Update on the Abelian limit of the D-branes
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								img/abelian_angles_case1.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/abelian_angles_case1.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										72
									
								
								img/abelian_angles_case1.pdf_tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								img/abelian_angles_case1.pdf_tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,72 @@ | ||||
| %% Creator: Inkscape 1.0.1 (3bc2e813f5, 2020-09-07), www.inkscape.org | ||||
| %% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 | ||||
| %% Accompanies image file 'abelian_angles_case1.pdf' (pdf, eps, ps) | ||||
| %% | ||||
| %% To include the image in your LaTeX document, write | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics{<filename>.pdf} | ||||
| %% To scale the image, write | ||||
| %%   \def\svgwidth{<desired width>} | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics[width=<desired width>]{<filename>.pdf} | ||||
| %% | ||||
| %% Images with a different path to the parent latex file can | ||||
| %% be accessed with the `import' package (which may need to be | ||||
| %% installed) using | ||||
| %%   \usepackage{import} | ||||
| %% in the preamble, and then including the image with | ||||
| %%   \import{<path to file>}{<filename>.pdf_tex} | ||||
| %% Alternatively, one can specify | ||||
| %%   \graphicspath{{<path to file>/}} | ||||
| %%  | ||||
| %% For more information, please see info/svg-inkscape on CTAN: | ||||
| %%   http://tug.ctan.org/tex-archive/info/svg-inkscape | ||||
| %% | ||||
| \begingroup% | ||||
|   \makeatletter% | ||||
|   \providecommand\color[2][]{% | ||||
|     \errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}% | ||||
|     \renewcommand\color[2][]{}% | ||||
|   }% | ||||
|   \providecommand\transparent[1]{% | ||||
|     \errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}% | ||||
|     \renewcommand\transparent[1]{}% | ||||
|   }% | ||||
|   \providecommand\rotatebox[2]{#2}% | ||||
|   \newcommand*\fsize{\dimexpr\f@size pt\relax}% | ||||
|   \newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}% | ||||
|   \ifx\svgwidth\undefined% | ||||
|     \setlength{\unitlength}{809.90198811bp}% | ||||
|     \ifx\svgscale\undefined% | ||||
|       \relax% | ||||
|     \else% | ||||
|       \setlength{\unitlength}{\unitlength * \real{\svgscale}}% | ||||
|     \fi% | ||||
|   \else% | ||||
|     \setlength{\unitlength}{\svgwidth}% | ||||
|   \fi% | ||||
|   \global\let\svgwidth\undefined% | ||||
|   \global\let\svgscale\undefined% | ||||
|   \makeatother% | ||||
|   \begin{picture}(1,0.28566559)% | ||||
|     \lineheight{1}% | ||||
|     \setlength\tabcolsep{0pt}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=1]{abelian_angles_case1.pdf}}% | ||||
|     \put(0.3518944,0.09125162){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}% | ||||
|     \put(0.29170197,0.27182902){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}% | ||||
|     \put(0.04949014,0.27582159){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}% | ||||
|     \put(0.05471932,0.06332997){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{0}}>0$\end{tabular}}}}% | ||||
|     \put(0.13067907,0.24321104){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{\infty}}>0$\end{tabular}}}}% | ||||
|     \put(0.23150951,0.1397948){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{1}}<0$\end{tabular}}}}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=2]{abelian_angles_case1.pdf}}% | ||||
|     \put(0.88899646,0.08199125){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}% | ||||
|     \put(0.82880403,0.26256861){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}% | ||||
|     \put(0.79975601,0.00337498){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}% | ||||
|     \put(0.60719359,0.04081766){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{0}}>0$\end{tabular}}}}% | ||||
|     \put(0.75729421,0.18640081){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{\infty}}<0$\end{tabular}}}}% | ||||
|     \put(0.90060053,0.03539545){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{1}}>0$\end{tabular}}}}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=3]{abelian_angles_case1.pdf}}% | ||||
|   \end{picture}% | ||||
| \endgroup% | ||||
							
								
								
									
										
											BIN
										
									
								
								img/abelian_angles_case2.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/abelian_angles_case2.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										72
									
								
								img/abelian_angles_case2.pdf_tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								img/abelian_angles_case2.pdf_tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,72 @@ | ||||
| %% Creator: Inkscape 1.0.1 (3bc2e813f5, 2020-09-07), www.inkscape.org | ||||
| %% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 | ||||
| %% Accompanies image file 'abelian_angles_case2.pdf' (pdf, eps, ps) | ||||
| %% | ||||
| %% To include the image in your LaTeX document, write | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics{<filename>.pdf} | ||||
| %% To scale the image, write | ||||
| %%   \def\svgwidth{<desired width>} | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics[width=<desired width>]{<filename>.pdf} | ||||
| %% | ||||
| %% Images with a different path to the parent latex file can | ||||
| %% be accessed with the `import' package (which may need to be | ||||
| %% installed) using | ||||
| %%   \usepackage{import} | ||||
| %% in the preamble, and then including the image with | ||||
| %%   \import{<path to file>}{<filename>.pdf_tex} | ||||
| %% Alternatively, one can specify | ||||
| %%   \graphicspath{{<path to file>/}} | ||||
| %%  | ||||
| %% For more information, please see info/svg-inkscape on CTAN: | ||||
| %%   http://tug.ctan.org/tex-archive/info/svg-inkscape | ||||
| %% | ||||
| \begingroup% | ||||
|   \makeatletter% | ||||
|   \providecommand\color[2][]{% | ||||
|     \errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}% | ||||
|     \renewcommand\color[2][]{}% | ||||
|   }% | ||||
|   \providecommand\transparent[1]{% | ||||
|     \errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}% | ||||
|     \renewcommand\transparent[1]{}% | ||||
|   }% | ||||
|   \providecommand\rotatebox[2]{#2}% | ||||
|   \newcommand*\fsize{\dimexpr\f@size pt\relax}% | ||||
|   \newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}% | ||||
|   \ifx\svgwidth\undefined% | ||||
|     \setlength{\unitlength}{815.91228816bp}% | ||||
|     \ifx\svgscale\undefined% | ||||
|       \relax% | ||||
|     \else% | ||||
|       \setlength{\unitlength}{\unitlength * \real{\svgscale}}% | ||||
|     \fi% | ||||
|   \else% | ||||
|     \setlength{\unitlength}{\svgwidth}% | ||||
|   \fi% | ||||
|   \global\let\svgwidth\undefined% | ||||
|   \global\let\svgscale\undefined% | ||||
|   \makeatother% | ||||
|   \begin{picture}(1,0.33970577)% | ||||
|     \lineheight{1}% | ||||
|     \setlength\tabcolsep{0pt}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=1]{abelian_angles_case2.pdf}}% | ||||
|     \put(0.34930222,0.08757823){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}% | ||||
|     \put(0.33322541,0.31154998){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}% | ||||
|     \put(0.00227729,0.0034778){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}% | ||||
|     \put(0.31108783,0.13194775){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{0}}>0$\end{tabular}}}}% | ||||
|     \put(0.12907189,0.22138597){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{\infty}}>0$\end{tabular}}}}% | ||||
|     \put(0.02078152,0.12184104){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{1}}<0$\end{tabular}}}}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=2]{abelian_angles_case2.pdf}}% | ||||
|     \put(0.89163989,0.10596258){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}% | ||||
|     \put(0.87556311,0.32993431){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}% | ||||
|     \put(0.93643992,0.25380444){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}% | ||||
|     \put(0.85342556,0.15033205){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{0}}>0$\end{tabular}}}}% | ||||
|     \put(0.71757287,0.2510296){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{\infty}}<0$\end{tabular}}}}% | ||||
|     \put(0.56311923,0.14022539){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$n^3_{\vb{1}}>0$\end{tabular}}}}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=3]{abelian_angles_case2.pdf}}% | ||||
|   \end{picture}% | ||||
| \endgroup% | ||||
							
