∂2
2Ψ[k(2)]

]
Ψ[k(1)].

(6.190)

Now consider the behaviour for l(∗) = 0 for small t. All the ∂ϕ can be dropped since they lower
a l(2). The leading contributions from spin-2 components are Sm l tt ∼ 1

t2 , Sm lϕϕ, Sm l 2 2 ∼ 1
and Sm l t2 ∼ 1

t . The leading 1
t4 reads:

K ∼
∫

t∼0

dt |t|

[
−1

2
d
dτ φ̃l σ̂−

(St t + Sϕϕ)1
τ

∂2
tΨ[k(2)]

+
(

1
∆t

)4 −∆2

2 m2
d
dτ φ̃l σ̂−

(St t + Sϕϕ)τ
(
−∆2t∂tΨ[k(2)]

)]
Ψ[k(3)]

(6.191)
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In the limit of our interest Ψ[k]
∣∣
l=0 ∼ φ̃

l σ̂−

∣∣∣
l=0
∼ log |t|. The two terms add together because

of sign of the covariant derivative to give:

K ∼
∫

t∼0

dt |t|
[(

1
2 + 1

2

)
St t + Sϕϕ

m4
log |t|

t4 +O
(

(log |t|)
t

)]
, (6.192)

which is divergent for the physical polarisation St t = Sϕϕ = −σ̂−σ−Stϕ = − 1
2 σ̂−σ−S22.

7 Summary and Conclusion

From the previous analysis it seems that string theory cannot do better than field theory when
the latter does not exist, at least at the perturbative level where one deals with particles.
Moreover when spacetime becomes singular the string massive modes are not spectators any-
more. Everything seems to suggest that issues with spacetime singularities are hidden into
contact terms and interactions with massive states. This would explain in an intuitive way why
the eikonal approach to gravitational scattering works well: it is indeed concerned with three
point massless interactions. In fact it appears that the classical and quantum scattering on an
electromagnetic wave [104] or gravitational wave [105] in bo and nbo are well behaved. From
this point of view the ACV approach [106], [107] may be more sensible, especially when consid-
ering massive external states [108]. Finally it seems that all issues are related with the Laplacian
associated with the space-like subspace with vanishing volume at the singularity. As a matter of
fact if there is a discrete zero eigenvalue the theory develops divergences.
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8 Introduction

In the previous parts we presented mathematical tools for the theoretical interpretation of amp-
litudes in field theory and string theory. The ultimate goal of the analysis is to provide some
insights on the predictive capabilities of the string theory framework applied to phenomenolo-
gical data. As already argued in Section 1.3 the procedure is however quite challenging as there
are different ways to match string theory with the experimental reality, that is there are several
different vacuum configurations arising from the compactification of the extra-dimensions. The
investigation of feasible phenomenological models in a string framework has therefore to deal
also with computational aspects related to the exploration of the landscape [109] of possible
vacua. Unfortunately the number of possibilities is huge (numbers as high as 10272 000 have been
suggested for some models) [109]–[113], the mathematical objects entering the compactifications
are complex and typical problems are often NP-complete, NP-hard, or even undecidable [114],
[115], making an exhaustive classification impossible. Additionally there is no single framework
to describe all the possible (flux) compactifications. As a consequence each class of models must
be studied with different methods. This has in general discouraged, or at least rendered chal-
lenging, precise connections to the existing and tested theories (in particular, the sm of particle
physics).

Until recently the string landscape has been studied using different methods such as analytic
computations for simple examples, general statistics, random scans or algorithmic enumerations
of possibilities. This has been a large endeavor of the string community [15], [116]. The main
objective of such studies is to understand what are the generic predictions of string theory. The
first conclusion of these studies is that compactifications giving an effective theory close to the
Standard Model are scarce [117]–[120]. The approach however has limitations mainly given by
lack of a general understanding or high computational power required to run the algorithms.

In reaction to these difficulties and starting with the seminal paper [121] new investigations
based on Machine Learning (ml) appeared in the recent years, focusing on different aspects of
the string landscape and of the geometries used in compactifications [122]–[140] (see [141] for a
comprehensive summary of the state of the art). In fact ml is definitely adequate when it comes
to pattern search or statistical inference starting from large amount of data. This motivates two
main applications to string theory: the systematic exploration of the space of possibilities (if they
are not random then ml should be able to find a pattern) and the deduction of mathematical
formulas from the ml approximation. The last few years have seen a major uprising of ml, and
more particularly of neural networks (nn) [142]–[144]. This technology is efficient at discovering
and predicting patterns and now pervades most fields of applied sciences and of the industry.
One of the most critical places where progress can be expected is in understanding the geometries
used to describe string compactifications and this will be the object of study in the following
analysis. We mainly refer to [142]–[144] for reviews in ml and deep learning techniques, and
to [141], [145], [146] for applications of data science techniques.

We address the question of computing the Hodge numbers h1,1 ∈ N and h2,1 ∈ N for com-
plete intersection Calabi–Yau (CICY) 3-folds [147] using different ml algorithms. A CICY is
completely specified by its configuration matrix (whose entries are positive integers) which is the
basic input of the algorithms. The CICY 3-folds are the simplest manifolds of their kind and
they have been well studied. In particular they have been completely classified and their topo-
logical properties computed [148]–[150]. For these reasons, they provide an excellent sandbox to
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test ml algorithms in a controlled environment.

The goal is therefore to predict two positive integers from a matrix of positive integers. This
task is complicated by various redundancies in the description (such as an independence in the
permutations of lines and columns). While usual physics application of ml reduces to feeding
a (big) sequential neural network with raw data, real-world applications are built following a
more general pipeline [144], [145]. In fact the first task after understanding of the problem
would be to perform and exploratory data analysis (eda) to highlight possible data which may
help in getting a result. After the definition of a validation strategy, feature engineering can
be used to improve the baseline computations and improve the design of ml models. While
the first step is straightforward it is still interesting to notice that computations involved in
string geometries (using algebraic topology) are far from standard applications of ml algorithms,
which makes the problem even more interesting. eda aims at better understanding the dataset
showing how the variables are distributed, correlated, determining if outliers are present, etc.
This analysis naturally leads to designing new variables during feature engineering which can be
used in addition (or even substitution) of the original data. Adding derived features by hand
may make the data more easily understandable by the ml algorithms for instance by emphasizing
important properties.51 This phase is followed by feature selection, where different set of features
are chosen according to the need of each algorithm. A good validation strategy is also needed to
ensure that the predictions appropriately reflect the real values, together with a baseline model,
which gives a lower bound on the accuracy together with a working pipeline.52 For instance,
we find that a simple linear regression using the configuration matrix as input gives 43.6 % to
48.8 % for h1,1 and 9.6 % to 10.4 % for h2,1 using from 20% to 80% of data for training. Hence
any algorithm must do better than this to be worth considering.

The datasets we use for task contains 7890 CICY 3-folds. Due to the freedom in repres-
enting the configuration matrix, we need to consider two datasets which have been constructed:
the original dataset [148], [149] and the favourable dataset [150]. Our analysis continues and
generalises [124], [127] at different levels. For example we compute h2,1 which has been ignored
in [124], [127], where the authors argue that it can be computed from h1,1 and from the Euler
characteristics (a simple formula exists for the latter). In our case, we want to push the idea
of using ml to learn about the physics (or the mathematics) of CY to its very end: we assume
that we do not know anything about the mathematics of the CICY, except that the configura-
tion matrix is sufficient to derive all quantities. Moreover we have already mentioned that ml
algorithms have rarely been used to derive data in algebraic topology, which can be a difficult
task. Thus getting also h2,1 from ml techniques is an important first step towards using ML for
more general problems in string geometries. Finally regression is also more useful for extrapol-
ating results: a classification approach assumes that we already know all the possible values of
the Hodge numbers and has difficulties to predict labels which do not appear in the training set.
This is necessary when we move to a dataset for which not all topological quantities have been
computed, for instance CY constructed from the Kreuzer–Skarke list of polytopes [151].

The data analysis and ml are programmed in Python using known open-source packages such
as pandas [152], matplotlib [153], seaborn [154], scikit-learn [155], scikit-optimize [156],
tensorflow [157] (and its high level API Keras). Code is available on Github.

51While one could expect ml algorithms to generate these features by themselves, this may complicate the
learning process. So in cases where it is straightforward to compute meaningful derived features it is often worth
considering them.

52For example the original work on this topic [124] did not set up a validation strategy and reported the
accuracy over both the training and test data. Correcting this problem leads to an accuracy of 37% [127].
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8.1 Complete Intersection Calabi–Yau Manifolds

8.1 Complete Intersection Calabi–Yau Manifolds

As presented in Section 1.3, a CY n-fold is a n-dimensional complex manifold X with SU(n)
holonomy (dimension in R is 2n). An equivalent definition is the vanishing of its first Chern
class. A standard reference for the physicist is [158] (see also [13] for useful references). The
compactification on a CY leads to the breaking of large part of the supersymmetry which is phe-
nomenologically more realistic than the very high energy description with intact supersymmetry.

CY manifolds are characterised by a certain number of topological properties (see Sec-
tion 1.3.3), the most salient being the Hodge numbers h1,1 and h2,1, counting respectively the
Kähler and complex structure deformations, and the Euler characteristics:53

χ = 2
(
h1,1 − h2,1). (8.1)

Interestingly topological properties of the manifold directly translate into features of the 4-
dimensional effective action (in particular the number of fields, the representations and the gauge
symmetry) [158].54 In particular the Hodge numbers count the number of chiral multiplets
(in heterotic compactifications) and the number of hyper- and vector multiplets (in type II
compactifications): these are related to the number of fermion generations (3 in the Standard
Model) and is thus an important measure of the distance to the Standard Model.

The simplest CY manifolds are constructed by considering the complete intersection of hy-
persurfaces in a product A of projective spaces Pni (called the ambient space) [147]–[150], [159]:

A = Pn1 × · · · × Pnm . (8.2)
Such hypersurfaces are defined by homogeneous polynomial equations: a CICY manifold X is
described by the solution to the system of equations, i.e. by the intersection of all these surfaces.
The intersection is “complete” in the sense that the hypersurface is non-degenerate.

To gain some intuition, consider the case of a single projective space Pn with (homogeneous)
coordinates ZI , where I = 0, 1, . . . , n. A codimension 1 subspace is obtained by imposing a
single homogeneous polynomial equation of degree a on the coordinates:

pa

(
Z0, . . . , Zn

)
= PI1...Ia

ZI1 . . . ZIa = 0,

pa

(
λZ0, . . . , λZn

)
= λa pa

(
Z0, . . . , Zn

)
.

(8.3)

Each choice of the polynomial coefficients PI1...Ia leads to a different manifold. However it can
be shown that the manifolds are in general topologically equivalent. Since we are interested only
in classifying the CY as topological manifolds and not as complex manifolds, the information
on PI1...Ia

can be discarded and it is sufficient to keep track only of the dimension n of the
projective space and of the degree a of the equation. The resulting hypersurface is denoted
as [Pn | a] = [n | a]. Notice that [Pn | a] is 3-dimensional if n = 4 (the equation reduces the
dimension by one), and it is a CY (the “quintic”) if a = n + 1 = 5 (this is required for the
vanishing of its first Chern class). The simplest representative of this class if Fermat’s quintic
defined by the equation:

4∑
I=0

(
ZI
)5 = 0. (8.4)

53In full generality, the Hodge numbers hp,q count the numbers of harmonic (p, q)-forms.
54Another reason for sticking to topological properties is that there is no CY manifold for which the metric

is known. Hence it is not possible to perform explicitly the Kaluza–Klein reduction in order to derive the 4-
dimensional theory.
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8.2 Datasets

This construction can be generalized to include m projective spaces and k equations which
can mix the coordinates of the different spaces. A CICY 3-fold X as a topological manifold is
completely specified by a configuration matrix denoted by the same symbol as the manifold:

X =

 Pn1 a1
1 · · · a1

k
...

... . . . ...
Pnm am

1 · · · am
k

 (8.5)

where the coefficients ar
α are positive integers and satisfy the following constraints

dimC X =
m∑

r=1
nr − k = 3, nr + 1 =

k∑
α=1

ar
α, ∀r ∈ {1, 2, . . . , m}. (8.6)

The first relation states that the difference between the dimension of the ambient space and the
number of equations is the dimension of the CY 3-fold. The second set of constraints arises from
the vanishing of its first Chern class. It implies that the ni can be recovered from the matrix
elements. Two manifolds described by the same configuration matrix but different polynomials
are diffeomorphic as real manifold, and thus as topological manifolds, but they are different as
complex manifolds. Hence it makes sense to write only the configuration matrix.

A given topological manifold is not described by a unique configuration matrix. First, any
permutation of the lines and columns leave the intersection unchanged as it amounts to rela-
belling the projective spaces and equations. Secondly, two intersections can define the same
manifold. The ambiguity in the line and column permutations is often fixed by imposing some
ordering of the coefficients. Moreover there is an optimal representation of the manifold X, called
favourable [150]: in such form topological properties of X can be more conveniently derived from
the ambient space A. Finally, simple arguments [147], [148], [160] show that the number of
CICY is necessarily finite due to the constraints (8.6) together with identities between complete
intersection manifolds.

8.2 Datasets

The classification of the CICY 3-folds has been tackled in [148]. The analysis established a
dataset of 7890 CICY. The topological properties of each of these manifolds have been com-
puted in [149]. More recently a new classification has been performed [150] in order to find the
favourable representation of each manifold whenever it is possible.

Below we show a list of the CICY properties and of their configuration matrices:

• general properties:

– number of configurations: 7890
– number of product spaces (block diagonal matrix): 22
– h11 ∈ [0, 19] with 18 distinct values (Figure 8.1a)
– h21 ∈ [0, 101] with 65 distinct values (Figure 8.1b)
– unique Hodge number combinations: 266
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Figure 8.1: Distribution of the Hodge numbers (log scale).

• “original dataset” [148], [149]:

– maximal size of the configuration matrices: 12× 15
– number of favourable matrices (excluding product spaces): 4874 (61.8%)
– number of non-favourable matrices (excluding product spaces): 2994
– number of different ambient spaces: 235

• “favourable dataset” [150]:

– maximal size of the configuration matrices: 15× 18
– number of favourable matrices (excluding product spaces): 7820 (99.1%)
– number of non-favourable matrices (excluding product spaces): 48
– number of different ambient spaces: 126

We then move to the data science analysis of the data. To provide a good test case for the use
of ml in context where the mathematical theory is not completely understood, we make no use
of known formulas. In fact we try to push as far as possible the capabilities of ml algorithms to
play a role in discovering patterns which can be used in phenomenology and algebraic geometry.

