Progress on fermions with defects
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -76,7 +76,7 @@ This would then imply
|
||||
We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text.
|
||||
The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes.
|
||||
|
||||
The monodromy in $\omega_{\bt-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal.
|
||||
The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal.
|
||||
We impose:
|
||||
\begin{eqnarray}
|
||||
\mqty( \dmat{1, e^{-2\pi i c^{(L)}}} )
|
||||
@@ -163,7 +163,7 @@ We therefore have:
|
||||
k_{a b}\in \Z.
|
||||
\label{eq:aL-bL}
|
||||
\end{equation}
|
||||
The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bt-1} = 0$.
|
||||
The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$.
|
||||
The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$ may a priori take values in an interval of width $1$.
|
||||
As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary.
|
||||
We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$.
|
||||
@@ -205,7 +205,7 @@ where
|
||||
\frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}.
|
||||
\label{eq:cos_n1}
|
||||
\end{equation}
|
||||
This expression is connected with rotation parameter in the third interaction point $\omega_{\bt+1} = 1$.
|
||||
This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$.
|
||||
In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$.
|
||||
We then write
|
||||
\begin{equation}
|
||||
|
||||
95
sec/app/reflection.tex
Normal file
95
sec/app/reflection.tex
Normal file
@@ -0,0 +1,95 @@
|
||||
We provide details on how~\eqref{eq:reflection condition_out_field_generic_vacuum} can be computed.
|
||||
First we introduce the projector of positive frequency and negative frequency modes for the NS fermion as
|
||||
\begin{eqnarray}
|
||||
P^{(+,\, 0)}(z,w)
|
||||
& = &
|
||||
\frac{+1}{z-w},
|
||||
\qquad
|
||||
\abs{z} > \abs{w}
|
||||
\\
|
||||
P^{(-,\, 0)}(z,w)
|
||||
& = &
|
||||
\frac{-1}{z-w},
|
||||
\qquad
|
||||
\abs{z} < \abs{w},
|
||||
\end{eqnarray}
|
||||
such that
|
||||
\begin{equation}
|
||||
\oint\limits_{\abs{z} > \abs{w}} \ddw
|
||||
P^{(+,\, 0)}(z,w)\,
|
||||
\Psi^{(0)}( 0 )
|
||||
=
|
||||
\Psi^{(0,\, +)}( z ),
|
||||
\end{equation}
|
||||
and similarly for the negative frequency modes.
|
||||
Likewise we introduce the projectors for the field with defects as
|
||||
\begin{eqnarray}
|
||||
P^{(+)}(z,\, w)
|
||||
& = &
|
||||
\frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\,
|
||||
P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} )
|
||||
}{z-w},
|
||||
\qquad
|
||||
\abs{z} > \abs{w}
|
||||
\\
|
||||
P^{(-)}(z,\, w)
|
||||
& = &
|
||||
-
|
||||
\frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\,
|
||||
P\qty(w;\, \qty{x_{(t)}, -\rE_{(t)}} )
|
||||
}{z-w},
|
||||
\qquad
|
||||
\abs{z} < \abs{w},
|
||||
\end{eqnarray}
|
||||
with $P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} ) = \finiteprod{t}{1}{N} \qty( 1- \frac{z}{x_{(t)}} )^{\rE_{(t)}}$ as in the main text.
|
||||
|
||||
We then compute
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\qty(P^{(+)}\, P^{(+,\,0)})(z,\, w)
|
||||
& =
|
||||
\oint\limits_{\abs{z} > \abs{\zeta} > \abs{w}} \ddz
|
||||
P^{(+)}(z,\, \zeta)\,
|
||||
P^{(+,\, 0)}(\zeta,\, w)
|
||||
=
|
||||
P^{(+,\, 0)}(z,\, w)
|
||||
\\
|
||||
\qty(P^{(+)}\, P^{(-,\, 0)})(z,\, w)
|
||||
& =
|
||||
\frac{P\qty(z;\, \qty{x_{(t)},\, \rE_{(t)}} )\,
|
||||
P\qty(w;\, \qty{x_{(t)},\, -\rE_{(t)}} ) -1
|
||||
}{z-w}.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The last equation is valid when $\rM=\finitesum{t}{1}{N} \rE_{(t)} \le 0$ and for $\abs{z}$ and $\abs{w}$ arbitrary.
|
||||
Specializing the previous expressions to $\Psi^{(out)}( z )$, we need to constrain $\abs{z} > x_{(1)}$ and $\abs{w} > x_{(1)}$.
|
||||
|
||||
Finally the vacuum in presence of defects can be described by
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\Psi^{(+)}( z ) \Gexcvacket
|
||||
& =
|
||||
\qty(P^{(+)}\, \Psi)( z ) \Gexcvacket
|
||||
\\
|
||||
& =
|
||||
\qty(P^{(+)}\, \Psi^{(out)})( z ) \Gexcvacket
|
||||
\\
|
||||
& =
|
||||
\left\lbrace
|
||||
\qty(P^{(+)}\, P^{(+,\, 0)}\, \Psi^{(out)})( z )
|
||||
\right.
|
||||
\\
|
||||
& +
|
||||
\left.
|
||||
\qty(P^{(+)}\, P^{(-,\, 0)}\, \Psi^{(out)})( z )
|
||||
\right\rbrace
|
||||
\Gexcvacket
|
||||
\\
|
||||
& =
|
||||
0,
|
||||
\end{split}
|
||||
\end{equation}
|
||||
where we assumed $\abs{z} > x_{(1)}$.
|
||||
The expression finally becomes~\eqref{eq:reflection condition_out_field_generic_vacuum}.
|
||||
|
||||
% vim: ft=tex
|
||||
Reference in New Issue
Block a user