Add D-branes at angles and doubling trick
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								img/branchcuts.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/branchcuts.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										65
									
								
								img/branchcuts.pdf_tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										65
									
								
								img/branchcuts.pdf_tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,65 @@ | ||||
| %% Creator: Inkscape 1.0 (4035a4fb49, 2020-05-01), www.inkscape.org | ||||
| %% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010 | ||||
| %% Accompanies image file 'branchcuts.pdf' (pdf, eps, ps) | ||||
| %% | ||||
| %% To include the image in your LaTeX document, write | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics{<filename>.pdf} | ||||
| %% To scale the image, write | ||||
| %%   \def\svgwidth{<desired width>} | ||||
| %%   \input{<filename>.pdf_tex} | ||||
| %%  instead of | ||||
| %%   \includegraphics[width=<desired width>]{<filename>.pdf} | ||||
| %% | ||||
| %% Images with a different path to the parent latex file can | ||||
| %% be accessed with the `import' package (which may need to be | ||||
| %% installed) using | ||||
| %%   \usepackage{import} | ||||
| %% in the preamble, and then including the image with | ||||
| %%   \import{<path to file>}{<filename>.pdf_tex} | ||||
| %% Alternatively, one can specify | ||||
| %%   \graphicspath{{<path to file>/}} | ||||
| %%  | ||||
| %% For more information, please see info/svg-inkscape on CTAN: | ||||
| %%   http://tug.ctan.org/tex-archive/info/svg-inkscape | ||||
| %% | ||||
| \begingroup% | ||||
|   \makeatletter% | ||||
|   \providecommand\color[2][]{% | ||||
|     \errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}% | ||||
|     \renewcommand\color[2][]{}% | ||||
|   }% | ||||
|   \providecommand\transparent[1]{% | ||||
|     \errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}% | ||||
|     \renewcommand\transparent[1]{}% | ||||
|   }% | ||||
|   \providecommand\rotatebox[2]{#2}% | ||||
|   \newcommand*\fsize{\dimexpr\f@size pt\relax}% | ||||
|   \newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}% | ||||
|   \ifx\svgwidth\undefined% | ||||
|     \setlength{\unitlength}{238.15880963bp}% | ||||
|     \ifx\svgscale\undefined% | ||||
|       \relax% | ||||
|     \else% | ||||
|       \setlength{\unitlength}{\unitlength * \real{\svgscale}}% | ||||
|     \fi% | ||||
|   \else% | ||||
|     \setlength{\unitlength}{\svgwidth}% | ||||
|   \fi% | ||||
|   \global\let\svgwidth\undefined% | ||||
|   \global\let\svgscale\undefined% | ||||
|   \makeatother% | ||||
|   \begin{picture}(1,0.76153711)% | ||||
|     \lineheight{1}% | ||||
|     \setlength\tabcolsep{0pt}% | ||||
|     \put(0,0){\includegraphics[width=\unitlength,page=1]{branchcuts.pdf}}% | ||||
|     \put(0.96250584,0.22924726){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$x$\end{tabular}}}}% | ||||
|     \put(0.26509366,0.76435918){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$y$\end{tabular}}}}% | ||||
|     \put(0.63886437,0.19725284){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(2)}$\end{tabular}}}}% | ||||
|     \put(0.37615789,0.37851589){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(3)}$\end{tabular}}}}% | ||||
|     \put(0.1552996,0.19562747){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(4)}$\end{tabular}}}}% | ||||
|     \put(0.8804906,0.32528402){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}% | ||||
