In this appendix we explain the conventions used for \SU{2} and show the details of the isomorphism between \SO{4} and a class of equivalence of $\SU{2} \times \SU{2}$. \subsection{Conventions} We parameterise \SU{2} matrices $U$ with a vector $\vec{n} \in \R^3$ such that: \begin{equation} U(\vec{n}) = \cos(2 \pi n)\, \1_2 + i\, \frac{\vec{n} \cdot \vec{\sigma}}{n}\, \sin(2 \pi n), \label{eq:su2parametrisation} \end{equation} where $n = \norm{\vec{n}}$ and $0 \le n \le \frac{1}{2}$. We also identify all $\vec{n}$ when $n=\frac{1}{2}$ since in this case $U(\vec{n})= -\1_2$. The parametrisation is such that: \begin{eqnarray} U^*(\vec{n}) & = & \sigma^2\, U(\vec{n})\, \sigma^2 = U(\widetilde{\vec{n}}), \\ U^{\dagger}(\vec{n}) & = & U^T(\widetilde{\vec{n}}) = U(-\vec{n}), \\ -U(\vec{n}) & = & U(\widehat{\vec{n}}) \label{eq:U_props} \end{eqnarray} where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vec{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vec{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vec{n}}{n}$. The group product of two elements $U(\vec{n} \circ \vec{m} ) = U(\vec{n})\, U(\vec{m})$ has an explicit realisation as: \begin{equation} \begin{split} \cos(2 \pi \norm{\vec{n} \circ \vec{m}}) & = \cos(2 \pi n)\, \cos(2 \pi m) - \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{n} \cdot \vec{m}}{n\, m}, \\ \sin(2 \pi \norm{\vec{n} \circ \vec{m}})\, \frac{\vec{n} \circ \vec{m}}{\norm{\vec{n} \circ \vec{m}}} & = \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{m}}{m} + \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vec{n}}{n}. \end{split} \label{eq:product_in_SU2} \end{equation} \subsection{The Isomorphism} Let $I = 1,\, 2,\, 3,\, 4$ and define: \begin{equation} \tau_I = \qty( i\, \1_2,\, \vec{\sigma} ), \end{equation} where $\vec{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices. It is possible to show that: \begin{equation} \begin{split} \qty( \tau_I )^{\dagger} & = \eta_{IJ}\, {\tau}^I, \\ \qty( \tau^I )^* & = -\sigma_2\, \tau_I\, \sigma_2, \end{split} \label{eq:tau_props} \end{equation} where $\eta_{IJ} = \mathrm{diag}(-1,1,1,1)$. The following relations are then a natural consequence: \begin{eqnarray} \tr(\tau_I) & = & 2\, i\, \delta_{I1}, \\ \tr(\tau_I \tau_J) & = & 2\, \eta_{IJ}, \\ \tr(\tau_I \qty( \tau_J )^{\dagger}) & = & 2\, \delta_{IJ}. \end{eqnarray} Now consider a vector in the spinor representation: \begin{equation} X_{(s)} = X^I\, \tau_I. \end{equation} We can recover the components using the previous properties: \begin{equation} X^I = \frac{1}{2}\, \delta^{IJ}\, \tr(X_{(s)} \qty( \tau_J )^{\dagger}) = \frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J), \end{equation} where the trace acts on the space of the $\tau$ matrices. If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have: \begin{equation} \begin{split} X_{(s)}^{\dagger} & = X^I\, \eta_{IJ}\, \tau^J = \frac{1}{2} \tr(X_{(s)} \tau_I)\, \tau^I, \\ X_{(s)}^* & = - \sigma_2\, X_{(s)}\, \sigma_2. \end{split} \label{eq:X_dagger} \end{equation} A rotation in spinor representation is defined as: \begin{equation} X'_{(s)} = U_{L}(\vec{n})\, X_{(s)}\, U_{R}^{\dagger}(\vec{m}) \end{equation} and it is equivalent to: \begin{equation} \qty( X' )^I = \tensor{R}{^I_J}\, X^J \end{equation} through \begin{equation} R_{IJ} = \frac{1}{2} \tr( \qty( \tau_I )^{\dagger}\, U_{L}(\vec{n})\, \tau_J\, U_{R}^{\dagger}(\vec{m}) ). \end{equation} The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since: \begin{equation} \tr(X'_{(s)}\, (X')^{\dagger}_{(s)}) = \tr(X_{(s)}\, X^{\dagger}_{(s)}) \qquad \Rightarrow \qquad \finitesum{K}{1}{4} R_{IK} R^*_{JK} = \delta_{I \,J}. \end{equation} From the second equation in \eqref{eq:tau_props} and the first equation in \eqref{eq:U_props} we then get the reality condition on $R$: \begin{equation} R_{NM} = \frac{1}{2}\, \eta_{NI}\, \eta_{MJ}\, \tr(\tau_I ^{\dagger}\, U_{R}\, \tau_J\, U_{L}^{\dagger}) = \frac{1}{2} \tr(\tau_N\, U_{R}\, \tau_M^\dagger\, U_{L}^{\dagger}) = R_{NM}^*. \end{equation} Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$. Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$. Since $\qty{ U_{L},\, U_{R} }$ and $\qty{ -U_{L},\, -U_{R} }$ generate the same \SO{4} matrix then the correct isomorphism takes the form: \begin{equation} \SO{4} \cong \frac{\SU{2} \times \SU{2}}{\Z_2}. \end{equation}