								
								
									
										
											BIN
										
									
								
								img/usual_abelian_angles.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/usual_abelian_angles.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										69
									
								
								img/usual_abelian_angles.pdf_tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										69
									
								
								img/usual_abelian_angles.pdf_tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,69 @@ | ||||
| %% Creator: Inkscape 1.0.1 (3bc2e813f5, 2020-09-07), www.inkscape.org | ||||
| %% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 | ||||
| %% Accompanies image file 'usual_abelian_angles.pdf' (pdf, eps, ps) | ||||
| %% | ||||
| %% To include the image in your LaTeX document, write | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics{<filename>.pdf} | ||||
| %% To scale the image, write | ||||
| %%   \def\svgwidth{<desired width>} | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics[width=<desired width>]{<filename>.pdf} | ||||
| %% | ||||
| %% Images with a different path to the parent latex file can | ||||
| %% be accessed with the `import' package (which may need to be | ||||
| %% installed) using | ||||
| %%   \usepackage{import} | ||||
| %% in the preamble, and then including the image with | ||||
| %%   \import{<path to file>}{<filename>.pdf_tex} | ||||
| %% Alternatively, one can specify | ||||
| %%   \graphicspath{{<path to file>/}} | ||||
| %%  | ||||
| %% For more information, please see info/svg-inkscape on CTAN: | ||||
| %%   http://tug.ctan.org/tex-archive/info/svg-inkscape | ||||
| %% | ||||
| \begingroup% | ||||
|   \makeatletter% | ||||
|   \providecommand\color[2][]{% | ||||
|     \errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}% | ||||
|     \renewcommand\color[2][]{}% | ||||
|   }% | ||||
|   \providecommand\transparent[1]{% | ||||
|     \errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}% | ||||
|     \renewcommand\transparent[1]{}% | ||||
|   }% | ||||
|   \providecommand\rotatebox[2]{#2}% | ||||
|   \newcommand*\fsize{\dimexpr\f@size pt\relax}% | ||||
|   \newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}% | ||||
|   \ifx\svgwidth\undefined% | ||||
|     \setlength{\unitlength}{355.02327987bp}% | ||||
|     \ifx\svgscale\undefined% | ||||
|       \relax% | ||||
|     \else% | ||||
|       \setlength{\unitlength}{\unitlength * \real{\svgscale}}% | ||||
|     \fi% | ||||
|   \else% | ||||
|     \setlength{\unitlength}{\svgwidth}% | ||||
|   \fi% | ||||
|   \global\let\svgwidth\undefined% | ||||
|   \global\let\svgscale\undefined% | ||||
|   \makeatother% | ||||
|   \begin{picture}(1,0.28211496)% | ||||
|     \lineheight{1}% | ||||
|     \setlength\tabcolsep{0pt}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=1]{usual_abelian_angles.pdf}}% | ||||
|     \put(0.05535326,0.27249852){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(t+1)}$\end{tabular}}}}% | ||||
|     \put(0.36075645,0.20500087){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(t)}$\end{tabular}}}}% | ||||
|     \put(0.23237907,0.08962382){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\alpha_{(t+1)}$\end{tabular}}}}% | ||||
|     \put(0.2317291,0.23896397){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\varepsilon_{(t)}$\end{tabular}}}}% | ||||
|     \put(0.13812738,0.02754771){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\alpha_{(t)}$\end{tabular}}}}% | ||||
|     \put(0.66413813,0.25966795){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(t)}$\end{tabular}}}}% | ||||
|     \put(0.81076894,0.08600387){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\alpha_{(t)}$\end{tabular}}}}% | ||||
|     \put(0.57193176,0.14830559){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\varepsilon_{(t)}$\end{tabular}}}}% | ||||
|     \put(0.71651726,0.02392776){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\alpha_{(t+1)}$\end{tabular}}}}% | ||||
|     \put(0.92707902,0.17737525){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(t+1)}$\end{tabular}}}}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=2]{usual_abelian_angles.pdf}}% | ||||
|   \end{picture}% | ||||
| \endgroup% | ||||
| @@ -84,16 +84,14 @@ We thus choose $X_{(t)}^1$ and $X_{(t)}^2$ to be the coordinates parallel to the | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \def\svgwidth{\linewidth} | ||||
|     \import{img/}{branesangles.pdf_tex} | ||||
|     \caption{% | ||||
|       D-branes as lines on $\R^2$. | ||||
|     } | ||||
|     \import{img}{branesangles.pdf_tex} | ||||