|     \put(-0.0034854,0.32147455){\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$D_{(1)}$\end{tabular}}}}% | ||||
|   \end{picture}% | ||||
| \endgroup% | ||||
							
								
								
									
										176
									
								
								sec/app/isomorphism.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								sec/app/isomorphism.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | ||||
| In this appendix we explain the conventions used for \SU{2} and show the details of the isomorphism between \SO{4} and a class of equivalence of $\SU{2} \times \SU{2}$. | ||||
|  | ||||
|  | ||||
| \subsection{Conventions} | ||||
|  | ||||
| We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that: | ||||
| \begin{equation} | ||||
|   U(\vb{n}) | ||||
|   = | ||||
|   \cos(2 \pi n)\, \1_2 | ||||
|   + | ||||
|   i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n), | ||||
|   \label{eq:su2parametrisation} | ||||
| \end{equation} | ||||
| where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$. | ||||
| We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$. | ||||
| The parametrisation is such that: | ||||
| \begin{eqnarray} | ||||
|   U^*(\vb{n}) | ||||
|   & = & | ||||
|   \sigma^2\, U(\vb{n})\, \sigma^2 | ||||
|   = | ||||
|   U(\widetilde{\vb{n}}), | ||||
|   \\ | ||||
|   U^{\dagger}(\vb{n}) | ||||
|   & = & | ||||
|   U^T(\widetilde{\vb{n}}) | ||||
|   = | ||||
|   U(-\vb{n}), | ||||
|   \\ | ||||
|   -U(\vb{n}) | ||||
|   & = & | ||||
|   U(\widehat{\vb{n}}) | ||||
|   \label{eq:U_props} | ||||
| \end{eqnarray} | ||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \left( -n^1, n^2, -n^3 \right)$ and $\widehat{\vb{n}} = - \left(\frac{1}{2} -n \right)\, \frac{\vb{n}}{n}$. | ||||
|  | ||||
| The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{m})$ has an explicit realisation as: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \cos(2 \pi \norm{\vb{n} \circ \vb{m}}) | ||||
|     & = | ||||
|     \cos(2 \pi n)\, \cos(2 \pi m) | ||||
|     - | ||||
|     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m}, | ||||
|     \\ | ||||
|     \sin(2 \pi \norm{\vb{n} \circ \vb{m}})\, | ||||
|     \frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}} | ||||
|     & = | ||||
|     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m} | ||||
|     + | ||||
|     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}. | ||||
|   \end{split} | ||||
|   \label{eq:product_in_SU2} | ||||
| \end{equation} | ||||
|  | ||||
| \subsection{The Isomorphism} | ||||
|  | ||||
| Let $I = 1,\, 2,\, 3,\, 4$ and define: | ||||
| \begin{equation} | ||||
|   \tau_I = \left( i\, \1_2,\, \vb{\sigma} \right), | ||||
| \end{equation} | ||||
| where $\vb{\sigma} = \left( \sigma^1,\, \sigma^2,\, \sigma^3 \right)$ are the Pauli matrices. | ||||
| It is possible to show that: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \left( \tau_I \right)^{\dagger} | ||||
|     & = | ||||
|     \eta_{IJ}\, {\tau}^I, | ||||
|     \\ | ||||
|     \left( \tau^I \right)^* | ||||
|     & = | ||||
|     -\sigma_2\, \tau_I\, \sigma_2, | ||||
|   \end{split} | ||||
|   \label{eq:tau_props} | ||||
| \end{equation} | ||||
| where $\eta_{IJ} = \mathrm{diag}(-1,1,1,1)$. | ||||
| The following relations are then a natural consequence: | ||||
| \begin{eqnarray} | ||||
|   \tr(\tau_I) | ||||
|   & = & | ||||
|   2\, i\, \delta_{I1}, | ||||
|   \\ | ||||
|   \tr(\tau_I \tau_J) | ||||
|   & = & | ||||
|   2\, \eta_{IJ}, | ||||
|   \\ | ||||
|   \tr(\tau_I \left( \tau_J \right)^{\dagger}) | ||||
|   & = & | ||||
|   2\, \delta_{IJ}. | ||||
| \end{eqnarray} | ||||
|  | ||||