9 Machine and Deep Learning for CICY Manifolds

In the following sections we present the preliminary analysis and the machine and deep learn-
ing study applied to the predictions of the Hodge numbers of CICY 3-folds. We use both a
“classical” approach to ml using shallow learning algorithm using geometrical methods to find
new representations of the data and more moder approaches based on computer vision and re-
cent developments in computer science techniques. We show how deep learning the geometry of
string theory can help in providing good computational tools for phenomenology and algebraic
geometry. We also stress future investigations which can be performed based on these results.
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9.1 Exploratory Data Analysis

A typical ml project does not consist of feeding the raw data to the algorithm. It is instead
preceded by a phase of exploration in order to better understand the data, which in turn can
help to design the learning algorithms. We call features properties given as inputs, and labels the
targets of the predictions. There are several phases in the exploratory data analysis (eda) [145]:

1. feature engineering: new features are derived from the inputs;

2. feature selection: the most relevant features are chosen to explain the targets;

3. data augmentation: new training data is generated from the existing ones;

4. data diminution: part of the training data is not used.

Engineered features are redundant by definition but they can help the algorithm learn more
efficiently by providing an alternative formulation and by drawing attention on salient charac-
teristics. A simple example is the following: given a series of numbers, one can compute different
statistics, such as median, mean and variance, and add them to the inputs. It may happen that
the initial series becomes then irrelevant once this new information is introduced. Another ap-
proach to improve the learning process is to augment or decrease the number of training samples
artificially.55 For example we could use invariances of the inputs to generate more training
data. This however does not help in our case because the entries of the configuration matrices
are partially ordered. Another possibility is to remove outliers which can damage the learning
process by driving the algorithm far from the best solution. If there are few of them it is better
to ignore them altogether during training since an algorithm which is not robust to outliers will
in any case make bad predictions (a standard illustration is given by the Pearson and Spearman
correlation coefficients, with the first not being robust to outliers [145]).

Before starting the eda, the first step should be to split the data into training and validation
sets to avoid biasing the choices of the algorithm and the strategy: the eda should be performed
only on the training set. However the dataset we consider is complete and quite uniform: a subset
of it would display the same characteristics as the entire set.56 To give a general overview of
the properties we work with the full dataset.

9.1.1 Engineering

Any transformation of the input data which has some mathematical meaning can be a useful
feature. We establish the following list of useful quantities (most of them are already used to
characterise CICY manifolds in the literature [158]):

55This is in general used in computer vision and object detection tasks where providing rotated, scaled and
cropped versions of the input images can help the algorithms in learning more representations of the same object,
thus creating more accurate predictions.

56A dataset is tidy if every column represents a separate variable and every row is a different observation. For
instance every row could represent a date expressed in seconds from a reference instant and every column could
be a separate sensor reading. However the “transposed” version of the dataset is not a tidy dataset because the
observations are in the columns, thus representing a non standard form of the data. A tidy dataset is complete
if there are no empty cells, that is there is no lack of data or information in the entire set. A uniform dataset
can be understood as a complete dataset in which every variable is well distributed and does not present a lot of
outliers or anomalies.
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Figure 9.1: Cumulative retained variance of the principal components of the configuration matrix.

• the number of projective spaces (rows), m = num_cp;

• the number of equations (columns), k = num_eqs;

• the number of P1, f = num_cp_1;

• the number of P2, num_cp_2;

• the number of Pn with n 6= 1, F = num_cp_neq1;

• the excess number Nex =
F∑

r=1
(nr + f + m− 2k) = num_ex;

• the dimension of the cohomology group H0 of the ambient space, dim_h0_amb;

• the Frobenius norm of the matrix, norm_matrix;

• the list of the projective space dimensions dim_cp and statistics thereof (min, max, median,
mean);

• the list of the equation degrees deg_eqs and statistics thereof (min, max, median, mean);

• k-means clustering on the components of the configuration matrix (with a number of
clusters going from 2 to 15);57

• principal components of the configuration matrix derived using a principal components
analysis (pca) with 99 % of the variance retained (see Figure 9.1).

57The algorithm determines the centroids of conglomerates of data called clusters using an iterative process
which computes the distance of each sample from the center of the cluster. It then assigns the label of the cluster
to the nearest samples. We use the class cluster.KMeans in scikit-learn.
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Figure 9.2: Correlations between the engineered scalar features and the labels.

9.1.2 Selection

Correlations To get a first general idea it is useful to take a look at the correlation matrix
of the features and the labels.58 The correlation matrices for the scalar variables are displayed
in Figure 9.2 for the original and favourable datasets (this excludes the configuration matrix). As
we can see some engineered features are strongly correlated, especially in the favourable dataset.
In particular h1,1 (respectively h2,1) is strongly correlated (respectively anti-correlated) with the
number of projective spaces m and with the norm and rank of the matrix. This gives a first
hint that these variables could help improve predictions by feeding them to the algorithm along
with the matrix. On the other hand finer information on the number of projective spaces and
equations do not correlate with the Hodge numbers.

From this analysis, and in particular from Figure 9.2, we find that the values of h1,1 and
h2,1 are also correlated. This motivates the simultaneous learning of both Hodge numbers since
it can increase chances for the neural network to learn more universal features. In fact this is
something that often happens in practice: it has been found that multi-tasking enhances the
ability to generalise [161]–[165].

Feature importance A second non-exclusive option is to sort the features by order of im-
portance. This can be done using a decision tree which is capable to determine the weight
of each variable towards making a prediction. One advantage over correlations is that the al-
gorithm is non-linear and can thus determine subtler relations between the features and labels.
To avoid biasing the results using only one decision tree, we trained a random forest of trees
(using ensemble.RandomForestRegressor in scikit-learn). It consists in a large number of
decision trees which are trained on different random subsets of the training dataset and averaged
over the outputs (see Appendix F.3 for details on the implementation). The algorithm determ-
ines the importance of the different features to make predictions as a by-product of the learning
process: the most relevant features tend to be found at the first branches (or to be used the

58The correlation is defined as the ratio between the covariance of two variables σ(x, y) =
∑

i
(xi − x̄)(yi − ȳ)

and the product of the standard deviations σ(x)σ(y) (in this case x̄ and ȳ are the sample means).
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Figure 9.3: Importance of the scalar features in the datasets.

most) since they are the most important to make the prediction. The importance of a variable
is a number between 0 and 1, and the sum over all of them must be 1. Since a random forest
contains many trees the robustness of the variable ranking usually improves with respect to a
single tree (Appendix F.3). Moreover, as the main objective is to obtain a qualitative prelim-
inary understanding of the features, there is no need for fine tuning at this stage and we use
the default parameters (specifically 100 decision trees). We computed feature importance for
both datasets and for two different set of variables: one containing the engineered features and
the configuration matrix, and one with the engineered features and the pca components. In
the following figures, we show several comparisons of the importance of the features, dividing
the figures into scalars, vectors and configuration matrix (or its pca), and clusters. The sum of
importance of all features equals 1.

In Figure 9.3, we show the ranking of the scalar features in the two datasets (differences
between the set using the configuration matrix and the other using the pca are marginal and
are not shown to avoid redundant plots). As already mentioned we find that the number of
projective spaces is the most important feature by far. It is followed by the matrix norm in the
original dataset, and by the matrix rank for h2,1 in the favourable dataset. Finally the variable
ranking points out that the other features have a negligible impact on the determination of the
labels and may as well be ignored during training.

The same analysis can be repeated for the vector features and the configuration matrix
component by component. In Figure 9.4 we show the cumulative importance of the features (i.e.
the sum of the importance of each component). We can appreciate that the list of the projective
space dimensions plays a major role in the determination of the labels in both datasets. In the
case of h2,1 we also have a large contribution from the dimensions of the cohomology group
dim_h0_amb, as can be expected from algebraic topology [158].

In Figure 9.5 we show the importance associated to the number of clusters used during the
eda: no matter how many clusters we use, their relevance is definitely marginal compared to all
other features used in the variable ranking (scalars, vectors, and the configuration matrix or its
pca) for both datasets.
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Figure 9.4: Ranking of the vector features and the configuration matrix (or its pca).
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Figure 9.5: Incidence of the numbers of clusters on the variable ranking.

Discussion It seems therefore that the number of projective spaces plays a relevant role in
the determination of h1,1 and h2,1 as well as the list of dimensions of the projective spaces. In
order to validate this observation, in Figure 9.6 we present a scatter plot of the Hodge number
distributions versus the number of projective spaces: it shows that there is indeed a linear
dependence in m for h1,1, especially in the favourable dataset. In fact the only exceptions to
this pattern in the latter case are the manifolds which do not have a favourable embedding [150].
Hence, a simple data analysis hints naturally towards this mathematical result.

Finally we found other features which may be relevant and are worth to be included in the
algorithm: the matrix rank and norm, the list of projective space dimensions and of the associated
cohomology dimensions. However, we want to emphasize one caveat to this analysis: correlations
look only for linear relations, and the random forest has not been optimized or could just be not
powerful enough to make good predictions. This means that feature selection just gives a hint
but it may be necessary to adapt it to different situations.

9.1.3 Removing Outliers

The Hodge number distributions (see Figures 8.1 and 9.7) display few outliers outside the tail
of the main distributions. Such outliers may negatively impact the learning process and drive
down the accuracy: it makes sense to remove them from the training set. It is easy to see that
the 22 outlying manifolds with h1,1 = h2,1 = 0 are product spaces, recognisable from their block-
diagonal matrix. We will also remove outliers with h1,1 = 19 and h2,1 > 86, which represent 15
and 2 samples. In total this represents 39 samples, or 0.49 % of the total data.

To simplify the overall presentation, since the dataset is complete we will mainly focus on the
pruned subset of the data obtained by removing outliers, even from the test set.59 This implies

59There is no obligation to use a ml algorithm to label outliers in the training set. It is perfectly fine to decide
which data to include or not, even based on targets. However, for a real-world application, outliers in the test set
should be labeled by some process based only on the input features. Flagging possible outliers may improve the
predictions by helping the machine understand that such samples require more caution.
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Figure 9.6: Distribution of the labels with respect to the number of projective spaces.
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Figure 9.7: Summary of the statistics for the distributions of both Hodge numbers. The coloured
box shows the three quartiles of the distributions, with the internal horizontal line corresponding
to the median. The “whiskers” cover the interquartile range, i.e. 1.5 times the distance between
the first and third quartiles from the lower and upper limits of the boxes. Isolated points show
the remaining outliers which we however choose to keep to avoid excessively pruning the dataset.

that Hodge numbers lie in the ranges 1 ≤ h1,1 ≤ 16 and 15 ≤ h2,1 ≤ 86. Except when stated
otherwise, accuracy is indicated for this pruned dataset. Obviously the very small percentage of
outliers makes the effect of removing them from the test set negligible when stating accuracy.

9.2 Machine Learning Analysis

We compare the performances of different ml algorithms: linear regression, support vector ma-
chines (svm), random forests, gradient boosted trees and (deep) neural networks. We obtain the
best results using deep convolutional neural networks. In fact we present a new neural network
architecture, inspired by the Inception model [166]–[168] which has been developed in the field
of computer vision. We provide some details on the different algorithms in Appendix F and refer
the reader to the literature [141]–[145] for more details.

9.2.1 Feature Extraction

In Section 9.1 the eda showed that several engineered features are promising for predicting
the Hodge numbers. In what follows we compare the performances of various algorithms using
different subsets of features:

• only the configuration matrix (no feature engineering);

• only the number of projective spaces m;

• only a subset of engineered features and not the configuration matrix nor its pca;
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9.2 Machine Learning Analysis

• a subset of engineered features and the pca of the matrix.

Following the eda and feature engineering, we finally select the features we use in the analysis
by choosing the highest ranked features. We keep the number of projective spaces (num_cp in
the dataset) and the list of the dimension of the projective spaces (dim_cp) for both h1,1 and
h2,1). We also include the dimension of the cohomology group of the ambient space dim_h0_amb
but only for h2,1.60

9.2.2 Analysis Strategy

For the ml analysis, we split the dataset into training and test sets: we fit the algorithms on the
first and then show the predictions on the test set, which will not be touched until the algorithms
are ready.

Test split and validation The training set is made of 90 % of the samples for training, which
leaves the remaining 10 % in the test set (i.e. 785 manifolds out of the 7851 in the set).61 For
most algorithms, we use leave-one-out cross-validation on the training set as evaluation of the
algorithm: we subdivide the training set in 9 subsets, each of them containing 10 % of the total
amount of samples, then we train the algorithm on 8 of them and evaluate it on the 9th. We
then repeat the procedure changing the evaluation fold until the algorithm has been trained and
evaluated on all of them. The performance measure in validation is given by the average over all
the left out folds. When training neural networks, we will however use a single holdout validation
set made of 10 % of the total samples.

Predictions and metrics Since we are interested in predicting exactly the Hodge numbers,
the appropriate metric measuring the success of the predictions is the accuracy (for each Hodge
number separately):

accuracy = 1
N

N∑
i=1

δytrue (i), ypred (i) , (9.1)

where N is the number of samples. In this analysis the accuracy of the predictions on the test
set is rounded to the nearest integer.

Since the Hodge numbers are integers the problem of predicting them looks like a classification
task. However, as argued in the introduction, we prefer to use a regression approach. Indeed
regression does not require to specify the data boundaries and allows to extrapolate beyond
them, contrary to a classification approach where the categories are fixed at the beginning.62

60Notice that providing different kinds of input features to the algorithm is fine as long as such variables come
from the same training set. In other words, it is possible to provide different representations of the same set to
different algorithms while retaining the same statistical relevance [144], [145].

61Remember that we have removed outliers, see Section 9.1.3. The interested reader can refer to [4] where
outliers are kept in the test set.

62A natural way to transform the problem in a regression task is to standardise the Hodge numbers, for
example by shifting by the mean value and diving by the standard deviation. Under this transformation, the
Hodge numbers are mapped to real numbers. While standardisation often improves ml algorithms, we found that
the impact was mild or even negative.
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Most algorithms need a differentiable loss function since the optimisation of parameters (such
as neural networks weights) uses some variant of the gradient descent method. For this reason the
accuracy cannot be used and the models are trained by minimisation of the mean squared error
(mse), which is simply the squared `2-norm between of the difference between the predictions
and the real values. There will however be also a restricted number of cases in which we will
use either the mean absolute error (mae), which is the `1-norm of the same difference, or a
weighted linear combination of mse and mae (also known as Huber loss): we will point them
out at the right time. When predicting both Hodge numbers together, the total loss is the sum
of each individual loss with equal weight: h1,1 is simpler to learn so it is useful to put emphasis
on learning h2,1, but the magnitudes of the latter are higher, such that the associated loss is
naturally bigger (since we did not normalise the data).