|     \caption{D-branes as lines on $\R^2$.} | ||||
|   \end{subfigure} | ||||
|   \hfill | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \def\svgwidth{\linewidth} | ||||
|     \import{img/}{welladapted.pdf_tex} | ||||
|     \import{img}{welladapted.pdf_tex} | ||||
|     \caption{Well adapted system of coordinates.} | ||||
|   \end{subfigure} | ||||
|   \caption{% | ||||
| @@ -388,7 +386,7 @@ We thus translated the rotations of the D-branes encoded in the matrices $R_{(t) | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.5\textwidth} | ||||
|   \import{img/}{branchcuts.pdf_tex} | ||||
|   \import{img}{branchcuts.pdf_tex} | ||||
|   \caption{% | ||||
|     Branch cut structure of the complex plane with $N_B = 4$. | ||||
|     Cuts are pictured as solid coloured blocks running from one intersection point to another at finite. | ||||
| @@ -606,7 +604,7 @@ We choose $\bt = 1$ in what follows. | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.35\linewidth} | ||||
|   \import{img/}{threebranes_plane.pdf_tex} | ||||
|   \import{img}{threebranes_plane.pdf_tex} | ||||
|   \caption{% | ||||
|     Fixing the \SL{2}{\R} invariance for $N_B = 3$ and $\bt = 1$ leads to a cut structure with all the cuts defined on the real axis towards $\omega_{\bt} = \infty$.} | ||||
|   \label{fig:hypergeometric_cuts} | ||||
| @@ -1810,273 +1808,359 @@ by the same symmetry. | ||||
| We can then study the two solutions in the two cases. | ||||
| We first perform the computations common to both cases and then we explicitly specialise the calculations. | ||||
| Computing the parameters of the hypergeometric functions of the first solution leads to: | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| %% TODO %% | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \begin{align} | ||||
| \left\{\begin{array}{l} | ||||
|   a^{(L)}=n_{\vb{0}}+n_{\vb{1}}+n_{\vb{\infty}}+\ffa^{(L)} | ||||
| \\ | ||||
|   b^{(L)}=n_{\vb{0}}+n_{\vb{1}}-n_{\vb{\infty}}+\ffb^{(L)} | ||||
| \\ | ||||
|   c^{(L)}=2 n_{\vb{0}}+\ffc^{(L)} | ||||
|        \end{array} | ||||
|   \right. | ||||
|   ,~~~~ | ||||
| \left\{\begin{array}{l} | ||||
|  a^{(R)}=m_{\vb{0}}+m_{\vb{1}}+m_{\vb{\infty}}+\ffa^{(R)} | ||||
| \\ | ||||
|   b^{(R)}=m_{\vb{0}}+m_{\vb{1}}-m_{\vb{\infty}}+\ffb^{(R)} | ||||
| \\ | ||||
|   c^{(R)}=2 m_{\vb{0}}+1+\ffc^{(R)} | ||||
|        \end{array} | ||||
|   \right., | ||||
| \end{align} | ||||
| where the values of the constants can be read from Table~\ref{tab:coeffs_k}. | ||||
| Then we compute the $K^{(L)}$ and $K^{(R)}$ factors using \eqref{eq:K_factor_value}. | ||||
| Therefore the first solution is: | ||||
| \begin{align} | ||||
|     \partial_\omega \chi_1 =& | ||||
|   (-\omega)^{n_{\vb{0}}+m_{\vb{0}}-1 } | ||||
|   (1-\omega)^{n_{\vb{1}}+m_{\vb{1}}-1 } \times | ||||
|                               \nonumber\\ | ||||
| \begin{equation} | ||||
|   \begin{cases} | ||||
|     a^{(L)} & = n_{\vb{0}} + n_{\vb{1}} + n_{\vb{\infty}} + \ffa^{(L)} | ||||
|     \\ | ||||
|     b^{(L)} & = n_{\vb{0}} + n_{\vb{1}} - n_{\vb{\infty}} + \ffb^{(L)} | ||||
|     \\ | ||||
|     c^{(L)} & = 2\, n_{\vb{0}} + \ffc^{(L)} | ||||
|   \end{cases}, | ||||
|   \qquad | ||||
|   \begin{cases} | ||||
|     a^{(R)} & = m_{\vb{0}} + m_{\vb{1}} + m_{\vb{\infty}} + \ffa^{(R)} | ||||
|     \\ | ||||
|     b^{(R)} & = m_{\vb{0}} + m_{\vb{1}} - m_{\vb{\infty}} + \ffb^{(R)} | ||||
|     \\ | ||||
|     c^{(R)} & = 2\, m_{\vb{0}} + 1 + \ffc^{(R)} | ||||
|   \end{cases}. | ||||
| \end{equation} | ||||
| The values of the constants are in \Cref{tab:coeffs_k}. | ||||
| We then derive the factors $K^{(L)}$ and $K^{(R)}$ using~\eqref{eq:K_factor_value}. | ||||
| The first solution reads: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \ipd{\omega} \cX_1 | ||||
|     & = | ||||
|     (-\omega)^{n_{\vb{0}} + m_{\vb{0}} - 1}\, | ||||
|     (1-\omega)^{n_{\vb{1}} + m_{\vb{1}} - 1}\, | ||||
|     \\ | ||||
|     & \times | ||||
|     \mqty( | ||||
|   F(a^{(L)}, b^{(L)}; c^{(L)}; \omega) \\ | ||||
|   K^{(L)} (-\omega)^{1-c^{(L)}} | ||||
|   F(a^{(L)}+1-c^{(L)}, b^{(L)}+1-c^{(L)}; 2-c^{(L)}; \omega) | ||||
|       \hyp{a^{(L)}}{b^{(L)}}{c^{(L)}}{\omega} | ||||
|       \\ | ||||
|       K^{(L)}\, (-\omega)^{1 - c^{(L)}}\, | ||||
|       \hyp{a^{(L)} + 1 - c^{(L)}}{b^{(L)} + 1 - c^{(L)}}{2 - c^{(L)}}{\omega} | ||||
|     ) | ||||
|   \nonumber\\ | ||||
|   &\times | ||||
|     \\ | ||||
|     & \times | ||||
|     \mqty( | ||||
|   F(a^{(R)}, b^{(R)}; c^{(R)}; \omega) \\ | ||||
|   K^{(R)} (-\omega)^{1-c^{(R)}} | ||||