| Now consider a vector in the spinor representation: | ||||
| \begin{equation} | ||||
|   X_{(s)} = X^I\, \tau_I. | ||||
| \end{equation} | ||||
| We can recover the components using the previous properties: | ||||
| \begin{equation} | ||||
|   X^I | ||||
|   = | ||||
|   \frac{1}{2}\, \delta^{IJ}\, | ||||
|   \tr(X_{(s)} \left( \tau_J \right)^{\dagger}) | ||||
|   = | ||||
|   \frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J), | ||||
| \end{equation} | ||||
| where the trace acts on the space of the $\tau$ matrices. | ||||
| If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     X_{(s)}^{\dagger} | ||||
|     & = | ||||
|     X^I\, \eta_{IJ}\, \tau^J | ||||
|     = | ||||
|     \frac{1}{2} \tr(X_{(s)} \tau_I)\, \tau^I, | ||||
|     \\ | ||||
|     X_{(s)}^* | ||||
|     & = | ||||
|     - \sigma_2\, X_{(s)}\, \sigma_2. | ||||
|   \end{split} | ||||
|   \label{eq:X_dagger} | ||||
| \end{equation} | ||||
|  | ||||
| A rotation in spinor representation is defined as: | ||||
| \begin{equation} | ||||
|   X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m}) | ||||
| \end{equation} | ||||
| and it is equivalent to: | ||||
| \begin{equation} | ||||
|   \left( X' \right)^I | ||||
|   = | ||||
|   \tensor{R}{^I_J}\, | ||||
|   X^J | ||||
| \end{equation} | ||||
| through | ||||
| \begin{equation} | ||||
|   R_{IJ} | ||||
|   = | ||||
|   \frac{1}{2} | ||||
|   \tr( | ||||
|     \left( \tau_I \right)^{\dagger}\, | ||||
|     U_{L}(\vb{n})\, | ||||
|     \tau_J\, | ||||
|     U_{R}^{\dagger}(\vb{m}) | ||||
|   ). | ||||
| \end{equation} | ||||
| The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since: | ||||
| \begin{equation} | ||||
|   \tr(X'_{(s)}\, (X')^{\dagger}_{(s)}) | ||||
|   = | ||||
|   \tr(X_{(s)}\, X^{\dagger}_{(s)}) | ||||
|   \qquad | ||||
|   \Rightarrow | ||||
|   \qquad | ||||
|   \finitesum{K}{1}{4} R_{IK} R^*_{JK} = \delta_{I \,J}. | ||||
| \end{equation} | ||||
| From the second equation in \eqref{eq:tau_props} and the first equation in \eqref{eq:U_props} we then get the reality condition on $R$: | ||||
| \begin{equation} | ||||
|   R_{NM} | ||||
|   = | ||||
|   \frac{1}{2}\, \eta_{NI}\, \eta_{MJ}\, | ||||
|   \tr(\tau_I ^{\dagger}\, U_{R}\, \tau_J\, U_{L}^{\dagger}) | ||||
|   = | ||||
|   \frac{1}{2} | ||||
|   \tr(\tau_N\, U_{R}\, \tau_M^\dagger\, U_{L}^{\dagger}) | ||||
|   = | ||||
|   R_{NM}^*. | ||||
| \end{equation} | ||||
| Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$. | ||||
| Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$. | ||||
| Since $\left\lbrace U_{L},\, U_{R} \right\rbrace$ and $\left\lbrace -U_{L},\, -U_{R} \right\rbrace$ generate the same \SO{4} matrix then the correct isomorphism takes the form: | ||||
| \begin{equation} | ||||
|   \SO{4} | ||||
|   \cong | ||||
|   \frac{\SU{2} \times \SU{2}}{\Z_2}. | ||||
| \end{equation} | ||||
|  | ||||
| @@ -142,4 +142,440 @@ The superscript $\parallel$ represents any of the coordinates parallel to the D- | ||||
| Notice that the additional $\Z_2$ factor in $\rS\left( \OO{2} \times \OO{2} \right)$ with respect to $\SO{2} \times \SO{2}$ can be used to set $g_{(t)}^{\perp} \ge 0$. | ||||
|  | ||||
|  | ||||
| \subsubsection{Boundary Conditions for Branes at Angles} | ||||
|  | ||||
| The peculiar embedding of the D-branes has natural consequences on the boundary conditions of the open strings. | ||||
| Let $\tau_E = i \tau$ be the Wick rotated time direction. | ||||
| We define the usual upper plane coordinates: | ||||
| \begin{eqnarray} | ||||
|   u | ||||
|   = | ||||
|   x + i y | ||||
|   = | ||||
|   e^{\tau_E + i \sigma} | ||||