In general predictions are real numbers: we need to turn them into integers. In general,
rounding to the nearest integer gives the best result, but we found algorithms (such as linear
regression) for which flooring to the integer below works better. The optimal choice of the integer
function is found for each algorithm as part of the hyperparameter optimisation described below.
The accuracy is computed after rounding.

Learning curves for salient models are displayed. They show how the performances of a
model improves by using more training data, for fixed hyperparameters. To obtain it, we train
models using from 10 % to 90 % of all the data (“training ratio”) and evaluate the accuracy on
the remaining data.63

To avoid redundant information and to avoid cluttering the paper with graphs, the results
for models predicting separately the Hodge numbers for the test set are reported in tables, while
the results for the models predicting both numbers together are reported in the learning curves.
For the same reason, the latter are not displayed for the favourable dataset.

Visualisation of the performance Complementary to the predictions and the accuracy
results, we also provide different visualisations of the performance of the models in the form
of univariate plots (histograms) and multivariate distributions (scatter plots). In fact the usual
assumption behind the statistical inference of a distribution is that the difference between the
observed data and the predicted values can be modelled by a random variable called residual [145],
[169].64 As such we expect that its values can be sampled from a normal distribution with a
constant variance (i.e. constant width), since it should not depend on specific observations,
and centered around zero, since the regression algorithm tries to minimise the squared difference
between observed and predicted values. Histograms of the residual errors should therefore exhibit
such properties graphically. Another interesting kind of visual realisation of the residuals is to
show their distribution against the variables used for the regression model: in the case of a
simple regression model in one variable, it is customary to plot the residuals as a function of the
independent variable, but in a multivariable regression analysis (such as the case at hand) the
choice usually falls on the values predicted by the fit (not the observed data). We shall therefore

63Statistics are not provided due to the limitations of our available computational resources, namely a Thinkpad
t470p laptop with Intel i7-7700HQ CPU, 16 GB RAM and NVidia GeForce 940MX GPU. However, we check
manually on few examples that the reported results are typical.

64The difference between the non observable true value of the model and the observed data is known as
statistical error. The difference between residuals and errors is subtle but the two definitions have different
interpretations in the context of the regression analysis: in a sense, residuals are an estimate of the errors.
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plot the residuals as functions of the predicted values.65 Given the assumption of the random
distribution of the residuals, they should not present strong correlations with the predictions and
should not exhibit trends. In general the presence of correlated residuals is an indication of an
incomplete or incorrect model which cannot explain the variance of the predicted data, meaning
that the model is either not suitable for predictions or that we should add information (i.e. add
features) to it.

Hyperparameter optimisation One of the key steps in a ml analysis is the optimisation
of the hyperparameters of the algorithm. These are internal parameters of each estimator (such
as the number of trees in a random forest or the amount of regularisation in a linear model):
they are not modified during the training of the model, but they directly influence the process
in terms of performance and outcome.

Hyperparameter optimisation is performed by training many models with different choices of
their values. We then keep the values best performing according to some metric on the validation
set(s).66 As it does not need to be differentiable we use the accuracy as a scoring function to
evaluate the models. There is however a subtle issue because it is not clear how to combine
the accuracy of h1,1 and h2,1 to get a single metric. For this reason we perform the analysis
on both Hodge numbers separately. Then we can design a single model computing both Hodge
numbers simultaneously by making a compromise by hand between the hyperparameters found
for the two models computing the Hodge numbers separately. The optimisation is implemented
using the API in scikit-learn, using the function metrics.make_scorer and the accuracy as
a custom scoring function.

There are several approaches to perform this search automatically, in particular: grid search,
random search, genetic evolution, and Bayes optimisation. Grid and random search are natively
implemented in scikit-learn. The first takes a list of possible discrete values of the hyperpara-
meters and will evaluate the algorithm over all possible combinations. The second samples the
values in both discrete sets and continuous intervals according to some probability distribution,
repeating the process a fixed number of times. The grid search method is particularly useful
for discrete hyperparameters, less refined searches or for a small number of combinations, while
the second method can be used to explore the hyperparameter space on a larger scale [170].
Genetic algorithms are based on improving the choice of hyperparameters over generations that
successively select only the most promising values: in general they require a lot of tuning and
are easily influenced by the fact that the replication process can also lead to worse results totally
at random [171]. They are however effective when dealing with very deep or complex neural
networks. Bayes optimisation [172], [173] is a very well established mathematical procedure to
find the stationary points of a function without knowing its analytical form [174]. It relies on
assigning a prior probability to a given parameter and then multiply it by the probability dis-
tribution (or likelihood) of the scoring function to compute the probability of finding a better
results given a set of hyperparameters. This has proven to be very effective in our case and we
adopted this solution as it does not require fine tuning and leads to better results for models
which are not deep neural networks. We choose to use scikit-optimize [156] whose method
BayesSearchCV has a very well implemented Python interface compatible with scikit-learn.
We will in general perform 50 iterations of the Bayes search algorithm, unless otherwise specified.

65We will use the same strategy also for the fit using just the number of projective spaces in order to provide
a way to compare the plots across different models.

66Notice the importance of having a validation set separate from the test set: we must avoid adapting the
algorithm to the same set we use for the predictions or the generalisation capabilities of the algorithm will suffer.
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9.3 Linear Models

9.3 Linear Models

Linear models attempt to describe the labels as a linear combinations of the input features while
keeping the coefficients at O(1) (see Appendix F.1). However non-linearity can still be introduced
by engineering features which are non-linear in terms of the original data.67

From the results of Section 9.1, we made a hypothesis on the linear dependence of h1,1 on the
number of projective spaces m. As a first approach, we can try to fit a linear model to the data
as a baseline computation and to test whether there is actual linear correlation between the two
quantities. We will consider different linear models including their regularised versions.

Parameters The linear regression is performed with the class linear_model.ElasticNet in
scikit-learn. The hyperparameters involved in this case are: the amount of regularisation
α, the relative ratio (l1_ratio) between the `1 and `2 regularization losses, and the fit of
the intercept. By performing the hyperparameter optimisation we found that `2 regularization
has a minor impact and can be removed, which corresponds to setting the relative ratio to 1
(this is equivalent to using linear_model.Lasso). In Table 9.1 we show the choices of the
hyperparameters for the different models we built using the `1 regularised linear regression.

For the original dataset, we floored the predictions to the integers below, while in the fa-
vourable we rounded to the next integer. This choice for the original dataset makes sense: the
majority of the samples lie on the line h1,1 = m, but there are still many samples with h1,1 > m
(see Figure 9.6). As a consequence the ml prediction pulls the line up which can only damage
the accuracy. Choosing the floor function is a way to counteract this effect. Note that accuracy
for h2,1 is only slightly affected by the choice of rounding, so we just choose the same one as h1,1

for simplification.

Results In Table 9.2 we show the accuracy for the best hyperparameters. For h1,1, the most
precise predictions are given by the number of projective spaces which actually confirms the
hypothesis of a strong linear dependence of h1,1 on the number of projective spaces. In fact this
gives close to 100 % accuracy for the favourable dataset which shows that there is no need for
more advanced ml algorithms. Moreover adding more engineered features decreases the accuracy
in most cases where regularization is not appropriate. The accuracy for h2,1 remains low but
including engineered features definitely improves it.

In Figure 9.8 we show the plots of the residual errors of the model on the original dataset.
For the `1 regularised linear model, the univariate plots show that the errors seem to follow
normal distributions peaked at 0 as they generally should: in the case of h1,1, the width is also
quite contained. The scatter plots instead show that in general there is no correlation between

67In general linear model is used to indicate that the coefficients β of the features appear linearly in the
expression of the prediction of the i-th label:

ypred (i) = β
(i)
0 + β

(i)
1 x

(i)
1 + · · ·+ β

(i)
F x

(i)
F =

F∑
j=0

β
(i)
j x

(i)
j ,

where m is the number of independent variables and x
(i)
0 = 1 (i.e. β(i)

0 is the intercept of the model and represents
the value of the label without the contribution of any of the features). In other words, β(i)

j are used with unit
exponent only once per model.
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matrix num_cp eng. feat. PCA
old fav. old fav. old fav. old fav.

α
h1,1 2.0× 10−6 3.0× 10−5 0.10 2.0× 10−6 0.05 0.05 0.07 0.08
h2,1 1.0× 10−6 1.0× 10−5 0.1 1.0× 10−6 3.0× 10−4 1.2× 10−3 2.0× 10−6 1.2× 10−3

fit_intercept
h1,1 False False True False True True False True
h2,1 True True True True True False True False

normalise
h1,1 — — False — False False — False
h2,1 False True False False False — True —

Table 9.1: Hyperparameter choices of the `1 regression model used. In addition to the known
hyperparameters α and fit_intercept, we also include the normalise parameter which indic-
ates whether the samples have been centered and scaled by their `2 norm before the fit: it is
ignored when the intercept is ignored.

matrix num_cp eng. feat. PCA

original h1,1 51 % 63 % 63 % 64 %
h2,1 11 % 8 % 21 % 21 %

favourable h1,1 95 % 100 % 100 % 100 %
h2,1 14 % 15 % 19 % 19 %

Table 9.2: Best accuracy of the linear model using `1 regularisation on the test split.

a particular sector of the predictions and the error made by the model, thus the variance of the
residuals is in general randomly distributed over the predictions. Only the case of the fit of the
number of projective spaces seems to show a slight correlation for h2,1, signalling that the model
using only one feature might be actually incomplete: in fact it is better to include also other
engineered features.

The learning curves in Figure 9.9 show that the model underfits. We also notice that the
models are only marginally affected by the number of samples used for training. In particular
this provides a very strong baseline for h1,1. For comparison, we also give the learning curve for
the favourable dataset in Figure 9.10: this shows that a linear regression is completely sufficient
to determine h1,1 in that case.

9.4 Support Vector Machines

svm are a family of algorithms which use a kernel trick to map the space of input data vectors
into a higher dimensional space where samples can be accurately separated and fitted to an
appropriate curve (see Appendix F.2). In this analysis we show two such kernels, namely a
linear kernel (also known as no kernel since no transformations are involved) and a Gaussian
kernel (known as rbf in ml literature as in radial basis function).

9.4.1 Linear Kernel

For this model we use the class svm.LinearSVR in scikit-learn.
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Figure 9.8: Plots of the residual error for the `1 regularised linear model: rows show the different
scenarios (fit with only the matrix, with only the number of projective spaces, with the engineered
features, with the engineered features and the pca). Plots refer to the test split of the original
dataset.
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Figure 9.9: Learning curves for the linear regression (original dataset), including outliers and
using a single model for both Hodge numbers.
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Figure 9.10: Learning curves for the linear regression (favourable dataset), including outliers and
using a single model for both Hodge numbers. Input: num_cp, α = 1.
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matrix num_cp eng. feat. PCA
old fav. old fav. old fav. old fav.

C
h1,1 0.13 24 0.001 0.0010 0.13 0.001 0.007 0.4
h2,1 0.30 100 0.05 0.0016 0.5 0.4 1.5 0.4

ε
h1,1 0.7 0.3 0.4 0.00 0.9 0.0 0.5 0.0
h2,1 0.0 0.0 10 0.03 0.0 0.0 0.0 0.6

fit_intercept
h1,1 True False True False True False False False
h2,1 True False True True True True True False

intercept_scaling
h1,1 0.13 — 100 — 0.01 — — —
h2,1 100 — 13 92 100 0.01 100 —

loss
h1,1 |ε| |ε| |ε| ‖ε‖2 |ε| |ε| |ε| |ε|
h2,1 |ε| |ε| ‖ε‖2 |ε| |ε| |ε| |ε| |ε|

Table 9.3: Hyperparameter choices of the linear support vector regression. The parameter
intercept_scaling is clearly only relevant when the intercept is used. The different losses
used simply distinguish between the `1 norm of the ε-dependent boundary where no penalty is
assigned and its `2 norm.

Parameters In Table 9.3 we show the choices of the hyperparameters used for the model. As
we prove in Appendix F.2, parameters C and ε are related to the penalty assigned to the samples
lying outside the no-penalty boundary (the loss in this case is computed according to the `1 or
`2 norm of the distance from the boundary as specified by the loss hyperparameter). Other
parameters are related to the use of the intercept to improve the prediction. We rounded the
predictions to the floor for the original dataset and to the next integer for the favourable dataset.

Results In Table 9.4, we show the accuracy on the test set for the linear kernel. As we
can see, the performance of the algorithm strongly resembles a linear model in terms of the
accuracy reached. It is fascinating to notice that the contributions of the pca do not improve
the predictions using just the engineered features: it seems that the latter work better than using
the configuration matrix or its principal components.

The residual plots in Figure 9.11 confirm what we already said about the linear models
with regularisation: the model with only the number of projective spaces shows a tendency
to heteroscedasticity which can be balanced by adding more engineered feature, also helping
in having more precise predictions (translated into peaked univariate distributions).68 In all
cases, we notice that the model slightly overestimates the real values (residuals are computed
as the difference between the prediction and the real value) as the second, small peaks in the
histograms for h1,1 suggest: this may also explain why flooring the predictions produces the
highest accuracy. As in general for linear models, the influence of the number of samples used
for training is marginal also in this case: we only noticed a decrease in accuracy when also
including the pca or directly the matrix.

68Heteroscedasticity refers to the tendency to have a correlation between the predictions and the residuals:
theoretically speaking, there should not be any, since we suppose the residuals to be independent on the model
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9.4 Support Vector Machines

matrix num_cp eng. feat. PCA

original h1,1 61 % 63 % 65 % 62 %
h2,1 11 % 9 % 21 % 20 %

favourable h1,1 96 % 100 % 100 % 100 %
h2,1 14 % 14 % 19 % 20 %

Table 9.4: Accuracy of the linear svm on the test split.
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Figure 9.11: Plots of the residual errors for the svm with linear kernel.
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9.4 Support Vector Machines

matrix num_cp eng. feat. PCA
old fav. old fav. old fav. old fav.

C
h1,1 14 1000 170 36 3 40 1.0 1000
h2,1 40 1000 1.0 1.0 84 62 45 40

ε
h1,1 0.01 0.01 0.45 0.03 0.05 0.3 0.02 0.01
h2,1 0.01 0.01 0.01 0.09 0.29 0.10 0.20 0.09

γ
h1,1 0.03 0.002 0.110 0.009 0.07 0.003 0.02 0.001
h2,1 0.06 0.100 0.013 1000 0.016 0.005 0.013 0.006

Table 9.5: Hyperparameter choices of the svm regression with Gaussian kernel.

