Progress on fermions with defects
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -76,7 +76,7 @@ This would then imply | ||||
| We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text. | ||||
| The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes. | ||||
|  | ||||
| The monodromy in $\omega_{\bt-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal. | ||||
| The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal. | ||||
| We impose: | ||||
| \begin{eqnarray} | ||||
|   \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} ) | ||||
| @@ -163,7 +163,7 @@ We therefore have: | ||||
|   k_{a b}\in \Z. | ||||
|   \label{eq:aL-bL} | ||||
| \end{equation} | ||||
| The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bt-1} = 0$. | ||||
| The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$. | ||||
| The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$  may a priori take values in an interval of width $1$. | ||||
| As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary. | ||||
| We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$. | ||||
| @@ -205,7 +205,7 @@ where | ||||
|   \frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}. | ||||
| \label{eq:cos_n1} | ||||
| \end{equation} | ||||
| This expression is connected with rotation parameter in the third interaction point $\omega_{\bt+1} = 1$. | ||||
| This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$. | ||||
| In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$. | ||||
| We then write | ||||
| \begin{equation} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user