Closed strings and CY

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-09-03 18:26:02 +02:00
parent 7eac6f4191
commit cf13d2f918
5 changed files with 695 additions and 190 deletions

View File

@@ -11,6 +11,9 @@ in order to reproduce known results.
For instance, string theory could provide a unified framework by predicting the existence of a larger gauge group containing the \sm{} as a subset.
In what follows we deal with the definition of mathematical tools to compute amplitudes to be used in phenomenological calculations related to the study of particles in string theory.
In this introduction we present instruments and preparatory frameworks used throughout the manuscript as many tools are strongly connected and their definitions are interdependent.
In particular we recall some results on the symmetries of string theory and how to recover a realistic description of physics.
\subsection{Properties of String Theory and Conformal Symmetry}
@@ -257,7 +260,7 @@ The transformation on a field $\phi_{\omega, \bomega}$ of weight $(\omega, \bome
\begin{split}
\delta_{\epsilon, \bepsilon} \phi_{\omega, \bomega}
& =
\left[ Q_{\epsilon, \bepsilon}, \phi_{\omega, \bomega}( w, \bw ) \right]
\liebraket{Q_{\epsilon, \bepsilon}}{\phi_{\omega, \bomega}( w, \bw )}
\\
& =
\cint{0} \ddz \epsilon(z) \left[ T(z), \phi_{\omega, \bomega}( w, \bw ) \right]
@@ -371,15 +374,15 @@ This is a reflection of the anomalous algebra of the operator modes $L_n$ and $\
This ultimately leads to the quantum algebra
\begin{equation}
\begin{split}
\left[ L_n, L_m \right]
\liebraket{L_n}{L_m}
& =
(n - m)\, L_{n + m} + \frac{c}{12}\, n\, (n^2 - 1)\, \delta_{n, -m},
\\
\left[ \bL_n, \bL_m \right]
\liebraket{\bL_n}{\bL_m}
& =
(n - m)\, \bL_{n + m} + \frac{\overline{c}}{12}\, n\, (n^2 - 1)\, \delta_{n, -m},
\\
\left[ L_n, \bL_m \right]
\liebraket{L_n}{\bL_m}
& =
0,
\end{split}
@@ -443,6 +446,7 @@ Finally the definitions of the primary operators~\eqref{eq:conf:primary} define
\quad
n \ge 1.
\end{split}
\label{eq:conf:physical}
\end{equation}
From this definition we can build an entire representation of \emph{descendant} states applying any operator $L_{-n}$ (or $\bL_{-n}$) with $n \ge 1$ to $\ket{\phi_{\omega, \bomega}}$.
@@ -479,6 +483,7 @@ and the components of the stress-energy tensor~\eqref{eq:conf:stringT} are
\\
\bT( \bz ) & = \ipd{\bz} \bX( \bz ) \cdot \ipd{\bz} \bX( \bz ).
\end{split}
\label{eq:conf:bosonicstringT}
\end{equation}
Using the normalisation of the 2-points function $\left\langle X^{\mu}( z, \bz ) X^{\nu}( w, \bw ) \right\rangle = - \frac{1}{2} \eta^{\mu\nu} \ln\left| z - w \right|$ we can show that $c = D$ in~\eqref{eq:conf:TTexpansion}, where $D$ is the dimensions of spacetime (or equivalently the number of scalar fields $X^{\mu}$ in the action).
It can be shown that in order to cancel the central charge in bosonic string theory we need to introduce a pair of conformal ghosts $b(z)$ and $c(z)$ with conformal weights $(2, 0)$ and $(-1, 0)$ respectively, together with their anti-holomorphic counterparts $\overline{b}(z)$ and $\overline{c}(z)$.
@@ -604,11 +609,11 @@ In this case the components of the stress-energy tensor of the theory are:
\begin{split}
T( z )
& =
-\frac{1}{\ap} \ipd{z} X( z ) \cdot \ipd{z} X( z ) - \frac{1}{2} \psi( z ) \cdot \ipd{z} \psi( z ),
-\frac{1}{\ap}\, \ipd{z} X( z ) \cdot \ipd{z} X( z ) - \frac{1}{2}\, \psi( z ) \cdot \ipd{z} \psi( z ),
\\
\bT( \bz )
& =
-\frac{1}{\ap} \ipd{\bz} \bX( \bz ) \cdot \ipd{\bz} \bX( \bz ) - \frac{1}{2} \bpsi( \bz ) \cdot \ipd{\bz} \bpsi( \bz ).