|   F(a^{(R)}+1-c^{(R)}, b^{(R)}+1-c^{(R)}; 2-c^{(R)}; \omega) | ||||
|   )^T. | ||||
| \end{align} | ||||
|       \hyp{a^{(R)}}{b^{(R)}}{c^{(R)}}{\omega} | ||||
|       \\ | ||||
|       K^{(R)}\, (-\omega)^{1 - c^{(R)}}\, | ||||
|       \hyp{a^{(R)} + 1 - c^{(R)}}{b^{(R)} + 1 - c^{(R)}}{2 - c^{(R)}}{\omega} | ||||
|     ) | ||||
|   \end{split} | ||||
|   \label{eq:first_solution} | ||||
| \end{equation} | ||||
|  | ||||
| The parameters of the second solution read | ||||
| \begin{align} | ||||
|   & | ||||
|     \left\{\begin{array}{ll} | ||||
| \hat  a^{(L)}= n_{\vb{0}}+\hat n_{\vb{1}}+ \hat n_{\vb{\infty}} | ||||
|          +\hat {\ffa}^{(L)} | ||||
|          &= c^{(L)}-a^{(L)} | ||||
|          +\ffa^{(L)}-\ffc^{(L)}+ | ||||
|          \hat {\ffa}^{(L)}+1 | ||||
| \\ | ||||
| \hat   b^{(L)}=n_{\vb{0}}+\hat n_{\vb{1}}- \hat n_{\vb{\infty}}+ | ||||
|              \hat {\ffb}^{(L)} | ||||
|          &= c^{(L)}-b^{(L)} | ||||
|          +\ffb^{(L)}-\ffc^{(L)}+ | ||||
|          \hat {\ffb}^{(L)} | ||||
| \\ | ||||
|              \hat   c^{(L)}=2 n_{\vb{0}} +\hat {\ffc}^{(L)} | ||||
|              &= c^{(L)} -\ffc^{(L)}+\hat {\ffc}^{(L)} | ||||
|        \end{array} | ||||
|   \right., | ||||
|   \nonumber\\ | ||||
|   & | ||||
|     \left\{\begin{array}{ll} | ||||
| \hat  a^{(R)}= m_{\vb{0}}+\hat m_{\vb{1}}+ \hat m_{\vb{\infty}} | ||||
|          +\hat {\ffa}^{(R)} | ||||
|          &= c^{(R)}-a^{(R)} | ||||
|          +\ffa^{(R)}-\ffc^{(R)}+ | ||||
|          \hat {\ffa}^{(R)}+1 | ||||
| \\ | ||||
| \hat   b^{(R)}=m_{\vb{0}}+\hat m_{\vb{1}}- \hat m_{\vb{\infty}}+ | ||||
|              \hat {\ffb}^{(R)} | ||||
|          &= c^{(R)}-b^{(R)} | ||||
|          +\ffb^{(R)}-\ffc^{(R)}+ | ||||
|          \hat {\ffb}^{(R)} | ||||
| \\ | ||||
|              \hat   c^{(R)}=2 m_{\vb{0}} +\hat {\ffc}^{(R)} | ||||
|              &= c^{(R)} -\ffc^{(R)}+\hat {\ffc}^{(R)} | ||||
|        \end{array} | ||||
|                \right. | ||||
|                . | ||||
| \end{align} | ||||
| We see that the two cases differ only for the constants and not for | ||||
| the structure. | ||||
|  | ||||
|  | ||||
| \subsubsection{Case 1} | ||||
| \label{sec:case1} | ||||
| We start with the case $n_{\vb{0}}>m_{\vb{0}}$, $n_{\vb{1}}>m_{\vb{1}}$ and | ||||
| $n_{\vb{\infty}}> m_{\vb{\infty}}$ | ||||
| for which the second solution is | ||||
| $n_{\vb{0}}>m_{\vb{0}}$, $\hat n_{\vb{1}}< \hat m_{\vb{1}}$ and | ||||
| $\hat n_{\vb{\infty}}< \hat m_{\vb{\infty}}$ | ||||
| The parameters for the second are explicitly | ||||
| \begin{align} | ||||
|   & | ||||
|     \left\{\begin{array}{l} | ||||
| \hat  a^{(L)}= c^{(L)}-a^{(L)} | ||||
| \\ | ||||
| \hat   b^{(L)}= c^{(L)}-b^{(L)} | ||||
| \\ | ||||
| \hat   c^{(L)}= c^{(L)} | ||||
|        \end{array} | ||||
|   \right. | ||||
| ,~~~~ | ||||
|     \left\{\begin{array}{l} | ||||
| \hat  a^{(R)}= c^{(R)}-a^{(R)} | ||||
| \\ | ||||
| \hat   b^{(R)}= c^{(R)}-b^{(R)}+1 | ||||
| \\ | ||||
| \hat   c^{(R)}= c^{(R)} +1 | ||||
|        \end{array} | ||||
|                \right. | ||||
|                . | ||||
| \end{align} | ||||
| The $K$ factors are | ||||
| \begin{equation} | ||||
|   \hat K^{(L)}= K^{(L)},~~~~ | ||||
|   \hat K^{(R)}= \frac{K^{(R)}}{a^{(R)} (c^{(R)}-b^{(R)})} | ||||
|   . | ||||
|   \begin{split} | ||||
|     & | ||||
|     \begin{cases} | ||||
|       \hat{a}^{(L)} | ||||
|       & = | ||||
|       n_{\vb{0}} + \hat{n}_{\vb{1}} + \hat{n}_{\vb{\infty}} + \hat{\ffa}^{(L)} | ||||
|       = | ||||
|       c^{(L)} - a^{(L)} + \ffa^{(L)} - \ffc^{(L)} + \hat{\ffa}^{(L)} + 1 | ||||
|       \\ | ||||
|       \hat{b}^{(L)} | ||||
|       & = | ||||
|       n_{\vb{0}} + \hat{n}_{\vb{1}} - \hat{n}_{\vb{\infty}} + \hat{\ffb}^{(L)} | ||||
|       = | ||||
|       c^{(L)} - b^{(L)} + \ffb^{(L)} - \ffc^{(L)} + \hat{\ffb}^{(L)} | ||||
|       \\ | ||||
|       \hat{c}^{(L)} | ||||
|       & = | ||||
|       2\, n_{\vb{0}} + \hat{\ffc}^{(L)} | ||||
|       = | ||||
|       c^{(L)} - \ffc^{(L)} + \hat{\ffc}^{(L)} | ||||
|     \end{cases} | ||||
|     \\ | ||||
|     & | ||||
|     \begin{cases} | ||||
|       \hat{a}^{(R)} | ||||
|       & = | ||||
|       m_{\vb{0}} + \hat{n}_{\vb{1}} + \hat{n}_{\vb{\infty}} + \hat{\ffa}^{(R)} | ||||
|       = | ||||
|       c^{(R)} - a^{(R)} + \ffa^{(R)} - \ffc^{(R)} + \hat{\ffa}^{(R)} + 1 | ||||
|       \\ | ||||
|       \hat{b}^{(R)} | ||||
|       & = | ||||
|       m_{\vb{0}} + \hat{n}_{\vb{1}} - \hat{n}_{\vb{\infty}} + \hat{\ffb}^{(R)} | ||||
|       = | ||||
|       c^{(R)} - b^{(R)} + \ffb^{(R)} - \ffc^{(R)} + \hat{\ffb}^{(R)} | ||||