|   & \in & | ||||
|   \ccH \cup \left\lbrace z \in \C \mid \Im z = 0 \right\rbrace, | ||||
|   \\ | ||||
|   \bu | ||||
|   = | ||||
|   x - i y | ||||
|   = | ||||
|   e^{\tau_E - i \sigma} | ||||
|   & \in & | ||||
|   \overline{\ccH} \cup \left\lbrace z \in \C \mid \Im z = 0 \right\rbrace, | ||||
| \end{eqnarray} | ||||
| where $\ccH = \left\lbrace z \in \C \mid \Im z > 0 \right\rbrace$ is the upper complex plane and $\overline{\ccH} = \left\lbrace z \in \C \mid \Im z < 0 \right\rbrace$ is the lower complex plane. | ||||
| In conformal coordinates $u$ and $\bu$, D-branes at $\sigma = 0$ and $\sigma = \pi$ are mapped onto the real axis $\Im z = 0$. | ||||
| We use the symbol $D_{(t)}$ to label both the brane and the interval representing it on the real axis of the upper half plane: | ||||
| \begin{equation} | ||||
|   D_{(t)} = \left[ x_{(t)}, x_{(t-1)} \right], | ||||
|   \qquad | ||||
|   t = 2,\, 3,\, \dots,\, N_B, | ||||
|   \qquad | ||||
|   x_{(t)} < x_{(t-1)}. | ||||
| \end{equation} | ||||
| The points $x_{(t)}$ and $x_{(t-1)}$ represent the worldsheet intersection points of the brane $D_{(t)}$ with the branes $D_{(t+1)}$ and $D_{(t-1)}$ respectively. | ||||
| The choice of the intervals must be carefully considered: since the D-branes are defined modulo $N_B$, the shorthand for the interval $D_{(1)} = \left[ x_{(1)}, x_{(N_B)} \right]$ should actually be: | ||||
| \begin{equation} | ||||
|   D_{(1)} | ||||
|   = | ||||
|   \left[ x_{(1)}, +\infty \right) \cup \left( -\infty, x_{(N_B)} \right]. | ||||
| \end{equation} | ||||
|  | ||||
| In the global coordinates system associated to the subspace $\R^4 \subset \ccM^{1, d+4}$ where D-branes intersect, the relevant part of the action in conformal gauge is: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     S_{\R^4} | ||||
|     & = | ||||
|     \frac{1}{2 \pi \ap} | ||||
|     \iint\limits_{\ccH} | ||||
|     \dd{u} \dd{\bu}\, | ||||
|     \ipd{u} X^I\, \ipd{\bu} X^J\, | ||||
|     \eta_{IJ} | ||||
|     \\ | ||||
|     & = | ||||
|     \frac{1}{4 \pi \ap} | ||||
|     \iint\limits_{\R \times \R^+} | ||||
|     \dd{x}\dd{y}\, | ||||
|     \left( | ||||
|       \ipd{x} X^I\, \ipd{x} X^J | ||||
|       + | ||||
|       \ipd{y} X^I\, \ipd{y} X^J | ||||
|     \right)\, | ||||
|     \eta_{IJ}, | ||||
|   \end{split} | ||||
|   \label{eq:string_action} | ||||
| \end{equation} | ||||
| where $2\, \ipd{u} = \ipd{x} - i\, \ipd{y}$ and $2\, \ipd{\bu} = \ipd{x} + i\, \ipd{y}$. | ||||
| The \eom in these coordinates are: | ||||
| \begin{equation} | ||||
|   \ipd{u} \ipd{\bu} X^I( u, \bu ) | ||||
|   = | ||||
|   \frac{1}{4} | ||||
|   \left( \ipd{x}^2 + \ipd{y}^2 \right) X^I( x+iy, x-iy ) | ||||
|   = | ||||
|   0. | ||||
|   \label{eq:string_equation_of_motion} | ||||
| \end{equation} | ||||
| Their solution factorises as usual in holomorphic and anti-holomorphic components $X^I( u, \bu ) = X^I( u ) + \bX^I( \bu )$. | ||||
|  | ||||
| In the well adapted frame~\eqref{eq:well-adapt-embed} we describe an open string with one of the endpoints on $D_{(t)}$ through the relations: | ||||
| \begin{eqnarray} | ||||
|   \eval{\ipd{\sigma} X^i_{(t)}( \tau, \sigma )}_{\sigma = 0} | ||||
|   = | ||||
|   \eval{\ipd{y} X^i_{(t)}( u, \bu )}_{y = 0} | ||||
|   & = & | ||||
|   0, | ||||
|   \qquad | ||||
|   i = 1,\, 2, | ||||
|   \label{eq:neumann_bc} | ||||
|   \\ | ||||
|   X^m_{(t)}( \tau, 0 ) | ||||
|   = | ||||
|   X^m_{(t)}( x, x ) | ||||
|   & = & | ||||
|   0, | ||||
|   \qquad | ||||
|   m = 3,\, 4, | ||||
|   \label{eq:dirichlet_bc} | ||||
| \end{eqnarray} | ||||