-\frac{1}{\ap}\, \ipd{\bz} \bX( \bz ) \cdot \ipd{\bz} \bX( \bz ) - \frac{1}{2}\, \bpsi( \bz ) \cdot \ipd{\bz} \bpsi( \bz ).
\end{split}
\end{equation}
@@ -621,11 +626,13 @@ The action~\eqref{eq:super:action} is also invariant under the \emph{supersymmet
& =
\epsilon( z )\, \psi^{\mu}( z ) + \bepsilon( \bz )\, \bpsi^{\mu}( \bz ),
\\
\sqrt{\frac{2}{\ap}} \delta_{\epsilon} \psi^{\mu}( z )
\sqrt{\frac{2}{\ap}}\,
\delta_{\epsilon} \psi^{\mu}( z )
& =
- \epsilon( z )\, \ipd{z} X^{\mu}( z ),
\\
\sqrt{\frac{2}{\ap}} \delta_{\bepsilon} \bpsi^{\mu}( \bz )
\sqrt{\frac{2}{\ap}}\,
\delta_{\bepsilon} \bpsi^{\mu}( \bz )
& =
- \bepsilon( \bz )\, \ipd{\bz} \bX^{\mu}( \bz )
\end{split}
@@ -715,8 +722,8 @@ In particular $\ccX_6$ should be a compact manifold to ``hide'' the 6 extra-dime
Moreover the geometry of $\ccM^{1,3}$ should be a maximally symmetric space and there should be a $N = 1$ unbroken supersymmetry in $4$ dimensions.
Finally the gauge group of and the spectrum of fermions should be realistic (e.g.\ it should be possible to define chiral fermion states) \cite{Candelas:1985:VacuumConfigurationsSuperstrings}.
These manifolds were first conjectured to exist by Eugenio Calabi~\cite{Calabi:1957:KahlerManifoldsVanishing}.
Their existence was later proved by Shing-Tung Yau~\cite{Yau:1977:CalabiConjectureNew}.
They are defined as complex Ricci-flat Kähler manifolds $M$ of dimensions $2m$ and with holonomy \SU{3} (see for instance \cite{Joyce:2000:CompactManifoldsSpecial,Joyce:2002:LecturesCalabiYauSpecial}).
Their existence was later proved by Shing-Tung Yau~\cite{Yau:1977:CalabiConjectureNew}, hence the name Calabi-Yau (\cy) manifolds.
They are defined as complex Ricci-flat Kähler manifolds $M$ of dimensions $2m$ and with holonomy \SU{3} (see for instance \cite{Joyce:2000:CompactManifoldsSpecial,Joyce:2002:LecturesCalabiYauSpecial,Greene:1997:StringTheoryCalabiYau}).
\subsubsection{Complex and Kähler Manifolds}
@@ -725,20 +732,20 @@ In general an \emph{almost complex structure} $J$ is a tensor such that $\tensor
For any vector field $v_p \in \rT_p M$ defined in $p \in M$ we then define $(J v)^a = \tensor{J}{^a_b} v^b$, thus the tangent space $\rT_p M$ has the structure of a \emph{complex vector space}.
The tensor $J$ is called \emph{complex structure} if there exist a tensor $N$ such that
\begin{equation}
\tensor{N}{^a_{bc}} v_p^b w_p^c
\tensor{N}{^a_{bc}}\, v_p^b\, w_p^c
=
\left(
[ v_p, w_p ]
\liebraket{v_p}{w_p}
+
J
\left( [ J\, v_p, w_p ] + [ v_p, J\, w_p ] \right)
\left( \liebraket{J\, v_p}{w_p} + \liebraket{v_p}{J\, w_p} \right)
-
[ J\, v_p, J\, w_p ]
\liebraket{J\, v_p}{J\, w_p}
\right)^a
=
0
\end{equation}
for any $v_p,\, w_p \in \rT_p M$, where $[ \cdot, \cdot ]$ is the Lie braket of vector fields.
for any $v_p,\, w_p \in \rT_p M$, where $\liebraket{\cdot}{\cdot}\colon\, \rT_p M \times \rT_p M \to \rT_p M$ is the Lie braket of vector fields.
A manifold $M$ is a \emph{complex} manifold if it is possible to define a complex structure $J$ on it.\footnotemark{}
\footnotetext{%
Notice that a smooth function $f\colon\, M \to \C$ whose pushforward of $v_p \in \rT_p M$ is $f_{*\, p}\colon\, \rT_p M \to \rT_{f(p)} \C$ is called holomorphic if $(J\, f_{*\, p}( v_p ))^a = i ( f_{*\, p}( v_p ) )^a$ as such expression encodes the Cauchy-Riemann equations.