|       \\ | ||||
|       \hat{c}^{(R)} | ||||
|       & = | ||||
|       2\, m_{\vb{0}} + \hat{\ffc}^{(R)} | ||||
|       = | ||||
|       c^{(R)} - \ffc^{(R)} + \hat{\ffc}^{(R)} | ||||
|     \end{cases} | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| The two cases differ only for constant factors and not in structure. | ||||
|  | ||||
|  | ||||
| \paragraph{Case 1} | ||||
|  | ||||
| Consider $n_{\vb{0}} > m_{\vb{0}}$, $n_{\vb{1}} > m_{\vb{1}}$ and $n_{\vb{\infty}} > m_{\vb{\infty}}$. | ||||
| The associated second solution is $n_{\vb{0}} > m_{\vb{0}}$, $\hat{n}_{\vb{1}} < \hat{m}_{\vb{1}}$ and $\hat{n}_{\vb{\infty}} < \hat{m}_{\vb{\infty}}$. | ||||
| Its parameters are: | ||||
| \begin{equation} | ||||
|   \begin{cases} | ||||
|     \hat{a}^{(L)} & = c^{(L)} - a^{(L)} | ||||
|     \\ | ||||
|     \hat{b}^{(L)} & = c^{(L)} - b^{(L)} | ||||
|     \\ | ||||
|     \hat{c}^{(L)} & = c^{(L)} | ||||
|   \end{cases}, | ||||
|   \qquad | ||||
|   \begin{cases} | ||||
|     \hat{a}^{(R)} & = c^{(R)} - a^{(R)} | ||||
|     \\ | ||||
|     \hat{b}^{(R)} & = c^{(R)} - b^{(R)} + 1 | ||||
|     \\ | ||||
|     \hat{c}^{(R)} & = c^{(R)} + 1 | ||||
|   \end{cases}, | ||||
| \end{equation} | ||||
| The normalisation factors are | ||||
| \begin{equation} | ||||
|   \hat{K}^{(L)} = K^{(L)}, | ||||
|   \qquad | ||||
|   \hat{K}^{(R)} = \frac{K^{(R)}}{a^{(R)} (c^{(R)} - b^{(R)})}. | ||||
| \end{equation} | ||||
| Using Euler relation | ||||
| \begin{equation} | ||||
|   F(a,b;c; \omega) =(1-\omega)^{c-a-b} F(c-a,c-b;c; \omega) | ||||
|   , | ||||
|   \hyp{a}{b}{c}{\omega} = (1-\omega)^{c-a-b}\, \hyp{c-a}{c-b}{c}{\omega}, | ||||
| \end{equation} | ||||
| we can finally write the second solution as | ||||
| \begin{align} | ||||
|     \partial_\omega \chi_2 =& | ||||
|   (-\omega)^{n_{\vb{0}}+m_{\vb{0}}-1} | ||||
|   (1-\omega)^{n_{\vb{1}}+m_{\vb{1}}} \times | ||||
|                               \nonumber\\ | ||||
|   & \times | ||||
|   \mqty( | ||||
|   F(a^{(L)}, b^{(L)}; c^{(L)}; \omega) \\ | ||||
|   K^{(L)} (-\omega)^{1-c^{(L)}} | ||||
|   F(a^{(L)}+1-c^{(L)}, b^{(L)}+1-c^{(L)}; 2-c^{(L)}; \omega) | ||||
|   ) | ||||
|   \nonumber\\ | ||||
|   &\times | ||||
|   \mqty( | ||||
|   F(a^{(R)}+1, b^{(R)}; c^{(R)}+1; \omega) \\ | ||||
|   \hat K^{(R)} | ||||
| %  \frac{K^{(R)}}{a^{(R)} (c^{(R)}-b^{(R)})} | ||||
|   (-\omega)^{-c^{(R)}} | ||||
|   F(a^{(R)}+1-c^{(R)}, b^{(R)}-c^{(R)}; 1-c^{(R)}; \omega) | ||||
|   )^T | ||||
|   , | ||||
| \end{align} | ||||
| in which the left basis is exactly equal to the first solution while | ||||
| the right basis differs for $a^{(R)}\rightarrow a^{(R)}+1$ and | ||||
| $c^{(R)}\rightarrow c^{(R)}+1$. | ||||
|  | ||||
| \subsubsection{Case 2} | ||||
| \label{sec:case2} | ||||
|  | ||||
| Consider now the second case $n_{\vb{0}}>m_{\vb{0}}$, $n_{\vb{1}}>m_{\vb{1}}$ and | ||||
| $n_{\vb{\infty}}< m_{\vb{\infty}}$. | ||||
| For the second solution we have | ||||
| $n_{\vb{0}}> m_{\vb{0}}$, $\hat n_{\vb{1}}< \hat m_{\vb{1}}$ and | ||||
| $\hat n_{\vb{\infty}}> \hat m_{\vb{\infty}}$ and the parameters are explicitly | ||||
| \begin{align} | ||||
|   & | ||||
|     \left\{\begin{array}{l} | ||||
| \hat  a^{(L)}= c^{(L)}-a^{(L)}-1 | ||||
| \\ | ||||
| \hat   b^{(L)}= c^{(L)}-b^{(L)}+1 | ||||
| \\ | ||||
| \hat   c^{(L)}= c^{(L)} | ||||
|        \end{array} | ||||
|   \right. | ||||
| ,~~~~ | ||||
|     \left\{\begin{array}{l} | ||||
| \hat  a^{(R)}= c^{(R)}-a^{(R)} | ||||
| \\ | ||||
| \hat   b^{(R)}= c^{(R)}-b^{(R)} | ||||
| \\ | ||||
| \hat   c^{(R)}= c^{(R)} | ||||
|        \end{array} | ||||
|                \right. | ||||
|                . | ||||
| \end{align} | ||||
| The $K$ factors are | ||||
| we can write the second solution as | ||||
| \begin{equation} | ||||
|   \hat K^{(L)}= K^{(L)}\frac{(b^{(L)}-1)(c^{(L)}-a^{(L)}-1)}{a^{(L)}(c^{(L)}-b^{(L)})},~~~~ | ||||
|   \hat K^{(R)}= K^{(R)} | ||||
|   . | ||||
| \end{equation} | ||||
| Using Euler relation we can finally write the second solution for the | ||||
| second case as | ||||
| \begin{align} | ||||
|     \partial_\omega \chi_2 =& | ||||
|   (-\omega)^{n_{\vb{0}}+m_{\vb{0}}-1} | ||||
|   (1-\omega)^{n_{\vb{1}}+m_{\vb{1}}} \times | ||||
|                               \nonumber\\ | ||||
|   \begin{split} | ||||
|     \ipd{\omega} \cX_2 | ||||
|     & = | ||||
|     (-\omega)^{n_{\vb{0}} + m_{\vb{0}} - 1}\, | ||||
|     (1-\omega)^{n_{\vb{1}} + m_{\vb{1}}}\, | ||||
|     \\ | ||||
|     & \times | ||||
|     \mqty( | ||||
|   F(a^{(L)}+1, b^{(L)}-1; c^{(L)}; \omega) \\ | ||||
|   \hat K^{(L)} | ||||