| where $x \in D_{(t)} = \left[ x_t, x_{t-1} \right]$ and the index $i$ labels the Neumann boundary conditions while $m$ labels the Dirichlet coordinates associated to the direction orthogonal to the D-branes. | ||||
|  | ||||
| As the presence of $g_{(t)}^m$ in \eqref{eq:brane_rotation} and \eqref{eq:dirichlet_bc} may complicate the analysis, we consider the derivative along the boundary direction of \eqref{eq:dirichlet_bc} to remove the dependence on the translation vector. | ||||
| This procedure produces simpler boundary conditions which are nevertheless not equivalent to the original~\eqref{eq:neumann_bc} and \eqref{eq:dirichlet_bc}: they will be recovered later by adding further constraints. | ||||
| The simpler boundary conditions we consider in the global coordinates are: | ||||
| \begin{eqnarray} | ||||
|   \tensor{\left( R_{(t)} \right)}{^i_J} | ||||
|   \eval{\ipd{\sigma} X^J( \tau, \sigma )}_{\sigma = 0} | ||||
|   & = & | ||||
|   i\, \tensor{\left( R_{(t)} \right)}{^i_J} | ||||
|   \left( | ||||
|     \ipd{u} X^J( x + i\, 0^+ ) - \ipd{\bu} \bX^J( x - i\, 0^+ ) | ||||
|   \right) | ||||
|   = | ||||
|   0, | ||||
|   \\ | ||||
|   \tensor{\left( R_{(t)} \right)}{^m_J} | ||||
|   \eval{\ipd{\tau} X^J( \tau, \sigma )}_{\sigma = 0} | ||||
|   & = & | ||||
|   i\, \tensor{\left( R_{(t)} \right)}{^m_J} | ||||
|   \left( | ||||
|     \ipd{u} X^J( x + i\, 0^+ ) + \ipd{\bu} \bX^J( x - i\, 0^+ ) | ||||
|   \right) | ||||
|   = | ||||
|   0, | ||||
| \end{eqnarray} | ||||
| where $i = 1,\, 2$, $m = 3,\, 4$ and $x \in D_{(t)}$. | ||||
|  | ||||
| With the introduction of the target space embedding of the worldsheet interaction point between D-branes $D_{(t)}$ and $D_{(t+1)}$, $f_{(t)}$, we recover the full boundary conditions in terms of discontinuities on the real axis: | ||||
| \begin{equation} | ||||
|   \begin{cases} | ||||
|     \ipd{u} X^I( x + i\, 0^+ ) | ||||
|     & = | ||||
|     \tensor{\left( U_{(t)} \right)}{^I_J} | ||||
|     \ipd{\bu} \bX^J( x - i\, 0^+ ), | ||||
|     \qquad | ||||
|     x \in D_{(t)} | ||||
|     \\ | ||||
|     X^I( x_{(t)}, x_{(t)} ) | ||||
|     & = | ||||
|     f_{(t)} | ||||
|   \end{cases}. | ||||
|   \label{eq:discontinuity_bc} | ||||
| \end{equation} | ||||
| In the last expression we introduced the matrix | ||||
| \begin{equation} | ||||
|   U_{(t)} | ||||
|   = | ||||
|   \left( R_{(t)} \right)^{-1}\, | ||||
|   \cS\, | ||||
|   R_{(t)} | ||||
|   \in | ||||
|   \frac{\SO{4}}{\rS\left( \OO{2} \times \OO{2} \right)}, | ||||
|   \label{eq:Umatrices} | ||||
| \end{equation} | ||||
| where | ||||
| \begin{equation} | ||||
|   \cS | ||||
|   = | ||||
|   \mqty( \dmat{ 1, 1, -1, -1 } ) | ||||
|   \label{eq:reflection_S} | ||||
| \end{equation} | ||||
| embeds the difference between Neumann and Dirichlet conditions. | ||||
| Given its definition $U_{(t)}$ is such that $U_{(t)} = \left( U_{(t)} \right)^{-1} = \left( U_{(t)} \right)^T$. | ||||
|  | ||||
| The target space vector $f_{(t)}$ recovers the apparent loss of information suffered when losing $g_{(t)}$. | ||||
| Consider for instance the embedding equations~\eqref{eq:dirichlet_bc} for any two intersecting D-branes $D_{(t)}$ and $D_{(t+1)}$. | ||||
| Introducing the auxiliary quantities | ||||
| \begin{eqnarray} | ||||
|   \cR_{(t,\, t+1)} | ||||
|   = | ||||
|   \mqty( R_{(t)}^m \\ R_{(t+1)}^n ) | ||||
|   & \in & | ||||
|   \GL{4}{\R}, | ||||
|   \qquad | ||||
|   m, n = 3, 4, | ||||
|   \\ | ||||
|   \cG_{(t,\, t+1)} | ||||
|   = | ||||
|   \mqty( g_{(t)}^m \\ g_{(t+1)}^n ) | ||||
|   & \in & | ||||
|   \R^4, | ||||
|   \qquad | ||||