@@ -768,14 +775,14 @@ The metric is \emph{Hermitian} if
g( v_p, w_p ) = g( J\, v_p, J\, w_p )
\quad
\forall v_p,\, w_p \in \rT_p M
\quad
\Leftrightarrow
\quad
\tensor{g}{_{ab}}
=
\tensor{J}{_a^c}\,
\tensor{J}{_b^d}\,
\tensor{g}{_{cd}}.
% \quad
% \Leftrightarrow
% \quad
% \tensor{g}{_{ab}}
% =
% \tensor{J}{_a^c}\,
% \tensor{J}{_b^d}\,
% \tensor{g}{_{cd}}.
\end{equation}
In this case we can define a $(1, 1)$-form $\omega$ as
\begin{equation}
@@ -784,31 +791,319 @@ In this case we can define a $(1, 1)$-form $\omega$ as
g( J\, v_p, w_p )
\quad
\forall v_p,\, w_p \in \rT_p M.
\quad
\Leftrightarrow
\quad
\tensor{\omega}{_{ab}}
=
\tensor{J}{_a^c}\,
\tensor{g}{_{cb}}.
% \quad
% \Leftrightarrow
% \quad
% \tensor{\omega}{_{ab}}
% =
% \tensor{J}{_a^c}\,
% \tensor{g}{_{cb}}.
\end{equation}
$(M, J, g)$ is a \emph{Kähler} manifold if ~\cite{Joyce:2002:LecturesCalabiYauSpecial}:
$(M, J, g)$ is a \emph{Kähler} manifold if:
\begin{equation}
\dd{\omega}
=
\left( \ipd{z} + \ipd{\bz} \right)
\left( \pd + \bpd \right)
\omega(z, \bz)
=
0,
\label{eq:cy:kaehler}
\end{equation}
or equivalently $\nabla J = 0$ or $\nabla \omega = 0$, where $\nabla$ is the connection of $g$.
Notice that the operators $\pd$ and $\bpd$ are operators such that $\pd^2 = \bpd^2 = 0$: they replace the \emph{de Rham cohomology} operator $\mathrm{d}^2 = 0$ in complex space with the holomorphic and antiholomorphic \emph{Dolbeault cohomology} operators.
The covariant conservation of $J$ and $\omega$ implies that the holonomy group must preserve these objects in $\R^{2m}$.
Thus we have $\mathrm{Hol}(g) \subseteq \U{m} \subset \mathrm{O}(2m)$.
Thus we have $\mathrm{Hol}(g) \subseteq \U{m} \subset \OO{2m}$.
\subsubsection{Calabi-Yau Manifolds}
With the general definitions of the Kähler geometry we can now explicitly compute the conditions needed for a \cy manifold.
In local coordinates a Hermitian metric is such that
\begin{equation}
g
=
g_{a\overline{b}}\, \dd{z}^a \otimes \dd{\bz}^{\overline{b}}
+
g_{\overline{a}b}\, \dd{\bz}^{\overline{a}} \otimes \dd{z}^b,
\end{equation}
thus the Kähler form becomes $\omega = i g_{a\overline{b}}\, \dd{z}^a \wedge \dd{\bz}^{\overline{b}}$.
The relation~\eqref{eq:cy:kaehler} then translates into:
\begin{equation}
\dd{\omega} = i\, \left( \pd + \bpd \right)\, g_{a\overline{b}}\, \dd{z}^a \wedge \dd{\bz}^{\overline{b}}
=
0
\quad
\Leftrightarrow
\quad
\begin{cases}
\ipd{z^c} g_{a\overline{b}} & = \ipd{z^a} g_{c\overline{b}}
\\
\ipd{\bz^c} g_{\overline{a}b} & = \ipd{\bz^a} g_{\overline{c}b}
\end{cases}.
\end{equation}
The $(1,1)$-form $\omega$ can locally be written as $\omega = i\, \pd \bpd\, \phi( z, \bz )$ up to a constant.