| %K^{(L)}\frac{(b^{(L)}-1)(c^{(L)}-a^{(L)}-1)}{a^{(L)}(c^{(L)}-b^{(L)})} | ||||
|   (-\omega)^{1-c^{(L)}} | ||||
|   F(a^{(L)}+2-c^{(L)}, b^{(L)}-c^{(L)}; 2-c^{(L)}; \omega) | ||||
|       \hyp{a^{(L)}}{b^{(L)}}{c^{(L)}}{\omega} | ||||
|       \\ | ||||
|       K^{(L)}\, (-\omega)^{1 - c^{(L)}}\, | ||||
|       \hyp{a^{(L)} + 1 - c^{(L)}}{b^{(L)} + 1 - c^{(L)}}{2 - c^{(L)}}{\omega} | ||||
|     ) | ||||
|   \nonumber\\ | ||||
|   &\times | ||||
|     \\ | ||||
|     & \times | ||||
|     \mqty( | ||||
|   F(a^{(R)}, b^{(R)}; c^{(R)}; \omega) \\ | ||||
|   K^{(R)} (-\omega)^{1-c^{(R)}} | ||||
|   F(a^{(R)}+1-c^{(R)}, b^{(R)}+1-c^{(R)}; 2-c^{(R)}; \omega) | ||||
|   )^T | ||||
|   , | ||||
| \end{align} | ||||
| in which the right basis is exactly equal to the first solution while | ||||
| the left basis differs for $a^{(L)}\rightarrow a^{(L)}+1$ and | ||||
| $b^{(L)}\rightarrow b^{(L)}-1$. | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \subsection{The Solution} | ||||
|   In the previous section we have shown that there are two independent | ||||
|   solutions, therefore the general solution for | ||||
|   $\partial_\omega \chi$ obviously reads | ||||
|   \begin{equation} | ||||
| \partial_\omega \chi= C_1 \partial_\omega \chi_1 + C_2 \partial_\omega \chi_2 | ||||
| \label{eq:general_solution} | ||||
| . | ||||
|       \hyp{a^{(R)} + 1}{b^{(R)}}{c^{(R)} + 1}{\omega} | ||||
|       \\ | ||||
|       \hat{K}^{(R)}\, (-\omega)^{- c^{(R)}}\, | ||||
|       \hyp{a^{(R)} + 1 - c^{(R)}}{b^{(R)} - c^{(R)}}{1 - c^{(R)}}{\omega} | ||||
|     ) | ||||
|   \end{split}. | ||||
| \end{equation} | ||||
|   Therefore the final solution depends now only on two complex | ||||
|   constants, $C_1$ and $C_2$ which we can fix imposing the global conditions | ||||
|   in \eqref{eq:discontinuity_bc}, i.e. the second equation for all | ||||
|   $t$'s in the solution \eqref{eq:classical_solution}. | ||||
|   Since the three target space intersection | ||||
|   points always define a triangle on a 2-dimensional plane, we can | ||||
|   impose the boundary conditions knowing two angles formed by the sides (i.e. | ||||
|   the branes between two intersections) and the length of one of | ||||
|   them. | ||||
|   We already fixed the parameters of the rotations, then we need to | ||||
|   compute the length of one of the sides. | ||||
|   and consider, for instance, the length of the side | ||||
|   $X(x_{\bt+1},x_{\bt+1}) - X(x_{\bt-1}, x_{\bt-1})$: | ||||
| In this solution the left basis is exactly the same as in the first solution~\eqref{eq:first_solution} while the right basis differs for $a^{(R)} \mapsto a^{(R)} + 1$ and $c^{(R)} \mapsto c^{(R)} + 1$. | ||||
|  | ||||
|  | ||||
| \paragraph{Case 2} | ||||
|  | ||||
| Consider now the second option $n_{\vb{0}} > m_{\vb{0}}$, $n_{\vb{1}} > m_{\vb{1}}$ and $n_{\vb{\infty}} < m_{\vb{\infty}}$. | ||||
| For the second solution we have $n_{\vb{0}} > m_{\vb{0}}$, $\hat{n}_{\vb{1}} < \hat{m}_{\vb{1}}$ and $\hat{n}_{\vb{\infty}} > \hat{m}_{\vb{\infty}}$ and the parameters are explicitly: | ||||
| \begin{equation} | ||||
|   \begin{cases} | ||||
|     \hat{a}^{(L)} & = c^{(L)} - a^{(L)} - 1 | ||||
|     \\ | ||||
|     \hat{b}^{(L)} & = c^{(L)} - b^{(L)} - 1 | ||||
|     \\ | ||||
|     \hat{c}^{(L)} & = c^{(L)} | ||||
|   \end{cases}, | ||||
|   \qquad | ||||
|   \begin{cases} | ||||
|     \hat{a}^{(R)} & = c^{(R)} - a^{(R)} | ||||
|     \\ | ||||
|     \hat{b}^{(R)} & = c^{(R)} - b^{(R)} | ||||
|     \\ | ||||
|     \hat{c}^{(R)} & = c^{(R)} | ||||
|   \end{cases}, | ||||
| \end{equation} | ||||
| The normalisation factors $K$ are: | ||||
| \begin{equation} | ||||
|   \hat{K}^{(L)} | ||||
|   = | ||||
|   K^{(L)}\, | ||||
|   \frac{(b^{(L)} - 1)(c^{(L)} - a^{(L)} - 1)}{a^{(L)} (c^{(L)} - b^{(L)})}, | ||||
|   \qquad | ||||
|   \hat{K}^{(R)} | ||||
|   = | ||||
|   K^{(R)}. | ||||
| \end{equation} | ||||
| Using Euler relation we write the second solution for the second case as | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \ipd{\omega} \cX_2 | ||||
|     & = | ||||
|     (-\omega)^{n_{\vb{0}} + m_{\vb{0}} - 1}\, | ||||
|     (1-\omega)^{n_{\vb{1}} + m_{\vb{1}}}\, | ||||
|     \\ | ||||
|     & \times | ||||
|     \mqty( | ||||
|       \hyp{a^{(L)} + 1}{b^{(L)} - 1}{c^{(L)}}{\omega} | ||||
|       \\ | ||||
|       \hat{K}^{(L)}\, (-\omega)^{1 - c^{(L)}}\, | ||||
|       \hyp{a^{(L)} + 2 - c^{(L)}}{b^{(L)} - c^{(L)}}{2 - c^{(L)}}{\omega} | ||||
|     ) | ||||
|     \\ | ||||
|     & \times | ||||
|     \mqty( | ||||
|       \hyp{a^{(R)}}{b^{(R)}}{c^{(R)}}{\omega} | ||||