|   m, n = 3, 4, | ||||
| \end{eqnarray} | ||||
| we can compute the intersection point as: | ||||
| \begin{equation} | ||||
|   f_{(t)} | ||||
|   = | ||||
|   \left( \cR_{(t,\, t+1)} \right)^{-1}\, | ||||
|   \cG_{(t,\, t+1)}. | ||||
| \end{equation} | ||||
| Information on $g_{(t)}$ is thus recovered through the global boundary conditions in the second equation in \eqref{eq:discontinuity_bc}. | ||||
|  | ||||
|  | ||||
| \subsubsection{Doubling Trick and Branch Cut Structure} | ||||
|  | ||||
| In conformal coordinates we thus introduced the discontinuities~\eqref{eq:discontinuity_bc} across each D-brane which define a non trivial cut structure on the plane. | ||||
| One way to deal with them is to introduce the \emph{doubling trick} by gluing the relations along an arbitrary but fixed D-brane $D_{(\bt)}$: | ||||
| \begin{equation} | ||||
|   \ipd{z} \cX(z) = | ||||
|   \begin{cases} | ||||
|     \ipd{u} X(u) | ||||
|     & | ||||
|     \qif | ||||
|     z = u \qand \Im z > 0 \qor z \in D_{(\bt)} | ||||
|     \\ | ||||
|     U_{(\bt)}\, | ||||
|     \ipd{\bu} \bX(\bu) | ||||
|     & \qif z = \bu \qand \Im z < 0 \qor z \in D_{(\bt)} | ||||
|   \end{cases}. | ||||
|   \label{eq:real_doubling_trick} | ||||
| \end{equation} | ||||
| Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\widetilde{\cU}_{(t,\, t+1)} = U_{(\bt)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bt)}$. | ||||
| The boundary conditions in terms of the doubling field are: | ||||
| \begin{eqnarray} | ||||
|   \ipd{z} \cX( x_t + e^{2 \pi i}( \eta + i\, 0^+ ) ) | ||||
|   & = & | ||||
|   \cU_{(t,\, t+1)} | ||||
|   \ipd{z} \cX( x_t + \eta + i\, 0^+ ), | ||||
|   \label{eq:top_monodromy} | ||||
|   \\ | ||||
|   \partial \cX( x_t + e^{2 \pi i}( \eta - i\, 0^+ ) ) | ||||
|   & = & | ||||
|   \widetilde{\cU}_{(t,\, t+1)} | ||||
|   \ipd{z} \cX( x_t + \eta - i\, 0^+ ), | ||||
|   \label{eq:bottom_monodromy} | ||||
| \end{eqnarray} | ||||
| for $0 < \eta < \min\left( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} \right)$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$. | ||||
| Matrices $\cU_{(t,\, t+1)}$ and $\widetilde{\cU}_{(t,\, t+1)}$ are the non trivial monodromies arising from the rotation of the D-branes. | ||||
|  | ||||
| Since the relative rotations between consecutive D-branes are non Abelian, for each interaction point there are two monodromies \cU and $\widetilde{\cU}$ depending on the location of the base point of the closed loop: one for paths starting in the upper plane \ccH and one for paths starting in $\overline{\ccH}$. | ||||
| As a consequence of the geometry of the rotations of the D-branes, a path on the complex plane enclosing all of them does not present a monodromy: | ||||
| \begin{equation} | ||||
|   \finiteprod{t}{1}{N_B}\, | ||||
|   \cU_{(\bt - t, \bt + 1 - t)} | ||||
|   = | ||||
|   \finiteprod{t}{1}{N_B}\, | ||||
|   \widetilde{\cU}_{(\bt + t, \bt + 1 + t)} | ||||
|   = | ||||
|   \1_4. | ||||
| \end{equation} | ||||
| The complex plane has therefore branch cuts running between the D-branes at finite as shown in \Cref{fig:finite_cuts}. | ||||
| We thus translated the rotations of the D-branes encoded in the matrices $R_{(t)}$ in terms of $\cU_{(t,\, t+1)}$ and $\widetilde{\cU}_{(t,\, t+1)}$ which are matrix representations of the homotopy group of the complex plane with the described branch cut structure. | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.5\textwidth} | ||||
|   \import{img/}{branchcuts.pdf_tex} | ||||
|   \caption{% | ||||
|     Branch cut structure of the complex plane with $N_B = 4$. | ||||