This ultimately leads to
\begin{equation}
g_{a\overline{b}}
=
\pdv{\phi( z, \bz )}{z^a}{\bz^{\overline{b}}}
=
\ipd{a} \ipd{\overline{b}}\, \phi( z, \bz ),
\end{equation}
Since $\omega$ is the Kähler form then the Levi-Civita connection has only fully holomorphic and anti-holomorphic components:
\begin{equation}
\tensor{\Gamma}{^a_{bc}}
=
\tensor{g}{^{a\overline{d}}}\,
\ipd{b}\,
\tensor{g}{_{\overline{d}c}},
\qquad
\tensor{\Gamma}{^{\overline{a}}_{\overline{b}\overline{c}}}
=
\tensor{g}{^{\overline{a}d}}\,
\ipd{\overline{b}}\,
\tensor{g}{_{d\overline{c}}}.
\end{equation}
As a consequence the Ricci tensor becomes
\begin{equation}
\tensor{R}{_{\overline{a}b}}
=
-
\pdv{\tensor{\Gamma}{^{\overline{c}}_{\overline{a}\overline{c}}}}{z^b}.
\end{equation}
Since \cy manifolds have \SU{m} holonomy, the trace part of the coefficients of the connection vanishes.
\cy manifolds thus have $\tensor{R}{_{\overline{a}b}} = 0$, that is they are complex Ricci-flat Kähler manifolds.
\subsubsection{Cohomology and Hodge Numbers}
\cy manifolds $M$ of complex dimension $m$ present geometric characteristics of general interest both in pure mathematics and string theory.
They can be characterised in different ways.
For instance the study of the cohomology groups of the manifold has a direct connection with the analysis of topological invariants.
For real manifolds $M$ of dimension $2m$, closed $p$-forms $\omega$ are always defined up to an \emph{exact} term.
In fact:
\begin{equation}
\dd{\omega'_{(p)}} = \dd{(\omega_{(p)} + \dd{\eta_{(p-1)}})} = 0
\label{eq:cy:closedform}
\end{equation}
implies an equivalence relation $\omega'_{(p)} \sim \omega_{(p)} + \dd{\eta_{(p-1)}}$.
This translates in the fact that elements of the de Rham cohomology group $H^{(p)}_{\mathrm{d}}(M, \R)$ are equivalence classes $[ \omega ]$ computed through the operator $\mathrm{d}$.
The term $b^{p} = \dim{H^{(p)}_{\mathrm{d}}( M, \R )}$ counts the total number of possible $p$-forms we can build on $X$, up to \emph{gauge transformations}.
These are known as \emph{Betti numbers}.
The extension to the Dolbeault cohomology in complex space is possible through the operators $\pd$ and $\bpd$ over $(r, s)$-forms on manifolds $M$ of real dimension $2m$.
The equivalence relation~\eqref{eq:cy:closedform} has a similar expression in complex space as
\begin{equation}
\omega'_{(r,s)} \sim \omega_{(r,s)} + \bpd \omega_{(r,s-1)},
\end{equation}
or an equivalent formulation using $\pd$.
The cohomology group in this case is $H^{(r,s)}_{\bpd}( M, \C )$ and the relation with the real counterpart is
\begin{equation}
H^{(p)}_{\mathrm{d}}( M, \R )
=
\bigoplus\limits_{p = r + s}\,
H^{(r,s)}_{\bpd}( M, \C ).
\end{equation}
As in the case of Betti numbers, we can define the complex equivalents, the \emph{Hodge numbers}, $h^{r,s} = \dim\limits_{\C} H^{(r,s)}_{\bpd}( M, \C )$ which count the number of harmonic $(r, s)$-forms on $M$.
Notice that in this case $h^{r,s}$ is the complex dimension $\dim\limits_{\C}$ of the cohomology group.
For \cy manifolds it is possible to show that the \SU{m} holonomy of $g$ implies that the vector space of $(r, 0)$-forms is \C if $r = 0$ or $r = m$.
Therefore $h^{0,0} = h^{m,0} = 1$, while $h^{r,0} = 0$ if $r \neq 0,\, m$.
Exploiting symmetries of the cohomology groups, Hodge numbers are usually collected in \emph{Hodge diamonds}.
In string theory we are ultimately interested in \cy manifolds of real dimensions $6$, thus we focus mainly on \cy $3$-folds (i.e.\ having $m = 3$).