9.4.2 Gaussian Kernel

We then consider svm using a Gaussian function as kernel. The choice of the function can
heavily influence the outcome of the predictions since they map the samples into a much higher
dimensional space and create highly non-linear combinations of the features before fitting the
algorithm. In general this can help in the presence of “obscure” features which badly correlate
one another. In our case we hope to leverage the already good correlations we found in the eda
with the kernel trick. The implementation is done with the class svm.SVR from scikit-learn.

Parameters As we show in Appendix F.2, this particular choice of kernel leads to profoundly
different behaviour with respect to linear models: we will round the predictions to the next integer
in both datasets since the loss function strongly penalises unaligned samples. In Table 9.5 we
show the choices of the hyperparameters for the models using the Gaussian kernel. As usual the
hyperparameter C is connected to the penalty assigned to the samples outside the soft margin
boundary (see Appendix F.2) delimited by the ε. Given the presence of a non linear kernel
we have to introduce an additional hyperparameter γ which controls the width of the Gaussian
function used for the support vectors.

Results In Table 9.6 we show the accuracy of the predictions on the test sets. In the favourable
dataset we can immediately appreciate the strong linear dependence of h1,1 on the number of
projective spaces: even though there are a few non favourable embeddings in the dataset, the
kernel trick is able to map them in a better representation and improve the accuracy. The
predictions for the original dataset have also improved: they are the best results we found
using shallow learning. The predictions using only the configuration matrix matches [127] but
we can slightly improve the accuracy by using a combination of engineered features and pca.
In Figure 9.12 we show the residual plots and their histograms for the original dataset: residuals
follow peaked distributions which, in this case, do not present a second smaller peak (thus we need
to round to the next integer the predictions) and good variate distribution over the predictions.

The Gaussian kernel is also more influenced by the size of the training set. Using 50 % of the
samples as training set we witnessed a drop in accuracy of 3 % while using engineered features and

and normally sampled.
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9.5 Decision Trees

matrix num_cp eng. feat. PCA

original h1,1 70 % 63 % 66 % 72 %
h2,1 22 % 10 % 36 % 34 %

favourable h1,1 99 % 100 % 100 % 100 %
h2,1 22 % 17 % 32 % 33 %

Table 9.6: Accuracy of the Gaussian svm on the test split.

the pca, and around 1 % to 2 % in all other cases. The learning curves (presented in Figure 9.13)
show that the accuracy improves by using more data. Interestingly, it shows that using all
engineered features leads to an overfit on the training data since both Hodge numbers reach
almost 100 %, while this is not the case for h2,1. For comparison, we also display in Figure 9.14
the learning curve for the favourable dataset: this shows that predicting h1,1 accurately works
out-of-the-box.

9.5 Decision Trees

We now consider two algorithms based on decision trees: random forests and gradient boosted
trees. Decision trees are powerful algorithms which implement a simple decision rule (in the style
of an if. . . then. . . else. . . statement) to classify or assign a value to the predictions. However they
have a tendency to adapt too well to the training set and to not be robust enough against small
changes in the training data. We consider a generalisation of this algorithm used for ensemble
learning: this is a technique in ml which uses multiple estimators (they can be the same or
different) to improve the performances. We will present the results of random forests of trees
which increase the bias compared to a single decision tree, and gradient boosted decision trees,
which can use smaller trees to decrease the variance and learn better representations of the input
data by iterating their decision functions and use information on the previous runs to improve
(see Appendix F.3 for a more in-depth description).

9.5.1 Random Forests

The random forest algorithm is implemented with Scikit’s ensemble.RandomForestRegressor.

Parameters Hyperparameter tuning for decision trees can in general be quite challenging.
From the general theory on random forests (see Appendix F.3 for salient features) we can try
and look for particular shapes of the trees: this ensemble learning technique usually prefers a
small number of fully grown trees. We performed only 25 iterations of the optimisation process
due to the very long time taken to train all the decision trees.

In Table 9.7 we show the hyperparameters used for the predictions. As we can see from
n_estimator, random forests are usually built with a small number of fully grown (specified by
max_depth and max_leaf_nodes) trees (not always the case, though). In order to avoid overfit
we also tried to increase the number of samples necessary to split a branch or create a leaf node
using min_samples_leaf and min_samples_split (introducing also a weight on the samples
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Figure 9.12: Plots of the residual errors for the svm with Gaussian kernel.
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Figure 9.13: Learning curves for the svm with Gaussian kernel (original dataset), using a single
model for both Hodge numbers.

171



9.5 Decision Trees

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
training ratio

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy h11 (train)
h11 (val.)
h21 (train)
h21 (val.)

(a) input: matrix, C = 20,γ = scale, ε = 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
training ratio

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

h11 (train)
h11 (val.)
h21 (train)
h21 (val.)

(b) input: all, C = 20,γ = scale, ε = 0.1

Figure 9.14: Learning curves for the svm with Gaussian kernel (favourable dataset), using a
single model for both Hodge numbers.

in the leaf nodes specified by min_weight_fraction_leaf to balance the tree). Finally the
criterion chosen by the optimisation reflects the choice of the trees to measure the impurity of
the predictions using either the mean squared error or the mean absolute error of the predictions
(see Appendix F.3).

Results In Table 9.8 we summarise the accuracy reached using random forests of decision trees
as estimators. As we already expected, the contribution of the number of projective spaces helps
the algorithm to generate better predictions. In general, it seems that the engineered features
alone can already provide a good basis for predictions. In the case of h2,1 the introduction of
the principal components of the configuration matrix also increases the prediction capabilities.
As in most other cases we used the floor function for the predictions on the original dataset and
the rounding to next integer for the favourable one.

As usual in Figure 9.15 we show the histograms of the distribution of the residual errors and
the scatter plots of the residuals. While the distributions of the errors are slightly wider than
the svm algorithms, the scatter plots of the residual show a strong heteroscedasticity in the case
of the fit using the number of projective spaces: though quite accurate, the model is strongly
incomplete. The inclusion of the other engineered features definitely helps and also leads to
better predictions. Learning curves are displayed in Figure 9.16.

9.5.2 Gradient Boosted Trees

We used the class ensemble.GradientBoostingRegressor in scikit-learn to implement the
gradient boosted trees.

Parameters Hyperparameter optimisation has been performed using 25 iterations of the Bayes
search algorithm since by comparison the gradient boosting algorithms took the longest learning
time. We show the chosen hyperparameters in Table 9.9.
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9.5 Decision Trees

matrix num_cp eng. feat. PCA
old fav. old fav. old fav. old fav.

criterion
h1,1 mse mse mae mae mae mse mae mae
h2,1 mae mae mae mae mae mae mae mae

max_depth
h1,1 100 100 100 30 90 30 30 60
h2,1 90 100 90 75 100 100 100 60

max_leaf_nodes
h1,1 100 80 90 20 20 35 90 90
h2,1 90 100 100 75 100 60 100 100

min_samples_leaf
h1,1 1 1 1 15 1 15 1 1
h2,1 3 1 4 70 1 70 30 1

min_samples_split
h1,1 2 30 20 35 10 10 100 100
h2,1 30 2 50 45 2 100 2 100

min_weight_fraction_leaf
h1,1 0.0 0.0 0.0 1.7× 10−3 0.0 0.009 0.0 0.0
h2,1 3.0× 10−4 0.0 1.0× 10−4 0.13 0.0 0.0 0.0 0.0

n_estimators
h1,1 10 100 45 120 155 300 10 300
h2,1 190 10 160 300 10 10 10 300

Table 9.7: Hyperparameter choices of the random forest regression.

matrix num_cp eng. feat. PCA

original h1,1 55 % 63 % 66 % 64 %
h2,1 12 % 9 % 17 % 18 %

favourable h1,1 89 % 99 % 98 % 98 %
h2,1 14 % 17 % 22 % 27 %

Table 9.8: Accuracy of the random forests on the test split.
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Figure 9.15: Plots of the residual errors for the random forests.
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Figure 9.16: Learning curves for the random forest (original dataset) including outliers and using
a single model for both Hodge numbers.
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matrix num_cp eng. feat. PCA
old fav. old fav. old fav. old fav.

α
h1,1 0.4 — — — — — — —
h2,1 — 0.11 — — 0.99 — — —

criterion
h1,1 mae mae friedman_mse mae friedman_mse friedman_mse mae mae
h2,1 mae mae friedman_mse mae mae mae mae mae

learning_rate
h1,1 0.3 0.04 0.6 0.03 0.15 0.5 0.04 0.03
h2,1 0.6 0.5 0.3 0.5 0.04 0.02 0.03 0.07

loss
h1,1 huber ls lad ls ls lad ls ls
h2,1 ls huber ls ls huber ls ls lad

max_depth
h1,1 100 100 15 60 2 100 55 2
h2,1 85 100 100 30 35 60 15 2

min_samples_split
h1,1 2 30 20 35 10 10 100 100
h2,1 30 2 50 45 2 100 2 100

min_weight_fraction_leaf
h1,1 0.03 0.0 0.0 0.2 0.2 0.0 0.06 0.0
h2,1 0.0 0.0 0.16 0.004 0.0 0.0 0.0 0.0

n_estimators
h1,1 90 240 120 220 100 130 180 290
h2,1 100 300 10 20 200 300 300 300

subsample
h1,1 0.8 0.8 0.9 0.6 0.1 0.1 1.0 0.9
h2,1 0.7 1.0 0.1 0.9 0.1 0.9 0.1 0.2

Table 9.9: Hyperparameter choices of the gradient boosted decision trees.

matrix num_cp eng. feat. PCA

original h1,1 50 % 63 % 61 % 58 %
h2,1 14 % 9 % 23 % 21 %

favourable h1,1 97 % 100 % 99 % 99 %
h2,1 17 % 16 % 35 % 22 %

Table 9.10: Accuracy of the gradient boosting on the test split.

With respect to the random forests, for the gradient boosting we also need to introduce the
learning_rate (or shrinking parameter) which controls the gradient descent of the optimisation
which is driven by the choice of the loss parameters (ls is the ordinary least squares loss, lad
is the least absolute deviation and huber is a combination of the previous two losses weighted
by the hyperparameter α). We also introduce the subsample hyperparameter which chooses a
fraction of the samples to be fed into the algorithm at each iteration. This procedure has both
a regularisation effect on the trees, which should not adapt too much to the training set, and
speeds up the training (at least by a very small amount).

Results We show the results of gradient boosting in Table 9.10. As usual the linear dependence
of h1,1 on the number of projective spaces is evident and in this case also produces the best
accuracy result (using the floor function for the original dataset and rounding to the next integer
for the favourable dataset) for h1,1. h2,1 is once again strongly helped by the presence of the
redundant features. In Figure 9.17 we finally show the histograms and the scatter plots of the
residual errors for the original dataset showing that also in this case the choice of the floor
function can be justified and that the addition of the engineered features certainly improves the
overall variance of the residuals.
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Figure 9.17: Plots of the residual errors for the gradient boosted trees.
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9.6 Neural Networks

In this section we approach the problem of predicting the Hodge numbers using artificial neural
networks (ann), which we briefly review in Appendix F.4. We use Google’s Tensorflow framework
and Keras, its high-level API, to implement the architectures and train the networks [157]. We
explore different architectures and discuss the results.

Differently from the previous algorithms, we do not perform a cross-validation scoring but
we simply retain 10 % of the total set as a holdout validation set (also referred to as development
set) due to the computation power available. Thus we use 80 % of the samples for training, 10 %
for evaluation, and 10 % as a test set. For the same reason, the optimisation of the algorithm
has been performed manually.

We always use the Adam optimiser with default learning rate 10−3 to perform the gradient
descent and a fix batch size of 32. The network is trained for a large number of epochs to avoid
missing possible local optima. In order to avoid overshooting the minimum of the loss function, we
dynamically reduce the learning rate both using the Adam optimiser which implements learning
rate decay, and through the callback callbacks.ReduceLROnPlateau in Keras, which scales the
learning rate by a given factor when the monitored quantity (in our case the validation loss)
does not decrease): we choose to reduce it by 0.3 when the validation loss does not improve for
at least 75 epochs. Moreover we stop training when the validation loss does not improve during
200 epochs. We then keep only the weights of the neural networks which gave the best results.
Batch normalisation layers are used with a momentum of 0.99. Training and evaluation were
performed on a NVidia GeForce 940MX laptop GPU with 2 GB of RAM memory.

9.6.1 Fully Connected Network

First we reproduce the analysis in [127] for the prediction of h1,1.

Model The neural network presented in [127] for the regression task contains 5 hidden layers
with 876, 461, 437, 929 and 404 units (Figure 9.18a). All layers (including the output layer)
are followed by a ReLU activation and by a dropout layer with a rate of 0.2072. This network
contains roughly 1.58× 106 parameters.

The other hyperparameters (like the optimiser, batch size, number of epochs, regularisation,
etc.) are not mentioned. In order to reproduce the results, we fill the gap as follows:

• Adam optimiser with batch size of 32;

• maximal number epochs of 2000 without early stopping;69

• we implement learning rate reduction by 0.3 after 75 epochs without improvement of the
validation loss;

• no `1 or `2 regularisation;

• a batch normalisation layer [175] after each fully connected layer.
69It took around 20 minutes to train the model.
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(b) Loss function on the original dataset.

Figure 9.18: Fully connected network for the prediction of h1,1. For simplicity we do not draw
the dropout and batch normalisation layers present after every densely connected layer.

training data
10 % 30 % 50 % 70 % 90 %

regression 58 % 68 % 72 % 75 % 75 %
classification 68 % 78 % 82 % 85 % 88 %

Table 9.11: Accuracy (approximate) for h1,1 obtained in [127, Figure 1].

Results We reproduce the results from [127], which are summarised in Table 9.11. The training
process was very quick and the loss function is reported in Figure 9.18b. We obtain an accuracy
of 77 % both on the development and the test set of the original dataset with 80 % of training
data (see Table 9.12). Using the same network we also achieve 97 % of accuracy in the favourable
dataset.

9.6.2 Convolutional Network

We then present a new purely convolutional neural network (cnn) to predict h1,1 and h2,1,
separately or together. The advantage of such networks is that it requires a smaller number of
parameters and is insensitive to the size of the inputs. The latter point can help to work without
padding the matrices (of the same or different representations), but the use of a flatten layer
removes this benefit.