|     Cuts are pictured as solid coloured blocks running from one intersection point to another at finite. | ||||
|   } | ||||
|   \label{fig:finite_cuts} | ||||
| \end{figure} | ||||
|  | ||||
| As a consistency check, the action~\eqref{eq:string_action} can be computed in terms of the doubling field \cX. | ||||
| The map | ||||
| \begin{equation} | ||||
|   x_{(t)} + \eta \pm i\, 0^+ | ||||
|   \quad | ||||
|   \mapsto | ||||
|   \quad | ||||
|   x_{(t)} + e^{2 \pi i}( \eta \pm i\, 0^+) | ||||
| \end{equation} | ||||
| must leave the action untouched since it does not depend on the branch cut structure. | ||||
| In fact we can show that | ||||
| \begin{equation} | ||||
|   S_{\R^4} | ||||
|   = | ||||
|   \frac{1}{4 \pi \ap} | ||||
|   \iint\limits_{\C} | ||||
|   \dd{z} \dd{\bz}\, | ||||
|   \ipd{z} \cX^T(z)\, | ||||
|   U_{(\bt)}\, | ||||
|   \ipd{\bz} \cX(\bz). | ||||
| \end{equation} | ||||
| As a matter of fact the action does not depend on the branch structure of the complex plane. | ||||
|  | ||||
|  | ||||
| \subsection{D-branes at Angles in Spinor Representation} | ||||
|  | ||||
| In the previous section we showed that it is possible to map the information on the rotations of the D-branes to non trivial monodromies of the doubling field. | ||||
| We thus recast the issue of solving the \eom of the string in the presence of rotated boundary conditions to the search for an explicit solution $\ipd{z} \cX( z )$ reproducing the non trivial monodromies in~\eqref{eq:top_monodromy} and \eqref{eq:bottom_monodromy}. | ||||
|  | ||||
| The field $\ipd{z} \cX( z )$ is technically a $4$-dimensional \emph{real} vector which has $N_B$ non trivial monodromy factors represented by $4 | ||||
| \times 4$ real matrices, one for each interaction point $x_{(t)}$. | ||||
| A solution of the \eom is encoded in four linearly independent functions with $N_B$ branch points. | ||||
| In principle we could try to write it as a solution to fourth order differential equations with $N_B$ finite Fuchsian points. | ||||
| This is however an open mathematical debate. | ||||
| In fact the basis of such functions around each branch point are usually complicated and defined up to several free parameters. | ||||
| Moreover the explicit connection formulae between any two of them is an unsolved mathematical problem. | ||||
| Using contour integrals and writing the functions as Mellin--Barnes integrals it might be possible to solve the issue in the case $N_B = 3$ but it is certainly not the best course of action. | ||||
|  | ||||
| On the other hand $N_B = 3$ is exactly the case we are investigating. | ||||
| In what follows we use the isomorphism | ||||
| \begin{equation} | ||||
|   \SO{4} | ||||
|   \cong | ||||
|   \frac{\SU{2} \times \SU{2}}{\Z_2} | ||||
|   \label{eq:su2isomorphism} | ||||
| \end{equation} | ||||
| to map the problem of finding a $4$-dimensional real solution to the \eom to a quest for a $2 \times 2$ complex matrix. | ||||
| Such matrix is a linear superposition of tensor products of vectors in the fundamental representation of two different \SU{2} groups. | ||||
| These vectors are solutions to second order differential equations with three Fuchsian points, that is the hypergeometric equation. | ||||
| The task is then to find the parameters of the hypergeometric functions producing the spinor representation of the monodromies in~\eqref{eq:top_monodromy} and \eqref{eq:bottom_monodromy}. | ||||
|  | ||||
|  | ||||
| \subsubsection{Doubling Trick and Rotations in Spinor Representation} | ||||
|  | ||||