The diamond in this case is
\begin{equation}
\mqty{%
& & & h^{0,0} & & &
\\
& & h^{1,0} & & h^{0,1} & &
\\
& h^{2,0} & & h^{1,1} & & h^{0,2} &
\\
h^{3,0} & & h^{2,1} & & h^{1,2} & & h^{0,3}
\\
& h^{3,1} & & h^{2,2} & & h^{1,3} &
\\
& & h^{3,2} & & h^{2,3} & &
\\
& & & h^{3,3} & & &
}
\quad
=
\quad
\mqty{%
& & & 1 & & &
\\
& & 0 & & 0 & &
\\
& 0 & & h^{1,1} & & 0 &
\\
1 & & h^{2,1} & & h^{2,1} & & 1
\\
& 0 & & h^{1,1} & & 0 &
\\
& & 0 & & 0 & &
\\
& & & 1 & & &
},
\end{equation}
where we used $h^{r,s} = h^{d-r, d-s}$ to stress the fact that the only independent Hodge numbers are $h^{1,1}$ and $h^{2,1}$ for $m = 3$.
These results will also be the starting point of~\Cref{part:deeplearning} in which the ability to predict the values of the Hodge numbers using \emph{artificial intelligence} is tested.
\subsection{D-branes and Open Strings}
Dirichlet branes, or \emph{D-branes}, are another key mathematical object in string theory.
They are naturally included as extended object as hypersurfaces supporting strings with open topology and as physical objects with charge and tension~\cite{Polchinski:1995:DirichletBranesRamondRamond,Polchinski:1996:TASILecturesDBranes,DiVecchia:1999:DbranesStringTheory,DiVecchia:2000:BranesStringTheory,DiVecchia:1997:ClassicalPbranesBoundary,Taylor:2003:LecturesDbranesTachyon,Taylor:2004:DBranesTachyonsString,Johnson:2000:DBranePrimer}.
They are relevant in the definition of phenomenological models in string theory as they can be arranged to support chiral fermions and bosons in \sm-like scenarios as well as beyond~\cite{Honecker:2012:FieldTheoryStandard,Lust:2009:LHCStringHunter,Zwiebach::FirstCourseString}.
We are ultimately interested in their study to construct Yukawa couplings in string theory.
\subsubsection{Compactification of Closed Strings}
As a first approach to the definition of D-branes, consider the action~\eqref{eq:conf:polyakov}.
The variation of such action with respect to $\delta X$ leads to the equation of motion
\begin{equation}
\partial_{\alpha} \partial^{\alpha}\, X^{\mu}( \tau, \sigma ) = 0
\qquad
\mu = 0, 1, \dots, D - 1,
\end{equation}
and naturally to the \emph{Neumann} boundary conditions:\footnotemark{}
\footnotetext{%
As~\cite{Polchinski:1996:TASILecturesDBranes} shows, \emph{Dirichlet} conditions can be shown to descend from T-duality.
}
\begin{equation}
\eval{\ipd{\sigma} X^{\mu}( \tau, \sigma )}_{\sigma = 0}^{\sigma = \ell} = 0,
\qquad
\mu = 0, 1, \dots, D - 1.
\end{equation}
Closed strings are such that $X^{\mu}( \tau, \sigma + \ell ) = X^{\mu}( \tau, \sigma )$.
The usual mode expansion in conformal coordinates $X^{\mu}( z, \bz ) = X( z ) + \bX( \bz )$ leads to
\begin{equation}
\begin{split}
X^{\mu}( z )
& =
x_0^{\mu}
+
i\, \sqrt{\frac{\ap}{2}}\,
\left(
- \alpha_0^{\mu}\, \ln{z}
+ \sum\limits_{n \in \Z \setminus \{0\}} \frac{\alpha_n^{\mu}}{n} z^{-n}
\right),
\\
\bX^{\mu}( \bz )
& =
\overline{x}_0^{\mu}
+
i\, \sqrt{\frac{\ap}{2}}\,
\left(
- \balpha_0^{\mu}\, \ln{\bz}
+ \sum\limits_{n \in \Z \setminus \{0\}} \frac{\balpha_n^{\mu}}{n} \bz^{-n}
\right),
\end{split}
\end{equation}
where $\alpha_0^{\mu} = \balpha_0^{\mu}$ and $\ell = 2 \pi$.
When the string is free to move in the entire $D$-dimensional space, then the momentum of the center of mass is $p^{\mu} = \frac{1}{\sqrt{2 \ap}} ( \alpha_0^{\mu} + \balpha_0^{\mu} )$.
Now let
\begin{equation}
\ccM^{1, D - 1} = \ccM^{1, D - 2} \otimes S^1( R ),
\end{equation}
where $S^1( R )$ is a compact $1$-dimensional circle of radius $R$ such that the boundary conditions for the compact coordinate are
\begin{equation}
X^{D - 1}( z\, e^{2\pi i}, \bz\, e^{-2\pi i} )
=
X^{D - 1}( z, \bz ) + 2 \pi\, m\, R,
\qquad
m \in \Z.