|       \\ | ||||
|       \hat{K}^{(R)}\, (-\omega)^{- c^{(R)}}\, | ||||
|       \hyp{a^{(R)} + 1 - c^{(R)}}{b^{(R)} + 1 - c^{(R)}}{2 - c^{(R)}}{\omega} | ||||
|     ) | ||||
|   \end{split}. | ||||
| \end{equation} | ||||
| The right basis is the same as in the first solution while the left basis differs for $a^{(L)} \mapsto a^{(L)} + 1$ and $b^{(L)} \mapsto b^{(L)} - 1$. | ||||
|  | ||||
|  | ||||
| \subsubsection{The Solution} | ||||
|    | ||||
| We showed that there are two independent solutions. | ||||
| The general solution for $\ipd{\omega} \cX$ is therefore: | ||||
| \begin{equation} | ||||
|   \ipd{\omega} \cX | ||||
|   = | ||||
|   C_1\, \ipd{\omega} \cX_1 + C_2\, \ipd{\omega} \cX_2. | ||||
|   \label{eq:general_solution} | ||||
| \end{equation} | ||||
| The final solution depends only on two complex constants, $C_1$ and $C_2$, which we can fix imposing the global conditions in \eqref{eq:discontinuity_bc}, that is the second equation in the solution \eqref{eq:classical_solution}. | ||||
| As the three intersection points in target space always define a triangle on a 2-dimensional plane, we impose the boundary conditions knowing two angles formed by the sides of the triangle (i.e.\ the branes between two intersections) and the length of one of them. | ||||
| Since we already fixed the parameters associated to the rotations, we need to compute the length of one of the sides. | ||||
| Consider for instance the length of $X(x_{\bt+1},\, x_{\bt+1}) - X(x_{\bt-1},\, x_{\bt-1})$. | ||||
| Explicitly we impose the four real equations in spinorial formalism | ||||
|   \begin{equation} | ||||
|     \int_0^1 \dd{\omega} \partial_\omega \cX(\omega) | ||||
| \begin{equation} | ||||
|   \finiteint{\omega}{0}{1} | ||||
|   \ipd{\omega} \cX(\omega) | ||||
|   + | ||||
|   U_L^{\dagger}(\vb{n}_{{\bt}}) | ||||
|     ~\int_0^1 \dd{\bar\omega} \partial_\omega \cX(\bar\omega) | ||||
|     ~U_R(\vb{m}_{{\bt}}) | ||||
|   \left[ | ||||
|     \finiteint{\bomega}{0}{1} \ipd{\bomega} \cX(\bomega) | ||||
|   \right] | ||||
|   U_R(\vb{m}_{{\bt}}) | ||||
|   = | ||||
|   f_{{\bt+1}\,(s)}-f_{{\bt-1}\,(s)} | ||||
|   , | ||||
|   f_{{\bt+1}\, (s)} - f_{{\bt-1}\, (s)}, | ||||
| \end{equation} | ||||
| where we have used the mapping \eqref{eq:def_omega} to write the | ||||
| integrals directly in $\omega$ variables. | ||||
| This equation has then enough degrees of freedom to fix completely | ||||
| the two complex parameters $C_1$ and $C_2$, | ||||
| thus completing the determination of the full solution in its general form. | ||||
| where we used the mapping~\eqref{eq:def_omega} to write the integrals in the $\omega$ variables. | ||||
| This equation has enough degrees of freedom to fix completely the two complex parameters $C_1$ and $C_2$. | ||||
| The final generic solution is thus uniquely determined. | ||||
|  | ||||
|  | ||||
| \subsection{Recovering the \texorpdfstring{\SU{2}}{SU(2)} and the Abelian Solution} | ||||
|  | ||||
| In this section we show how this general procedure includes both the solution with pure \SU{2} rotation matrices and the solution with Abelian rotations of the D-branes. | ||||
| The Abelian solution emerges from this construction as a limit and produces the known result for Abelian $\SO{2} \times \SO{2} \subset \SO{4}$ rotations in the case of a factorised space $\R^4 = \R^2 \times \R^2$. | ||||
|  | ||||
| \subsubsection{Abelian Limit of the \texorpdfstring{\SU{2}}{SU(2)} Monodromies} | ||||
|  | ||||
| Here we compute the parameter $\vb{n}_{\vb{1}}$ given two Abelian rotation in $\upomega = 0$ and $\upomega = \infty$ using the standard expression for two \SU{2} element multiplication given in~\eqref{eq:product_in_SU2} in~\Cref{sec:isomorphism}. | ||||
| Results are shown in~\Cref{tab:Abelian_composition}. | ||||
| \begin{table}[tbp] | ||||
|   \centering | ||||
|   \begin{tabular}{@{}rr|cc|cr|c@{}} | ||||
|     \toprule | ||||
|     $\vb{n}_{\vb{0}}$                 & | ||||
|     $\vb{n}_{\vb{\infty}}$            & | ||||
|     \multicolumn{2}{c|}{relations}    & | ||||
|     $n_{\vb{1}}$                      & | ||||
|     $\vb{n}_{\vb{1}}$                 & | ||||
|     $\sum\limits_{t} \vb{n}_{\vb{t}}$ | ||||
|     \\ | ||||
|     \midrule | ||||
|     $n_{\vb{0}}\, \vb{k}$                        & | ||||
|     $n_{\vb{\infty}}\, \vb{k}$                   & | ||||
|     $n_{\vb{0}} + n_{\vb{\infty}} < \frac{1}{2}$ & | ||||
|     $n_{\vb{0}} \lessgtr n_{\vb{\infty}}$        & | ||||
|     $n_{\vb{0}} + n_{\vb{\infty}}$               & | ||||