Model The neural network has 4 convolutional layers. They are connected to the output
layer with a intermediate flatten layer. After each convolutional layer, we use the ReLU ac-
tivation function and a batch normalisation layer (with momentum 0.99). Convolutional layers
use the padding option same and a kernel of size (5, 5) to be able to extract more meaningful
representations of the input, treating the configuration matrix somewhat similarly to an object
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Figure 9.19: Pure convolutional neural network for redicting h1,1. It is made of 4 modules
composed by convolutional layer, ReLU activation, batch normalisation (in this order), followed
by a dropout layer, a flatten layer and the output layer (in this order).

segmentation task [176]. The output layer is also followed by a ReLU activation in order to force
the prediction to be a positive number. We use a dropout layer only after the convolutional
network (before the flatten layer) but we introduced a combination of `2 and `1 regularisation
to reduce the variance. The dropout rate is 0.2 in the original dataset and 0.4 for the favourable
dataset, while `1 and `2 regularisation are set to 10−5. We train the model using the Adam
optimiser with a starting learning rate of 10−3 and a mini-batch size of 32.

The architecture is more similar in style to the old LeNet presented for the first time in
1998 by Y. LeCun during the ImageNet competition. In our implementation however we do not
include the pooling operations and swap the usual order of batch normalisation and activation
function by first putting the ReLU activation. In Figure 9.19 we show the model architecture in
the case of the original dataset and of predicting h1,1 alone. The convolution layers have 180,
100, 40 and 20 units each.

Results With this setup, we were able to achieve an accuracy of 94 % on both the development
and the test sets for the “old” database and 99 % for the favourable dataset in both validation
and test sets (results are briefly summarised in Table 9.12). We thus improved the results of the
densely connected network and proved that convolutional networks can be valuable assets when
dealing with the extraction of a good representation of the input data: not only are convolutional
networks very good at recognising patterns and rotationally invariant objects inside pictures or
general matrices of data, but deep architectures are also capable of transforming the input using
non linear transformations [177] to create new patterns which can then be used for predictions.

Even though the convolution operation is very time consuming another advantage of cnn is
the extremely reduced number of parameters with respect to fully connected (fc) networks.70

The architectures we used were in fact made of approximately 5.8× 105 parameters: way less
70It took around 4 hours of training (and no optimisation) for each Hodge number in each dataset. The use

use of modern generation GPUs with tensor cores can however speed up the training by order of magnitudes.
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(a) Loss function of h1,1.
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(b) Loss function of h2,1.

Figure 9.20: Loss function of the networks for the prediction of h1,1 and h2,1. We can see that the
validation loss flattens out while the training loss keeps decreasing: we took care of the overfit
by using the weights of the network when the validation loss reached its minimum. The use of
mini-batch gradient descent also completely spoils the monotonicity of the loss functions which
can therefore increase moving from one epoch to the other, while keeping the descending trend
for most of its evolution.

than half the number of parameters used in the fc network. Ultimately, this leads to a smaller
number of training epochs necessary to achieve good predictions (see Figure 9.20).

Using this classic setup we tried different architectures. The network for the original dataset
seems to work best in the presence of larger kernels, dropping by roughly 5 % in accuracy when a
more “classical” 3× 3 kernel is used. We also tried to use to set the padding to valid, reducing
the input from a 12 × 15 matrix to a 1 × 1 feature map over the course of 5 layers with 180,
100, 75, 40 and 20 filters. The advantage is the reduction of the number of parameters (namely
∼ 4.9× 105) mainly due to the small fc network at the end, but accuracy dropped to 87 %. The
favourable dataset seems instead to be more independent of the specific architecture retaining
accuracy also with smaller kernels.

The analysis for h2,1 follows the same prescriptions. For both the original and favourable
dataset, we opted for 4 convolutional layers with 250, 150, 100 and 50 filters and no fc network
for a total amount of 2.1× 106 parameters. In this scenario we were able to achieve 36 % of
accuracy in the development set and 40 % on the test set for h2,1 in the “old” dataset and 31 %
in both development and test sets in the favourable set (see Table 9.12). The learning curves
for both Hodge numbers are given in Figure 9.21. This model uses the same architecture as the
one for predicting h1,1 only, which explains why it is less accurate as it needs to also adapt to
compute h2,1 (see for example Figure 9.25).

9.6.3 Inception-like Neural Network

In the effort to find a better architecture, we took inspiration from Google’s winning cnn in the
annual ImageNet challenge in 2014 [166]–[168]. The architecture in its original presentation uses

180

https://image-net.org/challenges/LSVRC/


9.6 Neural Networks

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
training ratio

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

h11 (train)
h11 (val.)
h21 (train)
h21 (val.)

Figure 9.21: Learning curves for the classic convolutional neural network (original dataset), using
a single model for both Hodge numbers.

inception modules in which separate 1×1, 3×3 and 5×5 convolutions are performed side by side
(together with max pooling operations) before recombining the outputs. The modules are then
repeated until the output layer is reached. This has two evident advantages: users can avoid
taking a completely arbitrary decision on the type of convolution to use since the network will
take care of it tuning the weights, and the number of parameters is extremely restricted as the
network can learn complicated functions using fewer layers. As a consequence the architecture
of such models can be made very deep while keeping the number of parameters contained, thus
being able to learn very difficult representations of the input and producing accurate predictions.
Moreover while the training phase might become very long due to the complicated convolutional
operations, the small number of parameters is such that predictions can be generated in a very
small amount of time making inception-like models extremely appropriate whenever quick pre-
dictions are necessary. Another advantage of the architecture is the presence of different kernel
sizes inside each module: the network automatically learns features at different scales and dif-
ferent positions thus leveraging the advantages of a deep architecture with the ability to learn
different representations at the same time and compare them.

Model In Figure 9.22 we show a schematic of our implementation. Differently from the image
classification task, we drop the pooling operation and implement two side-by-side convolution
over rows (12× 1 kernel for the original dataset, 15× 1 for the favourable) and one over columns
(1 × 15 and 1 × 18 respectively).71 We use same as padding option. The output of the
convolutions are then concatenated in the filter dimensions before repeating the “inception”
module. The results from the last module are directly connected to the output layer through a
flatten layer. In both datasets we use batch normalisation layers (with momentum 0.99) after

71Pooling operations are used to shrink the size of the input. Similar to convolutions, they use a window of a
given size to scan the input and select particular values inside. For instance, we could select the average value
inside the small portion selected, performing an average pooling operation, or the maximum value, a max pooling
operation. This usually improves image classification and object detection tasks as it can be used to sharpen
edges and borders.
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Figure 9.22: In each concatenation module (here shown for the “old” dataset) we operate with
separate convolution operations over rows and columns, then concatenate the results. The overall
architecture is composed of 3 “inception” modules made by two separate convolutions, a con-
catenation layer and a batch normalisation layer (strictly in this order), followed by a dropout
layer, a flatten layer and the output layer with ReLU activation (in this order).

each concatenation layer and a dropout layer (with rate 0.2) before the fc network.72

For both h1,1 and h2,1 (in both datasets) we used 3 modules made by 32, 64 and 32 filters
for the first Hodge number, and 128, 128 and 64 filters for the second. We also included `1 and
`2 regularisation of magnitude 10−4 in all cases. The number of parameters was thus restricted
to 2.3× 105 parameters for h1,1 in the original dataset and 2.9× 105 in the favourable set, and
1.1× 106 parameters for h2,1 in the original dataset and 1.4× 106 in the favourable dataset. In
all cases the number of parameters has decreased by a significant amount: in the case of h1,1

they are roughly 1
3 of the parameters used in the classical cnn and around 1

6 of those used in
the fc network. During training we used the Adam gradient descent with an initial learning
rate of 10−3 and a batch size of 32. The callbacks helped to contain the training time (without
optimisation) under 5 hours for each Hodge number in each dataset.

Results With these architectures we were able to achieve more than 99 % of accuracy for h1,1

in the test set (same for the development set) and 50 % of accuracy for h2,1 (a slightly smaller
value for the development set). We report the results in Table 9.12.

We therefore increased the accuracy for both Hodge numbers (especially h2,1) compared to
what can achieve a simple sequential network, while at the same time reducing significantly the
number of parameters of the network.73 This increases the robustness of the method and its

72The position of the batch normalisation is extremely important as the parameters computed by such layer
directly influence the following batch. We however opted to wait for the scan over rows and columns to finish
before normalising the outcome to avoid biasing the resulting activation function.

73In an attempt to improve the results for h2,1 even further, we also considered to first predict ln
(
1 + h2,1

)
and
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0 200 400 600 800 1000 1200 1400
epochs

100

101

102

lo
ss

Loss Function
loss
val_loss

0 200 400 600 800 1000 1200 1400
epochs

10 6

10 5

10 4

10 3

le
ar

ni
ng

 ra
te

Learning Rate

(b) Loss of h2,1.

Figure 9.23: The loss functions of “inception” network for h1,1 and h2,1 in the original data-
set show that the number of epochs required for training is definitely larger than for simpler
architectures, despite the reduced number of parameters.

generalisation properties.

In Figure 9.24 we show the distribution of the residuals and their scatter plot. The distri-
bution of the errors does not present pathological behaviour and the variance of the residuals is
well distributed over the predictions. In fact this neural network is much more powerful than the
previous networks we considered, as can be seen by studying the learning curves in Figure 9.25.
When predicting only h1,1 it surpasses 97 % accuracy using only 30 % of the data for training.
While it seems that the predictions suffer when using a single network for both Hodge numbers
this remains much better than any other algorithm. It may seem counter-intuitive that con-
volutions work well on this data since they are not translation or rotation invariant but only
permutation invariant. However convolution alone is not sufficient to ensure invariances under
these transformations but it must be supplemented with pooling operations [142] which we do
not use. Moreover convolution layers do more than just taking translation properties into ac-
count: they allow to make highly complicated combinations of the inputs and to share weights
among components to find subtler patterns than standard fully connected layers. This network
is more studied in more details in [4].

DenseNet classic ConvNet inception ConvNet
old fav. old fav. old fav.

h1,1 77 % 97 % 94 % 99 % 99 % 99 %
h2,1 - - 36 % 31 % 50 % 48 %

Table 9.12: Accuracy using rint rounding on the predictions of the ANNs on h1,1 and h2,1 on
the test set.

then transform it back. However, the predictions dropped by almost 10 % in accuracy even using the “inception”
network: the network seems to be able to approximate quite well the results (not better nor worse than simply
h2,1) but the subsequent exponentiation is taking apart predictions and true values. Choosing a correct rounding
strategy then becomes almost impossible.
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Figure 9.24: Histograms of the residual errors and residual plots of the Inception network.
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Figure 9.25: Learning curves for the Inception neural network (original dataset).
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9.6.4 Boosting the Inception-like Model

To improve further the accuracy of h2,1 we modify the network by adding engineered features as
auxiliary inputs. This can be done by adding inputs to the inception neural network and merging
the different branches at different stages. There are two possibilities to train such a network:
train the whole network directly or train the inception network alone, then freeze its weights and
connect it to the additional inputs, training only the new layer. We found that the architectures
we tried did not improve the accuracy, but we briefly describe our attempts for completeness. We
focused in particular on the number of projective spaces, the vector of dimensions of the projective
spaces and the vector of dimensions of the principal cohomology group) and predicting h1,1 and
h2,1 at the same time. The core of the neural network is the Inception network described earlier
in Section 9.6.3. The engineered features are processed using fully connected layers and merged
to the predictions from the Inception branch using a concatenation layer. Obviously output
layers for h1,1 and h2,1 can be located on different branches which allow for different processing
of the features.

As mentioned earlier, a possible approach is to first train the Inception branch alone, before
freezing its weights and connecting it to the rest of the network. This can prevent spoiling the
already good predictions and speed up the new learning process. This is a common technique
called transfer learning: we can use a model previously trained on a slightly different task and
use its weights as part of the new architecture. Our trials involved shallow fully connected layers
(1 to 3 layers with 10 to 150 units) between the engineered features and after the concatenation
layer. Since the eda analysis in Section 9.1 shows a correlation between both Hodge numbers,
we tried architectures where the result for h1,1 is used to predict h2,1. For the training phase
we also tried an alternative to the canonical choice of optimising the sum of the losses. We first
train the network and stop the process when the validation loss for h1,1 does not longer improve,
load back the best weights and save the results, keep training and stop when the loss for h2,1

reaches a plateau.

With this setup we were able to slightly improve the predictions of h1,1 in the original dataset,
reaching almost 100 % of accuracy in the predictions, while the favourable dataset stayed at
around 99 % of accuracy. The only few missed predictions (4 manifolds out of 786 in the test set)
are in very peculiar regions of the distribution of the Hodge number. For h2,1 no improvement
has been noticed.

9.7 Ensemble Learning: Stacking

We conclude the ml analysis by describing a method very popular in ml competitions: ensem-
bling. This consists in taking several ml algorithms and combining together the predictions of
each individual model to obtain a more precise predictions. Using this technique it is possible
to decrease the variance and improve generalization by compensating weaknesses of algorithms
with strengths of others. Indeed the idea is to put together algorithms which perform best in
different zones of the label distribution in order to combine them to build an algorithm bet-
ter than any individual component. The simplest such algorithm is stacking whose principle is
summarised in Figure 9.26. First the original training set is split in two parts (not necessarily
even). Second a certain number of first-level learners is trained over the first split and used to
generate predictions over the second split. Third a “meta learner” is trained of the second split

185



9.7 Ensemble Learning: Stacking

training set test set

training set 1 training set 2 test set

training

1st level learners

predictions predictions

test set 2
(1st level labels)

test set 1
(1st level labels)

predictions

meta learner

test set 1
(1st level labels)

Figure 9.26: Stacking ensemble learning with two level learning.

to combine the predictions from the first-level learners. Predictions for the test set are obtained
by applying both level of models one after the other.

We have selected the following models for the first level: linear regression, svm with the
Gaussian kernel, the random forest and the “inception” neural network. The meta-learner is
a simple linear regression with `1 regularisation (Lasso). The motivations for the first-level
algorithms is that stacking works best with a group of algorithms which work in the most diverse
way among them. Also in this case, we use a cross-validation strategy with 5 splits for each level
of the training: from 90 % of total training set, we split into two halves containing each 45 % of
the total samples and then use 5 splits to grade the algorithm, thus using 9 % of each split for
cross correlation at each iteration) and the Bayes optimisation for all algorithms but the ann
(50 iterations for elastic net, svm and lasso and 25 for the random forests). The ann was trained
using a holdout validation set containing the same number of samples as each cross-validation
fold, namely 9 % of the total set. The accuracy is then computed as usual using numpy.rint
for svm, neural networks, the meta learner and h1,1 in the original dataset in general, and
numpy.floor in the other cases.

In Table 9.13, we show the accuracy of the ensemble learning. We notice that accuracy
improves slightly only for h2,1 (original dataset) compared to the first-level learners. However
this is much lower than what has been achieved in Section 9.6.3. The reason is that the learning
suffers from the reduced size of the training set. Another reason is that the different algorithms
may perform similarly well in the same regions.
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h1,1 h2,1

old fav. old fav.