\label{eq:dbranes:winding}
\end{equation}
This is cast into
\begin{equation}
\begin{split}
\alpha_0^{D-1} + \balpha_0^{D-1} & = \sqrt{\frac{2}{\ap}}\, n\, \frac{\ap}{R},
\qquad
n \in \Z,
\\
\alpha_0^{D-1} - \balpha_0^{D-1} & = \sqrt{\frac{2}{\ap}}\, m\, R,
\qquad
m \in \Z,
\end{split}
\end{equation}
respectively encoding the quantisation of the momentum for a compact coordinate and the \emph{winding} in the compact direction~\eqref{eq:dbranes:winding}.
We finally have
\begin{equation}
\begin{split}
\alpha_0^{D-1} &= \frac{1}{\sqrt{2 \ap}}\, \left( n\, \frac{\ap}{R} + m\, R \right),
\\
\balpha_0^{D-1} &= \frac{1}{\sqrt{2 \ap}}\, \left( n\, \frac{\ap}{R} - m\, R \right),
\end{split}
\end{equation}
An interesting phenomenon involving these quantities appears when computing the mass spectrum of the theory.
From~\eqref{eq:conf:Texpansion} and \eqref{eq:conf:bosonicstringT} we find
\begin{equation}
\begin{split}
L_0
&=
\frac{\ap}{2}\,
\left(
\left( \alpha_0^{D-1} \right)^2
+
\sum\limits_{i = 0}^{D-2}\, \left( \alpha_0^i \right)^2
+
\sum\limits_{n = 1}^{+\infty}\, \left( 2 \alpha_{-n}^{\mu} \alpha_n^{\nu}\, \eta_{\mu\nu} + a \right)
\right),
\\
\bL_0
&=
\frac{\ap}{2}\,
\left(
\left( \balpha_0^{D-1} \right)^2
+
\sum\limits_{i = 0}^{D-2}\, \left( \balpha_0^i \right)^2
+
\sum\limits_{n = 1}^{+\infty}\, \left( 2 \balpha_{-n}^{\mu} \balpha_n^{\nu}\, \eta_{\mu\nu} + a \right)
\right),
\end{split}
\end{equation}
where $a$ is constant given by normal ordering, representing the zero point energy of the theory.
Imposing physical conditions~\eqref{eq:conf:physical} and the \emph{level matching} $(L_0 - \bL_0) \ket{\phi} = 0$ for closed strings, we find
\begin{equation}
\begin{split}
M^2
& =
\frac{1}{\ap^2}\, \left( n\, \frac{\ap}{R} + m\, R \right)^2
+
\frac{4}{\ap}\, \left( \rN + a \right)
\\
& =
\frac{1}{\ap^2}\, \left( n\, \frac{\ap}{R} - m\, R \right)^2
+
\frac{4}{\ap}\, \left( \overline{\rN} + a \right),
\end{split}
\label{eq:dbranes:closedspectrum}
\end{equation}
where $\rN = \sum\limits_{n = 1}^{+\infty}\, \alpha_{-n} \cdot \alpha_n$ and $\overline{\rN} = \sum\limits_{n = 1}^{+\infty}\, \balpha_{-n} \cdot \balpha_n$.
We then notice that as $R \to \infty$ all states with $m \neq 0$ become infinitely massive while the states for $m = 0$ and all values of $n$ become a continuum.
Conversely, as $R \to 0$ all states with $n \neq 0$ become infinitely heavy.
In field theory this would translate into a reduction of the number of dimensions since the remaining fields would be independent of the compact coordinate~\cite{Polchinski:1996:TASILecturesDBranes,Zwiebach::FirstCourseString}.
However in closed string theory as $R \to 0$ the compactified dimension is again present.
As seen in~\eqref{eq:dbranes:closedspectrum} the mass spectra of the theories compactified at radius $R$ or $\ap\, R^{-1}$ are the same under the exchange of $n$ and $m$.
At the level of the modes this \emph{T-duality} acts by swapping the sign of the right zero-modes in the compact direction
\begin{equation}
\alpha_0^{D-1} \stackrel{T}{\longmapsto} \alpha_0^{D-1},
\qquad
\balpha_0^{D-1} \stackrel{T}{\longmapsto} - \balpha_0^{D-1}.
\end{equation}
\subsubsection{D-branes from T-duality}
\subsection{Twist Fields and Spin Fields}
% vim ft=tex