|     $-n_{\vb{1}}\, \vb{k}$                       & | ||||
|     $\vb{0}$ | ||||
|     \\ | ||||
|     $n_{\vb{0}}\, \vb{k}$                        & | ||||
|     $n_{\vb{\infty}}\, \vb{k}$                   & | ||||
|     $n_{\vb{0}} + n_{\vb{\infty}} > \frac{1}{2}$ & | ||||
|     $n_{\vb{0}} \lessgtr n_{\vb{\infty}}$        & | ||||
|     $1 - (n_{\vb{0}} + n_{\vb{\infty}})$         & | ||||
|     $n_{\vb{1}}\, \vb{k}$                        & | ||||
|     $\vb{k}$ | ||||
|     \\ | ||||
|     $n_{\vb{0}}\, \vb{k}$                               & | ||||
|     $-n_{\vb{\infty}}\, \vb{k}$                         & | ||||
|     $n_{\vb{0}} + n_{\vb{\infty}} \lessgtr \frac{1}{2}$ & | ||||
|     $n_{\vb{0}} > n_{\vb{\infty}}$                      & | ||||
|     $n_{\vb{0}} - n_{\vb{\infty}}$                      & | ||||
|     $-n_{\vb{1}}\, \vb{k}$                              & | ||||
|     $\vb{0}$ | ||||
|     \\ | ||||
|     $n_{\vb{0}}\, \vb{k}$                               & | ||||
|     $-n_{\vb{\infty}}\, \vb{k}$                         & | ||||
|     $n_{\vb{0}} + n_{\vb{\infty}} \lessgtr \frac{1}{2}$ & | ||||
|     $n_{\vb{0}} < n_{\vb{\infty}}$                      & | ||||
|     $-n_{\vb{0}} + n_{\vb{\infty}}$                     & | ||||
|     $n_{\vb{1}}\, \vb{k}$                               & | ||||
|     $\vb{0}$ | ||||
|     \\ | ||||
|     \bottomrule | ||||
|   \end{tabular} | ||||
|   \caption{Abelian limit of \SU{2} monodromies} | ||||
|   \label{tab:Abelian_composition} | ||||
| \end{table} | ||||
| Under the parity transformation $P_2$ the previous four cases are grouped | ||||
| into two sets $\{ n_{\vb{1}} = n_{\vb{0}} + n_{\vb{\infty}},\, \hat{n}_{\vb{1}} = -n_{\vb{0}} + \hat{n}_{\vb{\infty}} \}$ and $\{ n_{\vb{1}} = 1 - (n_{\vb{0}} + n_{\vb{\infty}}),\, \hat{n}_{\vb{1}} = n_{\vb{0}} - \hat{n}_{\vb{\infty}} \}$. | ||||
| Geometrically the first group corresponds to the same geometry which is depicted in~\Cref{fig:Abelian_angles_1} while the second in~\Cref{fig:Abelian_angles_2}. | ||||
| We can in fact arbitrarily fix the orientation of $D_{(3)}$ to obtain these geometrical interpretations. | ||||
| Since $n^3_{\vb{0}} > 0$ we can then fix the orientation of $D_{{1}}$. | ||||
| $D_{{2}}$ is then fixed relatively to $D_{{1}}$ by the sign of $n^3_{\vb{\infty}}$. | ||||
| The sign of $n^3_{\vb{1}}$ then follows. | ||||
|  | ||||
| Differently from the usual geometric Abelian case, this group analytical approach distinguishes between the possible orientations of the D-branes. | ||||
| In fact we can compare all possible D-brane orientation and the group parameter $n^3$ with the angles in the Abelian configuration in~\Cref{fig:usual_Abelian_angles}. | ||||
| The relation between the usual Abelian paramter $\epsilon_{\vb{t}}$ and $n_{\vb{t}}^3$ is | ||||
| \begin{equation} | ||||
|   \varepsilon_{\vb{t}} | ||||
|   = | ||||
|   n_{\vb{t}}^3 + \theta(-n^3_{\vb{t}}) | ||||
|   \label{eq:Abelian_vs_n_simple_case}, | ||||
| \end{equation} | ||||
| when all $m = 0$. | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|     \centering | ||||
|     \def\svgwidth{0.8\textwidth} | ||||
|     \import{img}{abelian_angles_case1.pdf_tex} | ||||
|     \caption{% | ||||
|       The Abelian limit when the triangle has all acute angles. | ||||
|       This corresponds to the cases  $n_{\vb{0}} + n_{\vb{\infty}}< \frac{1}{2}$ and $n_{\vb{0}}< n_{\vb{\infty}}$ which are exchanged under the parity $P_2$.} | ||||
|     \label{fig:Abelian_angles_1} | ||||
| \end{figure} | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|     \centering | ||||
|     \def\svgwidth{0.8\textwidth} | ||||
|     \import{img}{abelian_angles_case2.pdf_tex} | ||||
|     \caption{% | ||||
|       The Abelian limit when the triangle has one obtuse angle. | ||||
|       This corresponds to the cases $n_{\vb{0}} + n_{\vb{\infty}}> \frac{1}{2}$ and $n_{\vb{0}}> n_{\vb{\infty}}$ which are exchanged under the parity $P_2$.} | ||||
|     \label{fig:Abelian_angles_2} | ||||
| \end{figure} | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.8\textwidth} | ||||
|   \import{img}{usual_abelian_angles.pdf_tex} | ||||
|   \caption{% | ||||
|     The geometrical angles used in the usual geometrical approach to the Abelian configuration do not distinguish among the possible branes orientations. | ||||
|     In fact we have $0 \le \alpha < 1$ and $0 < \upvarepsilon < 1$. | ||||
|   } | ||||
|   \label{fig:usual_Abelian_angles} | ||||
| \end{figure} | ||||
|  | ||||
| % vim: ft=tex | ||||
|   | ||||
		Reference in New Issue
	
	Block a user