1st level

en 65 % 100 % 19 % 19 %
svm 70 % 100 % 30 % 34 %
rf 61 % 98 % 18 % 24 %

ann 98 % 98 % 33 % 30 %
2nd level Lasso 98 % 98 % 36 % 33 %

Table 9.13: Accuracy of the first and second level predictions of the stacking ensemble for elastic
net regression (en), support vector with rbf kernel (svm), random forest (rf) and the artificial
neural network (ann) as first level learners and lasso regression as meta learner.

10 Summary and Conclusion

We have proved that a proper data analysis can lead to improvements in predictions of Hodge
numbers h1,1 and h2,1 for CICY 3-folds. Moreover more complex neural networks inspired by
computer vision applications [166]–[168] allowed us to reach close to 100 % accuracy for h1,1 with
much less data and less parameters than in previous works. While our analysis improved the
accuracy for h2,1 over what can be expected from a simple sequential neural network, we barely
reached 50 %. Hence it would be interesting to push further our study to improve the accuracy.
Possible solutions would be to use a deeper Inception network, find a better architecture including
engineered features, and refine the ensembling.

Another interesting question to probe is related to representation learning, i.e. finding a
better description of the CY. Indeed one of the main difficulty in making predictions is the
redundancy of the possible descriptions of a single manifold. For instance we could try to set
up a map from any matrix to its favourable representation (if it exists). This could be the basis
for the use of adversarial networks [178] capable of generating the favourable embedding from
the first. Or on the contrary one could generate more matrices for the same manifold in order
to increase the size of the training set. Another possibility is to use the graph representation of
the configuration matrix to which is automatically invariant under permutations [158] (another
graph representation has been decisive in [137] to get a good accuracy). Techniques such as
(variational) autoencoders [179], [180], cycle GAN [181], invertible neural networks [182], graph
neural networks [183], [184] or techniques from geometric deep learning [185] could be helpful.

Finally our techniques apply directly to CICY 4-folds [186], [187]. However there are many
more manifolds in this case (around 106) and more Hodge numbers, such that one can expect
to reach a better accuracy for the different Hodge numbers (the different learning curves for the
3-folds indicate that the model training would benefit from more data). Another interesting class
of manifolds to explore with our techniques are generalized CICY 3-folds [188].

These and others will indeed be ground for future investigations.
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A The Isomorphism in Details

In this appendix we explain the conventions used for SU(2) and show the details of the isomorph-
ism between SO(4) and a class of equivalence of SU(2)× SU(2).

A.1 Conventions

We parameterise SU(2) matrices U with a vector ~n ∈ R3 such that:

U(~n) = cos(2πn)12 + i
~n · ~σ

n
sin(2πn), (A.1)

where n = ‖~n‖ and 0 ≤ n ≤ 1
2 . We also identify all ~n when n = 1

2 since in this case U(~n) = −12.
The parametrisation is such that:

U∗(~n) = σ2 U(~n)σ2 = U(~̃n), (A.2)
U†(~n) = UT (~̃n) = U(−~n), (A.3)
−U(~n) = U(~̂n) (A.4)

where σ2 is the second Pauli matrix, ~̃n =
(
−n1, n2,−n3) and ~̂n = −

( 1
2 − n

)
~n
n .

The group product of two elements U(~n ◦ ~m) = U(~n) U(~m) has an explicit realisation as:

cos(2π‖~n ◦ ~m‖) = cos(2πn) cos(2πm)− sin(2πn) sin(2πm) ~n · ~m

n m
,

sin(2π‖~n ◦ ~m‖) ~n ◦ ~m

‖~n ◦ ~m‖
= cos(2πn) sin(2πm) ~m

m
+ sin(2πn) cos(2πm) ~n

n
.

(A.5)

A.2 The Isomorphism

Let I = 1, 2, 3, 4 and define:
τI = (i12, ~σ), (A.6)

where ~σ =
(
σ1, σ2, σ3) are the Pauli matrices. It is possible to show that:

(τI)† = ηIJ τ
I ,(

τI
)∗ = −σ2 τI σ2,

(A.7)

where ηIJ = diag(−1, 1, 1, 1). The following relations are then a natural consequence:

tr(τI) = 2 i δI1, (A.8)
tr(τIτJ) = 2ηIJ , (A.9)

tr
(
τI(τJ)†

)
= 2 δIJ . (A.10)

Now consider a vector in the spinor representation:

X(s) = XI τI . (A.11)
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We can recover the components using the previous properties:

XI = 1
2 δ

IJ tr
(

X(s)(τJ)†
)

= 1
2 η

IJ tr
(
X(s)τJ

)
, (A.12)

where the trace acts on the space of the τ matrices. If the vector XI is real, using (A.7) we have:

X†(s) = XI ηIJ τ
J = 1

2 tr
(
X(s)τI

)
τI ,

X∗(s) = −σ2 X(s) σ2.
(A.13)

A rotation in spinor representation is defined as:

X ′(s) = UL(~n) X(s) U†R(~m) (A.14)

and it is equivalent to:
(X ′)I = RI

J XJ (A.15)
through

RIJ = 1
2 tr
(

(τI)† UL(~n) τJ U†R(~m)
)

. (A.16)

The matrix R is the 4-dimensional rotation matrix we are looking for since:

tr
(

X ′(s) (X ′)†(s)

)
= tr

(
X(s) X†(s)

)
⇒

4∑
K=1

RIKR∗JK = δI J . (A.17)

From the second equation in (A.7) and the first equation in (A.4) we then get the reality condition
on R:

RNM = 1
2 ηNI ηMJ tr

(
τ†I UR τJ U†L

)
= 1

2 tr
(
τN UR τ

†
M U†L

)
= R∗NM . (A.18)

Furthermore the direct computation of the determinant of R using the parametrisation (A.1)
shows that det R = 1. Finally the explicit choice of the basis τ ensures R to be a real matrix
which ensures R ∈ SO(4). Since {UL, UR} and {−UL, −UR} generate the same SO(4) matrix
then the correct isomorphism takes the form:

SO(4) ∼=
SU(2)× SU(2)

Z2
. (A.19)

B The Parameters of the Hypergeometric Function

In this appendix we show the computation of the parameters of the hypergeometric functions
and their relation with the rotation parameters.

B.1 Consistency Conditions of the Monodromy Matrices

In the main text we set
D M∞ D−1 = e−2πiδ∞ L(~n∞), (B.1)
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B.2 Fixing the Parameters

where L(~n∞) ∈ SU(2). The previous equation implies(
D M∞D−1)† =

(
D M∞D−1)−1

, (B.2)

which can be rewritten as

M̃−1
∞ C†D†D C = C†D†D C M̃−1

∞ . (B.3)

As M̃∞ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements
of C†D†D C must vanish. We therefore have

|K|−2 = −C21 C∗22
C11 C∗12

= − 1
π4 |Γ (a) Γ (b) Γ (c− a) Γ (c− b)|2×

× sin(πa) sin∗(π(c− a)) (sin(πb) sin∗(π(c− b)))∗.

(B.4)

When a, b, c ∈ R this ultimately means that

sin(πa) sin(π(c− a)) sin(πb) sin(π(c− b)) < 0. (B.5)

Since the previous equation is invariant under integer shift of any of its parameters, we can
consider just the fractional parts 0 ≤ {a}, {b}, {c} < 1. In order to have U(2) monodromies
finally requires

0 ≤ {b} < {c} < {a} < 1 or 0 ≤ {a} < {c} < {b} < 1. (B.6)

Should we request U(1, 1) monodromies as in moving rotated branes then we get:

|K|−2 = C21 C∗22
C11 C∗12

. (B.7)

This would then imply

0 ≤ {c} < {a}, {b} < 1 or 0 ≤ {a}, {b} < {c} < 1. (B.8)

B.2 Fixing the Parameters

We can finally show in details the computation of the parameters of the basis of hypergeometric
functions used in the main text. The relation between these and the SU(2) matrices can be
computed requiring that the monodromies induced by the choice of the parameters equal the
monodromies produced by the rotations of the D-branes.

The monodromy in ωt−1 = 0 is simpler to compute given that we choose L(~n0) and R( ~̃m0)
to be diagonal. We impose:(1

e−2πic(L)

)
= e−2πiδ

(L)
0

(
e2πin0

e−2πin0

)
, (B.9)(1

e−2πic(R)

)
= e−2πiδ

(R)
0

(
e−2πim0

e2πim0

)
, (B.10)
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B.2 Fixing the Parameters

where n3
0 = ‖~n0‖ = n0 and m3

0 = ‖~m0‖ = m0 with 0 ≤ n0, m0 < 1 due to the conventions (2.61)
and (2.62). We thus have:

δ
(L)
0 = n0 + k

δ
(L)
0

, k
δ

(L)
0
∈ Z,

c(L) = 2n0 + kc, kc ∈ Z.
(B.11)

Since the determinant of the right hand side is e−4πiδ
(L)
0 , the range of definition of δ(L)

0 is
α ≤ δ(L)

0 ≤ α + 1
2 . Given that 0 ≤ n0 < 1

2 we simply take α = 0 and set δ(L)
0 = n0. Analogous

results hold in the right sector. Furthermore from the third equation in (2.54) and from the first
equation in (B.11) we can restrict:

n0 + m0 −A ∈ Z. (B.12)

We then need to find 3 equations to determine a(L), b(L) and δ(L)
∞ . After that we then fix the

remaining factors in B and
∣∣K(L)

∣∣. The equations follow from (2.55). The first two equations
for a(L), b(L) and δ(L)

∞ follow by considering the trace of (2.55):

eπi(a(L)+b(L)) cos
(
π(a(L) − b(L))

)
= e−2πiδ(L)

∞ cos(2πn∞), (B.13)

which is satisfied by:

δ(L)
∞ = −1

2(a(L) + b(L)) + 1
2k
δ

(L)
∞

, kδ∞ ∈ Z,

a(L) − b(L) = 2 (−1)p(L)
n∞ + (−1)q(L)

k
δ

(L)
∞

+ 2 k′ab, k′ab ∈ Z,
(B.14)

where p(L), q(L) ∈ {0, 1}. Notice that changing the value of p(L) corresponds to swapping a
and b: since the hypergeometric function is symmetric in those parameters we can fix p(L) = 0.
Redefining k′ we can always set q(L) = 0. We therefore have:

a(L) − b(L) = 2 n∞ + k
δ

(L)
∞

+ 2kab, kab ∈ Z. (B.15)

The allowed values for k
δ

(L)
∞

follow a construction similar to the monodromy around ωt−1 = 0.
The main difference is given by the fact that 1

2 (a(L) +b(L)) may a priori take values in an interval
of width 1. As in the previous case we have α ≤ δ(L)

∞ ≤ α+ 1
2 with α technically arbitrary. We

cannot thus choose a vanishing k
δ

(L)
∞

but we have to consider k
δ

(L)
∞

= 0, 1.

We find a third relation by considering the entry

Im
(

e+2πiδ(L)
∞ D(L) M(L)

∞

(
D(L)

)−1
)

11
= Im (L(n∞))11. (B.16)

Using

det C =
sin
(
πc(L))

sin
(
π(a(L) − b(L))

) , (B.17)

and the second equation in (B.11) and (B.15) leads to:

cos
(
π(a(L) + b(L) − c(L))

)
= (−1)

kc+k
δ

(L)
∞ cos

(
2πA(L)

)
, (B.18)
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B.3 Checking the Consistency of the Solution

where
cos
(

2πA(L)
)

= cos(2πn0) cos(2πn∞)− sin(2πn0) sin(2πn∞) n3
∞

n∞
. (B.19)

This expression is connected with rotation parameter in the third interaction point ωt+1 = 1.
In fact cos

(
2πA(L)) = cos(2πn1). We then write

a(L) + b(L) − c(L) = 2 (−1)f(L)
n1 + kc + k

δ
(L)
∞

+ 2 kabc, kabc ∈ Z, (B.20)

with f (L) ∈ {0, 1}. The request

A + B − n0 −m0 − (−1)f(L)
n1 − (−1)f(R)

m1 ∈ Z (B.21)

finally fixes the B parameter in the third equation of (2.55).

So far we can summarise the results in

a = n0 + (−1)f(L)
n1 + n∞ + ma, ma ∈ Z, (B.22)

b = n0 + (−1)f(L)
n1 − n∞ + mb, mb ∈ Z, (B.23)
c = 2 n0 + mc, mc ∈ Z, (B.24)

δ
(L)
0 = n0, (B.25)

δ(L)
∞ = −n0 − (−1)f(L)

n1 + mc + 2 mδ, mδ ∈ Z, (B.26)
A = n0 + m0 + mA, mA ∈ Z, (B.27)

B = (−1)f(L)
n1 + (−1)f(R)

m1 + mB , mB ∈ Z. (B.28)

K(L) is finally determined from(
D(L) M∞

(
D(L)

)−1
)

21
= e−2πiδ(L)

∞ (L(n∞))21, (B.29)

and get:

K(L) = − (−1)ma+mb+mc

2π2 G(a(L), b(L), c(L)) sin(2πn0) sin(2πn∞)n1
∞ + i n2

∞
n∞

, (B.30)

where G(a, b, c) = Γ (1− a) Γ (1− b) Γ (a + 1− c) Γ (b + 1− c).

B.3 Checking the Consistency of the Solution

We check the consistency condition (B.6) using (A.5). The result is(
K(L)

)−1
= (−1)ma+mb+mc

2π2 G(1− a(L), 1− b(L), 2− c(L))

× sin(2πn0) sin(2πn∞) n1
∞ − in2

∞
n∞

,

(B.31)

where the function G(a, b, c) was defined at the end of the previous section. Compatibility
with (B.30) requires

(n1
∞)2 + (n2

∞)2

n2
∞

= −4sin(πa) sin(π(c− a)) sin(πb) sin(π(c− b))
sin2(πc) sin2(π(a− b))

. (B.32)
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We can then rewrite (B.19) as

(n3
∞)2

n2
∞

= (cos(π(a− b)) cos(πc)− cos(π(a + b− c)))2

sin2(πc) sin2(π(a− b))
. (B.33)

It is then possible to verify that the sum of the left and right hand sides of (B.32) and the last
equation are equal to 1. The same consistency check can also be performed by computing K(L)

from (
D(L) M∞

(
D(L)

)−1
)

12
= e−2πiδ(L)

∞ (L(n∞))12, (B.34)

instead of (B.29).

