Progress on fermions with defects
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										95
									
								
								sec/app/reflection.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										95
									
								
								sec/app/reflection.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,95 @@ | ||||
| We provide details on how~\eqref{eq:reflection condition_out_field_generic_vacuum} can be computed. | ||||
| First we introduce the projector of positive frequency and negative frequency modes for the NS fermion as | ||||
| \begin{eqnarray} | ||||
|   P^{(+,\, 0)}(z,w) | ||||
|   & = & | ||||
|   \frac{+1}{z-w}, | ||||
|   \qquad | ||||
|   \abs{z} > \abs{w} | ||||
|   \\ | ||||
|   P^{(-,\, 0)}(z,w) | ||||
|   & = & | ||||
|   \frac{-1}{z-w}, | ||||
|   \qquad | ||||
|   \abs{z} < \abs{w}, | ||||
| \end{eqnarray} | ||||
| such that | ||||
| \begin{equation} | ||||
|   \oint\limits_{\abs{z} > \abs{w}} \ddw | ||||
|   P^{(+,\, 0)}(z,w)\, | ||||
|   \Psi^{(0)}( 0 ) | ||||
|   = | ||||
|   \Psi^{(0,\, +)}( z ), | ||||
| \end{equation} | ||||
| and similarly for the negative frequency modes. | ||||
| Likewise we introduce the projectors for the field with defects as | ||||
| \begin{eqnarray} | ||||
|   P^{(+)}(z,\, w) | ||||
|   & = & | ||||
|   \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\, | ||||
|         P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} ) | ||||
|        }{z-w}, | ||||
|   \qquad | ||||
|   \abs{z} > \abs{w} | ||||
|   \\ | ||||
|   P^{(-)}(z,\, w) | ||||
|   & = & | ||||
|   - | ||||
|   \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\, | ||||
|         P\qty(w;\, \qty{x_{(t)}, -\rE_{(t)}} ) | ||||
|        }{z-w}, | ||||
|   \qquad | ||||
|   \abs{z} < \abs{w}, | ||||
| \end{eqnarray} | ||||
| with $P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} ) = \finiteprod{t}{1}{N} \qty( 1- \frac{z}{x_{(t)}} )^{\rE_{(t)}}$ as in the main text. | ||||
|      | ||||
| We then compute | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \qty(P^{(+)}\, P^{(+,\,0)})(z,\, w) | ||||
|     & = | ||||
|     \oint\limits_{\abs{z} > \abs{\zeta} > \abs{w}} \ddz | ||||
|     P^{(+)}(z,\, \zeta)\, | ||||
|     P^{(+,\, 0)}(\zeta,\, w) | ||||
|     = | ||||
|     P^{(+,\, 0)}(z,\, w) | ||||
|     \\ | ||||
|     \qty(P^{(+)}\, P^{(-,\, 0)})(z,\, w) | ||||
|     & = | ||||
|     \frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\, | ||||
|           P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} ) -1 | ||||
|          }{z-w}. | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| The last equation is valid when $\rM=\finitesum{t}{1}{N} \rE_{(t)} \le 0$ and for $\abs{z}$ and $\abs{w}$ arbitrary. | ||||
| Specializing the previous expressions to $\Psi^{(out)}( z )$, we need to constrain $\abs{z} > x_{(1)}$ and $\abs{w} > x_{(1)}$. | ||||
|  | ||||
| Finally the vacuum in presence of defects can be  described by | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \Psi^{(+)}( z ) \Gexcvacket | ||||
|     & = | ||||
|     \qty(P^{(+)}\, \Psi)( z ) \Gexcvacket | ||||
|     \\ | ||||
|     & = | ||||
|     \qty(P^{(+)}\, \Psi^{(out)})( z ) \Gexcvacket | ||||
|     \\ | ||||
|     & = | ||||
|     \left\lbrace | ||||
|       \qty(P^{(+)}\, P^{(+,\, 0)}\, \Psi^{(out)})( z ) | ||||
|     \right. | ||||
|     \\ | ||||
|     & + | ||||
|     \left. | ||||
|       \qty(P^{(+)}\, P^{(-,\, 0)}\, \Psi^{(out)})( z ) | ||||
|     \right\rbrace | ||||
|     \Gexcvacket | ||||
|     \\ | ||||
|     & = | ||||
|     0, | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| where we assumed $\abs{z} > x_{(1)}$. | ||||
| The expression finally becomes~\eqref{eq:reflection condition_out_field_generic_vacuum}. | ||||
|  | ||||
| % vim: ft=tex | ||||
		Reference in New Issue
	
	Block a user