We provide details on how~\eqref{eq:reflection condition_out_field_generic_vacuum} can be computed. First we introduce the projector of positive frequency and negative frequency modes for the NS fermion as \begin{eqnarray} P^{(+,\, 0)}(z,w) & = & \frac{+1}{z-w}, \qquad \abs{z} > \abs{w} \\ P^{(-,\, 0)}(z,w) & = & \frac{-1}{z-w}, \qquad \abs{z} < \abs{w}, \end{eqnarray} such that \begin{equation} \oint\limits_{\abs{z} > \abs{w}} \ddw P^{(+,\, 0)}(z,w)\, \Psi^{(0)}( 0 ) = \Psi^{(0,\, +)}( z ), \end{equation} and similarly for the negative frequency modes. Likewise we introduce the projectors for the field with defects as \begin{eqnarray} P^{(+)}(z,\, w) & = & \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\, P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} ) }{z-w}, \qquad \abs{z} > \abs{w} \\ P^{(-)}(z,\, w) & = & - \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\, P\qty(w;\, \qty{x_{(t)}, -\rE_{(t)}} ) }{z-w}, \qquad \abs{z} < \abs{w}, \end{eqnarray} with $P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} ) = \finiteprod{t}{1}{N} \qty( 1- \frac{z}{x_{(t)}} )^{\rE_{(t)}}$ as in the main text. We then compute \begin{equation} \begin{split} \qty(P^{(+)}\, P^{(+,\,0)})(z,\, w) & = \oint\limits_{\abs{z} > \abs{\zeta} > \abs{w}} \ddz P^{(+)}(z,\, \zeta)\, P^{(+,\, 0)}(\zeta,\, w) = P^{(+,\, 0)}(z,\, w) \\ \qty(P^{(+)}\, P^{(-,\, 0)})(z,\, w) & = \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\, P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} ) -1 }{z-w}. \end{split} \end{equation} The last equation is valid when $\rM=\finitesum{t}{1}{N} \rE_{(t)} \le 0$ and for $\abs{z}$ and $\abs{w}$ arbitrary. Specializing the previous expressions to $\Psi^{(out)}( z )$, we need to constrain $\abs{z} > x_{(1)}$ and $\abs{w} > x_{(1)}$. Finally the vacuum in presence of defects can be described by \begin{equation} \begin{split} \Psi^{(+)}( z ) \Gexcvacket & = \qty(P^{(+)}\, \Psi)( z ) \Gexcvacket \\ & = \qty(P^{(+)}\, \Psi^{(out)})( z ) \Gexcvacket \\ & = \left\lbrace \qty(P^{(+)}\, P^{(+,\, 0)}\, \Psi^{(out)})( z ) \right. \\ & + \left. \qty(P^{(+)}\, P^{(-,\, 0)}\, \Psi^{(out)})( z ) \right\rbrace \Gexcvacket \\ & = 0, \end{split} \end{equation} where we assumed $\abs{z} > x_{(1)}$. The expression finally becomes~\eqref{eq:reflection condition_out_field_generic_vacuum}. % vim: ft=tex