C Reflection Conditions on the Vacuum

We provide details on how (3.171) can be computed. First we introduce the projector of positive
frequency and negative frequency modes for the NS fermion as

P (+, 0)(z, w) = +1
z − w

, |z| > |w| (C.1)

P (−, 0)(z, w) = −1
z − w

, |z| < |w|, (C.2)

such that ∮
|z|>|w|

dw

2πi
P (+, 0)(z, w)Ψ(0)(0) = Ψ(0, +)(z), (C.3)

and similarly for the negative frequency modes. Likewise we introduce the projectors for the
field with defects as

P (+)(z, w) =
P
(
z;
{

x(t), E(t)
})

P
(
w;
{

x(t), −E(t)
})

z − w
, |z| > |w| (C.4)

P (−)(z, w) = −
P
(
z;
{

x(t), E(t)
})

P
(
w;
{

x(t),−E(t)
})

z − w
, |z| < |w|, (C.5)

with P
(
z;
{

x(t), E(t)
})

=
N∏

t=1

(
1− z

x(t)

)E(t)
as in the main text.

We then compute(
P (+) P (+, 0)

)
(z, w) =

∮
|z|>|ζ|>|w|

dz

2πi
P (+)(z, ζ) P (+, 0)(ζ, w) = P (+, 0)(z, w)

(
P (+) P (−, 0)

)
(z, w) =

P
(
z;
{

x(t), E(t)
})

P
(
w;
{

x(t), −E(t)
})
− 1

z − w
.

(C.6)

The last equation is valid when M =
N∑

t=1
E(t) ≤ 0 and for |z| and |w| arbitrary. Specializing the

previous expressions to Ψ(out)(z), we need to constrain |z| > x(1) and |w| > x(1).
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Finally the vacuum in presence of defects can be described by

Ψ(+)(z)
∣∣∣Ω{x(t), E(t), E(t)}

〉
=
(

P (+) Ψ
)

(z)
∣∣∣Ω{x(t), E(t), E(t)}

〉
=
(

P (+) Ψ(out)
)

(z)
∣∣∣Ω{x(t), E(t), E(t)}

〉
=
{(

P (+) P (+, 0) Ψ(out)
)

(z)

+
(

P (+) P (−, 0) Ψ(out)
)

(z)
} ∣∣∣Ω{x(t), E(t), E(t)}

〉
= 0,

(C.7)

where we assumed |z| > x(1). The expression finally becomes (3.171).
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D Tensor Wave Functions on NBO

For the sake of completeness we report the expression of the full nbo tensor wave function. In
what follows L = l

k+
. We have

Su u

Su v

Su z

Su i

Sv v

Sv z

Sv i

Sz z

Sz i

Si i


=
{
Su u



1
0
0
0
0
0
0
0
0
0


+ Su v



i
k+ u + L2

∆2 u2

1
L
0
0
0
0
0
0
0


+ Su z



2 L
∆u
0
∆u
0
0
0
0
0
0
0


+ Su i



0
0
0
1
0
0
0
0
0
0



+ Sv v



− 3
4 k2

+ u2 + 3 i L2

2∆2 k+ u3 + L4

4∆4 u4

i
2 k+ u + L2

2∆2 u2

3 i L
2 k+ u + L3

2∆2 u2

0
1
L
0

i∆2 u
k+

+ L2

0
0


+ Sv z



3 i L
∆ k+ u2 + L3

∆3 u3

L
∆u

3 L2

2∆u + 3 i∆
2 k+

0
0
∆u
0

2∆L u
0
0



+ Sv i



0
0
0

i
2 k+ u + L2

2∆2 u2

0
0
1
0
L
0


+ Sz z



i
k+ u + L2

∆2 u2

0
L
0
0
0
0

∆2 u2

0
0


+ Sz i



0
0
0
L
∆u
0
0
0
0
∆u
0



+ Si j



0
0
0
0
0
0
0
0
0
δij



}
φ{k+, l, ~k, r}.

(D.1)
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E Overlap of Second Level Massive States on NBO

We report the full expression of the overlap with two derivatives considered in the main text. It
corresponds to the colour ordered amplitude of two tachyons and one level-2 massive state:

K = N 2
∫

dDx
√
−det g

×

[
u−3 s

(−3)
{S};{k(i) +, l(i), ~k(i), r(i)} + u−2 s

(−2)
{S};{k(i) +, l(i), ~k(i), r(i)}

+ u−1 s
(−1)
{S};{k(i) +, l(i), ~k(i), r(i)} + s

(0)
{S};{k(i) +, l(i), ~k(i), r(i)}

+ u s
(1)
{S};{k(i) +, l(i), ~k(i), r(i)}

] 3∏
j=1

φ{k(j) +, l(j), ~k(j), r(j)}

(E.1)

where i = 1, 2, 3 and:

s
(−3)
{S},{k(i) +, l(i), ~k(i), r(i)} =

(
−

k4
(2) + l4

(3) − 4 k3
(2) + k(3) + l(2) l3

(3)

4 k2
(2) + k4

(3) + ∆
3

−
6 k2

(2) + k2
(3) + l2

(2) l2
(3) + k4

(3) + l4
(2)

4 k2
(2) + k4

(3) + ∆
3

)
Sv v,

(E.2)

s
(−2)
{S},{k(i) +, l(i), ~k(i), r(i)} =

(
−

3i
(

k2
(2) + k(3) + l2

(3) + k3
(2) + l2

(3)

)
2 k(2) + k3

(3) + ∆

+
i
(

2 k(2) + k2
(3) + l(2) l(3) + 3 k2

(2) + k(3) + l(2) l(3)

)
k(2) + k3

(3) + ∆

−
3i
(

k3
(3) + l2

(2) + k(2) + k2
(3) + l2

(2)

)
2 k(2) + k3

(3) + ∆

)
Sv v

−

 l(3)

(
k2

(2) + l2
(3) − 3 k(2) + k(3) + l(2) l(3) + 3 k2

(3) + l2
(2)

)
k3

(3) + ∆
2

Sv z,

(E.3)

199



s
(−1)
{S},{k(i) +, l(i), ~k(i), r(i)} =

(
−
(
k(2) + l(3) − k(3) + l(2)

)2

k2
(3) + ∆

)
Su v

+
(
−

k2
(2) + l2

(3)

(
r(2) +

∥∥∥~k(2)

∥∥∥2
)

+ k2
(3) + l2

(2)

(
r(2) +

∥∥∥~k(2)

∥∥∥2
)

2 k2
(2) + k2

(3) + ∆

+
2 k3

(2) + k(3) + l(2) l(3)

k2
(2) + k2

(3) + ∆

+
3 k2

(2) + k2
(3) + ∆6 k3

(2) + k(3) + ∆3 k4
(2) + ∆

4 k2
(2) + k2

(3) +

)
Sv v

−

(
i
(

3 k(2) + k(3) + l(3) + 3 k2
(2) + l(3)

)
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F Machine Learning Algorithms

In this appendix we give a brief review and definition of the main ml algorithms used in the
text. We highlight the specific characteristics of interest in the analysis.

F.1 Linear regression

Consider a set of F features {xn} where n = 1, . . . , F . A linear model learns a function

f(xn) =
F∑

n=1
wnxn + b, (F.1)

where w and b are the weights and intercept of the fit.

One of the key assumptions behind a linear fit is the independence of the residual error
between the predicted point and the value of the model, which can therefore be assumed to be
sampled from a normal distribution peaked at the average value [145], [169]. The parameters
of the fit are then chosen to maximise their likelihood function, or conversely to minimise its
logarithm with a reversed sign (the χ2 function). A related task is to minimise the mean squared
error without assuming a statistical distribution of the residual error: ml for regression usually
implements this as loss function of the estimators. In this sense loss functions for regression
are more general than a likelihood approach but they are nonetheless related. For plain linear
regression the associated loss is:

L(w, b) = 1
2N

N∑
i=1

F∑
n=1

(
y(i) − (wnx(i)

n + b)
)2

, (F.2)

where N is the number of samples and x
(i)
n the nth feature of the i-th sample. The values of the

parameters will therefore be:
(w, b) = argmin

w, b
L(w, b). (F.3)
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This usually requires looping over all samples and all features, thus the least squares method has
a time complexity of O(F ×N): while the increase of the number of samples might be an issue,
the number of engineered features and matrix components usually does not change and does not
represent a huge effort in terms of rescaling the algorithm.

There are however different versions of possible regularisation which we might add to constrain
the parameters of the fit and avoid adapting too well to the training set. In particular we may
be interested in adding a `1 regularisation:

L1(w) =

√√√√ F∑
n=1

w2
n, (F.4)

or the `2 version:

L2(w) =
F∑

n=1
w2

n. (F.5)

Notice that in general we do not regularise the intercept. These terms can be added to the plain
loss function to try and avoid large parameters to influence the predictions and to keep better
generalisation properties:

• add both `1 and `2 regularisation (this is called elastic net):

Len(w, b; αen, L) = L(w, b) + αen · L · L1(w) + αen

2 · (1− L) · L2(w), (F.6)

• keep only `1 regularisation (i.e. the lasso regression):

Llss(w, b; αlss) = L(w, b) + αlss · L1(w), (F.7)

• keep only `2 regularisation (ridge regression):

Lrdg(w, b; αrdg) = L(w, b) + αrdg · L2(w). (F.8)

The role of the hyperparameter L is to balance the contribution of the additional terms. For
larger values of the hyperparameter α, w (and b) assume smaller values and adapt less to the
particular training set.

F.2 Support Vector Machines for Regression

This family of supervised ml algorithms were created with classification tasks in mind [189]
but have proven to be effective also for regression problems [190]. Differently from the linear
regression, instead of minimising the squared distance of each sample, the algorithm assigns a
penalty to predictions of samples x(i) ∈ RF (for i = 1, 2, . . . , N) which are further away than a
certain hyperparameter ε from their true value y, allowing however a soft margin of tolerance
represented by the penalties ζ above and ξ below. This is achieved by minimising w, b, ζ and ξ
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F.2 Support Vector Machines for Regression

in the function:74

L(w, b, ζ, ξ) = 1
2

F ′∑
n=1

w2
n + C

N∑
i=1

(
ζ(i) + ξ(i)

)

+
N∑

i=1

F ′∑
n=1

α(i)
(

y(i) − wnφn

(
x(i)
)
− b− ε− ζ(i)

)

+
N∑

i=1

F ′∑
n=1

β(i)
(

wnφn

(
x(i)
)

+ b− y(i) − ε− ξ(i)
)

−
N∑

i=1

(
ρ(i)ζ(i) + σ(i)ξ(i)

)
(F.9)

where α(i), β(i), ρ(i), σ(i) ≥ 0 such that the previous expression encodes the constraints
y(i) −

F ′∑
n=1

wnφn

(
x(i))− b ≤ ε+ ζ(i), ε ≥ 0, ζ(i) ≥ 0, i = 1, 2, . . . , N

F ′∑
n=1

wnφn

(
x(i))+ b− y(i) ≤ ε+ ξ(i), ε ≥ 0, ξ(i) ≥ 0, i = 1, 2, . . . , N

(F.10)

and where φ
(
x(i)) ∈ RF ′ is a function mapping the feature vector x(i) ∈ RF in a higher dimen-

sional space (F ′ > F ), whose interpretation will become clear in an instant. The minimisation
problem leads to 

wn −
N∑

i=1

(
α(i) − β(i))φn

(
x(i)) = 0

N∑
i=1

(
α(i) − β(i)) = 0

N∑
i=1

(
α(i) + ρ(i)) =

N∑
i=1

(
β(i) + σ(i)) = C

(F.11)

such that 0 ≤ α(i), β(i) ≤ C, ∀ i = 1, 2, . . . , N . This can be reformulated as a dual problem in
finding the extrema of α(i) and β(i) in

W (α,β) = 1
2

N∑
i,j=1

θ(i)θ(j)K(x(i), x(j))− ε
N∑

i=1

(
α(i) + β(i)

)
+

N∑
i=1

y(i)θ(i), (F.12)

where θ = α − β are called dual coefficients (accessible through the attribute dual_coef_ of

svm.SVR in scikit-learn) and K
(
x(i), x(j)) =

F ′∑
n=1

φn

(
x(i))φn

(
x(j)) is the kernel function. No-

tice that the Lagrange multipliers α(i) and β(i) are non vanishing only for particular sets of
vectors l(i) which lie outside the ε dependent bounds of (F.10) and operate as landmarks for
the others. They are called support vectors (accessible using the attribute support_vectors_
in svm.SVR), hence the name of the algorithm. There can be at most N when ε → 0+. As a

74In a classification task the training objective would be the minimisation of the opposite of the log-likelihood
function of predicting a positive class, that is y(i)

(
wnφn

(
x(i)
)

+ b
)
, which should equal the unity for good

predictions (we can consider ε = 1), instead of the regression objective y(i) − wnφn

(
x(i)
)
− b. The differences

between svm for classification purposes and regression follow as shown.
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consequence any sum involving α(i) or β(i) can be restricted to the subset of support vectors.
Using the kernel notation, the predictions will therefore be

y
(i)
pred = ypred

(
x(i)
)

=
F ′∑

n=1
wnφn

(
x(i)
)

+ b =
∑
a∈A

θ(a)K
(

x(i), l(a)
)

+ b, (F.13)

where A ⊂ {1, 2, . . . , N} is the subset of labels of the support vectors.

In Section 9.4 we consider two different implementations of the svm algorithm:

• the linear kernel, namely the case when K ≡ id and the loss, in the scikit-learn imple-
mentation of svm.LinearSVR, can be simplified to

L(w, b) = C
N∑

i=1

F ′∑
n=1

max
(

0,
∣∣∣y(i) − wnφn

(
x(i) − b

)∣∣∣− ε)+ 1
2

F ′∑
n=1

w2
j , (F.14)

without resolving to the dual formulation of the problem.

• the Gaussian kernel (called rbf, from radial basis function) in which

K
(

x(i), l(a)
)

= exp
(
−γ

F∑
n=1

(
x(i)

n − l(a)
n

)2
)

. (F.15)

From the definition of the loss function in (F.9) and the kernels, we can appreciate the role
of the main hyperparameters of the algorithm. While the interpretation of ε is straightforward
as the margin allowed without penalty for the prediction, γ represents the width of the normal
distribution used to map the features in the higher dimensional space. Furthermore, C plays a
similar role to the l2 additional term in (F.8) by controlling the entity of the penalty for samples
outside the ε-dependent bound, however its relation to the linear regularisation is αridge = C−1,
thus C > 0 by definition.

