In this appendix we show the computation of the parameters of the hypergeometric functions and their relation with the rotation parameters. \subsection{Consistency Conditions of the Monodromy Matrices} In the main text we set \begin{equation} D~ \rM_{\infty}~ D^{-1} = e^{-2\pi i \delta_{\infty}}\, \cL(\vec{n}_{\infty}), \end{equation} where $\cL(\vec{n}_{\infty}) \in \SU{2}$. The previous equation implies \begin{equation} \qty( D\, \rM_{\infty}\, D^{-1} )^\dagger = \qty( D\, \rM_{\infty}\, D^{-1} )^{-1}, \end{equation} which can be rewritten as \begin{equation} \widetilde{\rM}_{\infty}^{-1}~ \cC^{\dagger}\, D^{\dagger}\, D\, \cC = \cC^{\dagger}\, D^{\dagger}\, D\, \cC~ \widetilde{\rM}_{\infty}^{-1}. \end{equation} As $\widetilde{\rM}_{\infty}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish. We therefore have \begin{equation} \begin{split} \abs{K}^{-2} & = -\frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}} \\ & = -\frac{1}{\pi^4}\, \abs{\gfun{a} \gfun{b} \gfun{c-a} \gfun{c-b}}^2 \times \\ & \times \sin(\pi a)\, \sin^*(\pi (c-a))\, (\sin(\pi b)\, \sin^*(\pi (c-b)))^*. \end{split} \end{equation} When $a,\, b,\, c \in \R$ this ultimately means that \begin{equation} \sin(\pi a)\, \sin(\pi (c-a))\, \sin(\pi b)\, \sin(\pi (c-b)) < 0. \label{eq:constraint_from_K^2} \end{equation} Since the previous equation is invariant under integer shift of any of its parameters, we can consider just the fractional parts $0 \le \{a\},\, \{b\},\, \{c\} < 1$. In order to have \U{2} monodromies finally requires \begin{equation} 0 \le \{b\} < \{c\} < \{a\} < 1 \qq{or} 0 \le \{a\} < \{c\} < \{b\} <1. \label{eq:K_consistency_condition} \end{equation} Should we request \U{1,1} monodromies as in moving rotated branes then we get: \begin{equation} \abs{K}^{-2} = \frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}. \end{equation} This would then imply \begin{equation} 0 \le \{c\} < \{a\},\, \{b\} < 1 \qq{or} 0 \le \{a\},\, \{b\} < \{c\} < 1. \end{equation} \subsection{Fixing the Parameters} We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text. The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes. The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vec{n}_{0})$ and $\cR(\widetilde{\vec{m}}_{0})$ to be diagonal. We impose: \begin{eqnarray} \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} ) & = & e^{-2\pi i \delta_{0}^{(L)}}\, \mqty( \dmat{e^{2\pi i n_{0}}, e^{-2\pi i n_{0}}} ), \\ \mqty( \dmat{1, e^{-2\pi i c^{(R)}}} ) & = & e^{-2\pi i \delta_{0}^{(R)}}\, \mqty( \dmat{e^{-2\pi i m_{0}}, e^{2\pi i m_{0}}} ), \end{eqnarray} where $n^3_{0} = \norm{\vec{n}_{0}} = n_{0}$ and $m^3_{0} = \norm{\vec{m}_{0}} = m_{0}$ with $0 \le n_{0},\, m_{0} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}. We thus have: \begin{equation} \begin{split} \delta_{0}^{(L)} & = n_{0} + k_{\delta^{(L)}_{0}}, \qquad k_{\delta^{(L)}_{0}} \in \Z, \\ c^{(L)} & = 2 n_{0} + k_c, \qquad k_c \in \Z. \end{split} \label{eq:cL} \end{equation} Since the determinant of the right hand side is $e^{-4 \pi i \delta_{0}^{(L)}}$, the range of definition of $\delta_{0}^{(L)}$ is $\alpha \le \delta_{0}^{(L)} \le \alpha + \frac{1}{2}$. Given that $0 \le n_{0} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{0}^{(L)} = n_{0}$. Analogous results hold in the right sector. Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict: \begin{equation} n_{0} + m_{0} - A \in \Z. \end{equation} We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$. After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$. The equations follow from~\eqref{eq:parameters_equality_infty}. The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}: \begin{equation} e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) ) = e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\infty}), \end{equation} which is satisfied by: \begin{equation} \begin{split} \delta^{(L)}_{\infty} & = - \frac{1}{2}(a^{(L)} + b^{(L)}) + \frac{1}{2} k_{\delta^{(L)}_{\infty}}, \qquad k_{\delta_{\infty}} \in \Z, \\ a^{(L)} - b^{(L)} & = 2\, (-1)^{p^{(L)}}\, n_{\infty} + (-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\infty}} + 2\, k'_{a b}, \qquad k'_{ab} \in \Z, \end{split} \end{equation} where $p^{(L)},\, q^{(L)} \in \qty{ 0, 1 }$. Notice that changing the value of $p^{(L)}$ corresponds to swapping $a$ and $b$: since the hypergeometric function is symmetric in those parameters we can fix $p^{(L)}=0$. Redefining $k'$ we can always set $q^{(L)}=0$. We therefore have: \begin{equation} a^{(L)} - b^{(L)} = 2\, n_{\infty} + k_{\delta^{(L)}_{\infty}} + 2 k_{ab}, \qquad k_{a b}\in \Z. \label{eq:aL-bL} \end{equation} The allowed values for $k_{\delta^{(L)}_{\infty}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$. The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$ may a priori take values in an interval of width $1$. As in the previous case we have $\alpha \le \delta_{\infty}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary. We cannot thus choose a vanishing $k_{\delta^{(L)}_{\infty}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$. We find a third relation by considering the entry \begin{equation} \Im\qty( e^{+2\pi i \delta_{\infty}^{(L)}}\, D^{(L)}\, \rM_{\infty}^{(L)}\, \qty( D^{(L)} )^{-1} )_{11} = \Im\qty( \cL(n_{\infty}) )_{11}. \end{equation} Using \begin{equation} \det \cC = \frac{\sin(\pi c^{(L)})}{\sin(\pi(a^{(L)}-b^{(L)}))}, \end{equation} and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to: \begin{equation} \cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} )) = (-1)^{k_c+k_{\delta^{(L)}_{\infty}} }\, \cos(2\pi \cA^{(L)}), \end{equation} where \begin{equation} \cos(2\pi \cA^{(L)}) = \cos(2\pi n_{0})\, \cos(2\pi n_{\infty}) - \sin(2\pi n_{0})\, \sin(2\pi n_{\infty})\, \frac{n_{\infty}^3}{n_{\infty}}. \label{eq:cos_n1} \end{equation} This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$. In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{1})$. We then write \begin{equation} a^{(L)} + b^{(L)} - c^{(L)} = 2\, (-1)^{f^{(L)}}\, n_{1} + k_c + k_{\delta^{(L)}_{\infty}} + 2\, k_{abc}, \qquad k_{abc}\in \Z, \end{equation} with $f^{(L)} \in \qty{ 0, 1 }$. The request \begin{equation} A + B - n_{0} - m_{0} - (-1)^{f^{(L)}}\, n_{1} - (-1)^{f^{(R)}}\, m_{1} \in \Z \end{equation} finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}. So far we can summarise the results in \begin{eqnarray} a = n_{0} + (-1)^{f^{(L)}} n_{1} + n_{\infty} + m_a, & \qquad & m_a \in \Z, \\ b = n_{0} + (-1)^{f^{(L)}} n_{1} - n_{\infty} + m_b, & \qquad & m_b \in \Z, \\ c = 2\, n_{0} + m_c, & \qquad & m_c \in \Z, \\ \delta_{0}^{(L)} = n_{0}, \\ \delta_{\infty}^{(L)} = - n_{0} - (-1)^{f^{(L)}} n_{1} + m_c + 2\, m_\delta, & \qquad & m_{\delta} \in \Z, \\ A = n_{0} + m_{0} + m_A, & \qquad & m_A \in \Z, \\ B = (-1)^{f^{(L)}}\, n_{1} + (-1)^{f^{(R)}}\, m_{1} + m_B, & \qquad & m_B \in \Z. \end{eqnarray} $K^{(L)}$ is finally determined from \begin{equation} \qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{21} = e^{-2\pi i \delta_{\infty}^{(L)}}\, \qty( \cL(n_{\infty}) )_{21}, \label{eq:fixing_K_21} \end{equation} and get: \begin{equation} K^{(L)} = -\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, \cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\, \sin(2 \pi n_{0}) \sin(2 \pi n_{\infty}) \frac{n^1_{\infty} + i\, n^2_{\infty}}{n_{\infty}}, \label{eq:app_B_K21} \end{equation} where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$. \subsection{Checking the Consistency of the Solution} We check the consistency condition \eqref{eq:K_consistency_condition} using~\eqref{eq:product_in_SU2}. The result is \begin{equation} \begin{split} \qty( K^{(L)} )^{-1} & = \frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, \cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\, \\ & \times \sin(2 \pi n_{0})\, \sin(2 \pi n_{\infty})\, \frac{n^1_{\infty} -i n^2_{\infty}}{n_{\infty}}, \end{split} \label{eq:app_B_K12} \end{equation} where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section. Compatibility with~\eqref{eq:app_B_K21} requires \begin{equation} \frac{(n^1_{\infty})^2 + (n^2_{\infty})^2}{n^2_{\infty}} = -4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))} {\sin^2(\pi c) \sin^2(\pi(a-b))}. \label{eq:n12+n22} \end{equation} We can then rewrite~\eqref{eq:cos_n1} as \begin{equation} \frac{(n^3_{\infty})^2}{n^2_{\infty}} = \frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2} {\sin^2(\pi c) \sin^2(\pi(a-b))}. \end{equation} It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$. The same consistency check can also be performed by computing $K^{(L)}$ from \begin{equation} \qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{12} = e^{-2\pi i \delta_{\infty}^{(L)}}\, \qty( \cL(n_{\infty}) )_{12}, \end{equation} instead of \eqref{eq:fixing_K_21}. % vim: ft=tex