Given the nature of the algorithm, support vectors are powerful tools which usually grant
better results in both classification and regression tasks with respect to logistic and linear re-
gression, but they scale poorly with the number of samples used during training. In particular
the time complexity is at worst O

(
F ×N3) due to the quadratic nature of (F.12) and the com-

putation of the kernel function for all samples: for large datasets (N & 104) they are usually
outperformed by neural networks.75

F.3 Decision Trees, Random Forests and Gradient Boosting

Decision trees are supervised ml algorithms which model simple decision rules based on the input
data [191], [192]. They are informally referred to with the acronym CART (as in Classification
And Regression Trees) and their name descends from the binary tree structure coming from such
decision functions separating the input data at each iteration (node), thus creating a bifurcating

75In general it is plausible that the time complexity is O
(

F ×N2
)
based on good implementations of caching

in the algorithm.
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structure with branches (the different paths, or decisions made) and leaves (the samples in each
branch): the basic idea behind them is an if. . . then. . . else structure. In scikit-learn this is
implemented in the classes tree.DecisionTreeClassifier and tree.DecisionTreeRegressor.

The idea behind it is to take input samples x(i) ∈ RF (for i = 1, 2, . . . , N) and partition
the space in such a way that data with the same label y(i) ∈ R is on the same subset of
samples (while for classification this may be natural to visualise, for regression this amounts to
approximate the input data with a step function whose value is constant inside the partition).
Let in fact j = 1, 2, . . . , F be a feature and x

(i)
j the corresponding value for the sample i, at each

node n of the tree we partition the set of input dataMn into two subsets:

M[1]
n (tj, n) =

{(
x(i), y(i)

)
∈ RF ×R | x

(i)
j < tj, n ∀i ∈ An

}
,

M[2]
n (tj, n) =Mn \M[1]

n (tj, n),
(F.16)

where An is the full set of labels of the data samples in the node n and tj, n ∈ R is a threshold
value for the feature j at node n.

The measure of the ability of the split to reach the objective (classifying or creating a re-
gression model to predict the labels) is modelled through an impurity function (i.e. the measure
of how often a random data point would be badly classified or how much it would be badly
predicted). Common choices in classification tasks are the Gini impurity, a special quadratic
case of the Tsallis entropy (which in turn is a generalisation of the Boltzmann-Gibbs entropy,
recovered as the first power of the Tsallis entropy) and the information theoretic definition of
the entropy. In regression tasks it is usually given by the l1 and l2 norms of the deviation from
different estimators (mean and median) for each node n:

• mean absolute error

H [l]
n (x; tj, n) = 1∣∣∣M[l]

n (tj, n)
∣∣∣
∑

i∈A
[l]
n

∣∣∣y(i) − ỹ
[l]
pred, n(x)

∣∣∣, (
x(i), y(i)

)
∈Mn(tj, n), (F.17)

• mean squared error :

H [l]
n (x; tj, n) = 1∣∣∣M[l]

n (tj, n)
∣∣∣
∑

i∈A
[l]
n

(
y(i) − ȳ

[l]
pred, n(x)

)2
,
(

x(i), y(i)
)
∈Mn(tj, n), (F.18)

where
∣∣∣M[l]

n (tj, n)
∣∣∣ is the cardinality of the setM[l]

n (tj, n) for l = 1, 2 and

ỹ
[l]
pred, n(x) = median

i∈A
[l]
n

ypred

(
x(i)
)

, ȳ
[l]
pred, n(x) = 1∣∣∣A[l]

n

∣∣∣
∑

i∈A
[l]
n

ypred

(
x(i)
)

, (F.19)

where A
[l]
n ⊂ An are the subset of labels in the left and right splits (l = 1 and l = 2, that is) of

the node n.

The full measure of the impurity of the node n and for a feature j is then:

Gj, n(M; tj, n) =

∣∣∣M[1]
n (tj, n)

∣∣∣
|Mn|

H [1]
n (x; tj, n) +

∣∣∣M[2]
n (tj, n)

∣∣∣
|Mn|

H [2]
n (x; tj, n), (F.20)

205



F.3 Decision Trees, Random Forests and Gradient Boosting

from which we select the parameters

t̂j, n = argmin
tj, n

Gn(Mn; tj, n). (F.21)

We then recurse over allM[l]
n

(
t̂j, n

)
(for l = 1, 2) until we reach the maximum allowed depth of

the tree (at most |Mn| = 1).

Other than just predicting a class or a numeric value, decision trees provide a criterion
to assign the importance of each feature appearing in the nodes. The implementation of the
procedure can however vary between different libraries: in scikit-learn the importance of a
feature is computed by the total reduction in the objective function due to the presence of the
feature, normalised over all nodes. Namely it is defined as the difference between the total
impurity normalised by the total amount of samples in the node and the sum of the separate
impurities of the left and right split normalised over the number of samples in the respective splits,
summed over all the nodes. Thus features with a high variable ranking (or variable importance)
are those with a higher impact in reducing the loss of the algorithm and can be expected to
be seen in the initial branches of the tree. A measure of the variable importance is in general
extremely useful for feature engineering and feature selection since it gives a natural way to pick
features with a higher chance to provide a good prediction of the labels.

By nature decision trees have a query time complexity of O(log(N)) as most binary search
algorithms. However their definition requires running over all F features to find the best split
for each sample thus increasing the time complexity to O(F ×N log(N)). Summing over all
samples in the whole node structure leads to the worst case scenario of a time complexity
O
(
F ×N2 log(N)

)
. Well balanced trees (that is, nodes are approximately symmetric with the

same amount of data samples inside) can usually reduce that time by a factor N , but it may not
always be the case.

Decision trees have the advantage to be very good at classifying or creating regression relations
in the presence of “well separable” data samples and they usually provide very good predictions
in a reasonable amount of time (especially when balanced). However if F is very large, a small
variation of the data will almost always lead to a huge change in the decision thresholds and they
are usually prone to overfit. There are however smart ways to compensate this behaviour based
on ensemble learning such as bagging and boosting as well as pruning methods such as limiting
the depth of the tree or the number of splits and introducing a dropout parameter to remove
certain nodes of the tree.76 Also random forests of trees provide a variable ranking system by
averaging the importance of each feature across all base estimators in the bagging aggregator.

As a reference, random forests of decision trees (as in ensemble.RandomForestRegressor
in scikit-learn) are ensemble learning algorithms based on fully grown (deep) decision trees.
They were created to overcome the issues related to overfitting and variability of the input data
and are based on random sampling of the training data [193]. The idea is to take K random
partitions of the training data and train a different decision tree for each of them and combine the
results: for a classification task this would resort to averaging the a posteriori (or conditional)
probability of predicting the class c given an input x (i.e. the Bayesan probability P (c | x)) over

76The term bagging comes from the contraction of bootstrap and aggregating: predictions are in fact made over
randomly sampled partitions of the training set with substitution (i.e. samples can appear in different partitions,
known as bootstrap approach) and then averaged together (aggregating). Random forests are an improvement to
this simple idea and work best for decision trees: while it is possible to bag simple trees and take their predictions,
using the random subsampling as described usually leads to better performance and results.
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the K trees, while for regression this amount to averaging the predictions of the trees y
(i) {k}
pred, n̂

where k = 1, 2, . . . , K and n̂ is the final node (i.e. the node containing the final predictions).
This defines what has been called a random forest of trees which can usually help in improving
the predictions by reducing the variance due to trees adapting too much to training sets.

Boosting methods are another implementation of ensemble learning algorithms in which more
weak learners, in this case shallow decision trees, are trained over the training dataset [194], [195].
In general parameters t̂j, n in (F.21) can be approximated by an expansion

tj, n(x) =
M∑

m=0
t
{m}
j, n (x) =

M∑
m=0

β
{m}
j, n g(x; a

{m}
j, n ), (F.22)

where g(x; a
{m}
j, n ) are called base learners and M is the number of iterations.77 The values

of a
{m}
j, n and β{m}j, n are enough to specify the value of tj, n(x) and can be compute by iterating

(F.21): (
a
{m}
j, n , β

{m}
j, n

)
= argmin
{aj, n;βj, n}

Gj, n

(
Mn; t

{m−1}
j, n (x) + βj, ng(x; aj, n)

)
. (F.23)

The specific case of boosted trees is simpler since the base learner predicts a constant value
g
(

x; a
{m}
j, n

)
, thus (F.23) simplifies to

γ
{m}
j, n = argmin

γj, n

Gj, n

(
Mn; t

{m−1}
j, n (x) + γj, n

)
. (F.24)

Ultimatelythe value of the parameters in (F.22) are updated using gradient descent as

t
{m}
j, n (x) = t

{m−1}
j, n (x) + νγ{m}j, n , (F.25)

where 0 ≤ ν ≤ 1 is the learning rate which controls the magnitude of the update. Through this
procedure, boosted trees can usually vastly improve the predictions of very small decision trees by
increasing variance over bias. Another way to prevent overfitting the training set is to randomly
subsample the features vector by taking a subset of them (in scikit-learn it is represented as
a percentage of the total number of features). Moreover scikit-learn introduces various ways
to control the loss of gradient boosting: apart from the aforementioned least squares and least
absolute deviation, we can have hybrid versions of these such as the huber loss which combines
the two previous losses with an additional hyperparameter α [196]. While more implementations
are present, also the boosted trees provide a way to measure the importance of the variables as
any decision tree algorithm.

F.4 Artificial Neural Networks

ann are a state of the art algorithm in ml. They usually outperform any other algorithm in very
large datasets (the size of our dataset is roughly at the threshold) and can learn very complicated

77Different implementations of the algorithm refer to the number of iterations in different way. For instance
scikit-learn calls them n_estimators in the class ensemble.GradientBoostingRegressor in analogy to the
random forest where the same name is given to the number of trained decision trees, while XGBoost prefers
num_boost_rounds and num_parallel_tree to name the number of boosting rounds (the iterations) and the
number of trees trained in parallel in a forest.
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decision boundaries and functions.78 In the main text we used two types of neural networks:
fully connected (fc) networks and convolutional neural networks (cnn). They both rely on being
built in a layered structure, starting from the input layers (e.g. the configuration matrix of CY
manifolds or an RGB image or several engineered features) going towards the output layers (e.g.
the Hodge numbers or the classification class of the image).

In fc networks the input of layer l is a feature vector a(i) {l} ∈ Rnl (for i = 1, 2, . . . , N) and,
as shown in Figure 9.18a, each layer is densely connected to the following.79 In other words,
each entry of the vectors a

(i) {l}
j (for j = 1, 2, . . . , nl) is mapped through a function ψ to all the

components of the following layer a{l+1} ∈ Rnl+1 :

ψ : Rnl −→ Rnl+1

a(i) {l} 7−→ a(i) {l+1} = ψj

(
a(i) {l}), (F.26)

such that

a
(i) {l+1}
j = ψj(a(i) {l}) = φ

(
nl∑

k=1
a

(i) {l}
k W

{l}
kj + b{l} 1j

)
, (F.27)

where 1 ∈ Rnl+1 is an identity vector. The matrix W {l} is weight matrix and b{l} is the bias term.
The function φ is a non linear function and plays a fundamental role: without it the successive
application of the linear map a{l} ·W {l} + b g would prevent the network from learning more
complicated decision boundaries or functions as the ANN would only be capable of reproducing
linear relations. φ is known as activation function and can assume different forms, as long as its
non linearity is preserved (e.g. a sigmoid function in the output layer of a network squeezes the
results in the interval [0, 1] thus reproducing the probabilities of of a classification). A common
choice is the rectified linear unit (ReLU) function

φ(z) = ReLU(z) = max(0, z), (F.28)

which has been proven to be better at training deep learning architectures [197], or its modified
version LeakyReLU(z) = max(αz, z) which introduces a slope α > 0 to improve the computa-
tional performance near the non differentiable point in the origin.

cnn architectures rose to fame in the context of computer vision and object localisation [198].
As one can suspect looking at Figure 9.19 for instance, the fundamental difference with fc
networks is that they use a convolution operation K{l} ∗ a(i) {l} instead of a linear map to
transform the output of the layers, before applying the activation function.80 This way the
network is no longer densely connected, as the results of the convolution (feature map) depends
only on a restricted neighbourhood of the original feature, depending on the size of the kernel
window K{l} used and the shape of the input a(i){l}, which is no longer limited to flattened
vectors. In turn its size influences the convolution operator which we can compute: one way to
see this is to visualise an image being scanned by a smaller window function over all pixels or by
skipping some a certain number of them (the length of the stride of the kernel). In general the

78Despite their fame in the face of the general public, even small networks can prove to be extremely good at
learning complicated functions in a small amount of time.

79The input vector x ∈ RF is equivalent to the vector a{0} and n0 = F . Inputs to each layer are here
represented as a matrix a{l} whose columns are made by samples and whose rows are filled with the values of the
features.

80In general the input of each layer can be a generic tensor with an arbitrary number of axis. For instance, an
RGB image can be represented by a three dimensional tensor with indices representing the width of the image,
its height and the number of filters (in this case 3, one for each colour channel).
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output will therefore be different than the input, unless the latter is padded (with zeros usually)
before the convolution. The size of the output is therefore:

On = In − kn + 2pn

Sn
+ 1, n = 1, 2, . . . , (F.29)

where O is the output size, I the input size, k the size of the kernel used, p the amount of padding
(symmetric at the start and end of the axis considered) and S the stride. In the formula, n runs
over the number of components of the input tensor. While any padding is possible, we are usually
interested in two kinds of possible convolutions:

• “same” convolutions for which On = In, thus pn = In(Sn−1)−Sn+kn

2 ,

• “valid” convolutions for which On < In and pn = 0.

In both cases the learning process aims to minimise the loss function defined for the task:
in our regression implementation of the architecture we used the mean squared error of the
predictions. The objective is to find best possible values of weight and bias terms W {l} and b{l})
or to build the best filter kernel K{l} through backpropagation [199], that is by reconstructing the
gradient of the loss function climbing back the network from the output layer to the input and
then using the usual gradient descent procedure to select the optimal parameters. For instance,
in the case of fc networks we need to find(

Ŵ {l}, b̂{l}
)

= argmin
W{l}, b{l}

1
2N

N∑
i=1

(
y(i) − a(i) {L}

)2
∀l = 1, 2, . . . , L, (F.30)

where L is the total number of layers in the network. A similar relation holds in the case of CNN
architectures. In the main text we use the Adam [200] implementation of gradient descent and
add batch normalisation layers to improve the convergence of the algorithm.

As we can see from their definition, neural networks are capable of learning very complex
structures at the cost of having a large number of parameters to tune. The risk of overfitting the
training set is therefore quite evident. There are in general several techniques to counteract the
tendency to adapt the training set, one of them being the introduction of regularisation (l2 and l1)
in the same fashion of a linear model (we show it in Appendix F.1). Another successful way is to
introduce dropout layers [201] where connections are randomly switched off according to a certain
retention probability (or its complementary, the dropout rate): this regularisation technique
allows to keep good generalisation properties since the prediction can rely in a less incisive way
on the particular architecture since which is randomly modified during training (dropout layers
however act as the identity during predictions to avoid producing random results).
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