| We recall some of the properties of the isomorphism~\eqref{eq:su2isomorphism} in~\Cref{sec:isomorphism}. | ||||
| We define the spinor representation of $X$ as: | ||||
| \begin{equation} | ||||
|   X_{(s)}( u, \bu ) = X^I( u, \bu )\, \tau_I, | ||||
| \end{equation} | ||||
| where $\tau = \left( i\, \1_2,\, \vb{\sigma} \right)$ and $\vb{\sigma}$ is the vector of the Pauli matrices. | ||||
| Consider then: | ||||
| \begin{equation} | ||||
|   \ipd{z} \cX_{(s)}( z ) | ||||
|   = | ||||
|   \begin{cases} | ||||
|     \ipd{u} X_{(s)}(u) | ||||
|     & \qif | ||||
|     z \in \ccH \qor z \in D_{(\bt)} | ||||
|     \\ | ||||
|     U_{L}(\vb{n}_{(\bt)})\, | ||||
|     \ipd{\bu} X_{(s)}(\bu)\, | ||||
|     U_{R}^{\dagger}(\vb{m}_{(\bt)}) | ||||
|     & \qif z \in \overline{\ccH} \qor z \in D_{(\bt)} | ||||
|   \end{cases}. | ||||
|   \label{eq:spinor_doubling_trick} | ||||
| \end{equation} | ||||
|  | ||||
| As in the real representation the discontinuities on the D-branes can be cast into monodromy factors with respect to the D-brane $D_{(\bt)}$. Branch cut structure and considerations on the homotopy group are left unchanged as long as we consider both left and right sectors of $\SU{2}_L \times \SU{2}_R$ at the same time. | ||||
| Let $0 < \eta < \min\left( \abs{x_{(t)} - x_{(t-1)}}, \abs{x_{(t+1)} - x_{(t)}} \right)$. | ||||
| We find: | ||||
| \begin{eqnarray} | ||||
|   \ipd{z} \cX_{(s)}( x_t + e^{2 \pi i}( \eta + i\, 0^+) ) | ||||
|   & = & | ||||
|   \cL_{(t,\, t+1)} \ipd{z}\, | ||||
|   \cX_{(s)}( x_t + \eta + i\, 0^+ )\, | ||||
|   \cR_{(t,\, t+1)}^{\dagger}, | ||||
|   \label{eq:top_spinor_monodromy} | ||||
|   \\ | ||||
|   \ipd{z} \cX_{(s)}( x_t + e^{2 \pi i}( \eta - i\, 0^+) ) | ||||
|   & = & | ||||
|   \widetilde{\cL}_{(t,\, t+1)}\, | ||||
|   \ipd{z} \cX_{(s)}( x_t + \eta - i\, 0^+ )\, | ||||
|   \widetilde{\cR}_{(t,\, t+1)}^{\dagger}, | ||||
|   \label{eq:bottom_spinor_monodromy} | ||||
| \end{eqnarray} | ||||
|   where: | ||||
| \begin{eqnarray} | ||||
|   \cL_{(t,\, t+1)} | ||||
|   & = & | ||||
|   U_{L}(\vb{n}_{(t+1)})\, | ||||
|   U_{L}^{\dagger}(\vb{n}_{(t)}), | ||||
|   \\ | ||||
|   \widetilde{\cL}_{(t,\, t+1)} | ||||
|   & = & | ||||
|   U_{L}(\vb{n}_{(\bt)})\, | ||||
|   U_{L}^{\dagger}(\vb{n}_{(t)})\, | ||||
|   U_{L}(\vb{n}_{(t+1)})\, | ||||
|   U_{L}^{\dagger}(\vb{n}_{(\bt)}), | ||||
|   \\ | ||||
|   \cR_{(t,\, t+1)} | ||||
|   & = & | ||||
|   U_{R}(\vb{m}_{(t+1)})\, | ||||
|   U_{R}^{\dagger}(\vb{m}_{(t)}), | ||||
|   \\ | ||||
|   \widetilde{\cR}_{(t,\, t+1)} | ||||
|   & = & | ||||
|   U_{R}(\vb{m}_{(\bt)})\, | ||||
|   U_{R}^{\dagger}(\vb{m}_{(t)})\, | ||||
|   U_{R}(\vb{m}_{(t+1)})\, | ||||
|   U_{R}^{\dagger}(\vb{m}_{(\bt)}). | ||||
| \end{eqnarray} | ||||
|  | ||||
| In spinor representation the action~\eqref{eq:string_action} becomes | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     S_{\R^4} | ||||
|     & = | ||||
|     \frac{1}{4 \pi \ap} | ||||
|     \iint\limits_{\ccH} | ||||
|     \dd{u} \dd{\bu}\, | ||||
|     \tr(\ipd{u} X_{(s)}(u, \bu) \cdot \ipd{\bu} X^{\dagger}_{(s)}(u, \bu)) | ||||
|     \\ | ||||
|     & = | ||||
|     \frac{1}{8 \pi \ap} | ||||
|     \iint\limits_{\C} | ||||
|     \dd{z} \dd{\bz}\, | ||||
|     \tr( | ||||
|       U_{L}(\vb{n}_{(\bt)})\, | ||||
|       \ipd{z} \cX_{(s)}(z, \bz)\, | ||||
|       U_{R}^{\dagger}(\vb{m}_{(\bt)})\, | ||||
|       \ipd{\bz} \cX_{(s)}^{\dagger}(z, \bz) | ||||
|     ). | ||||
|   \end{split} | ||||
|   \label{eq:action_doubling_fields_spinor_representation} | ||||
| \end{equation} | ||||
| It is possible to show that the closed loop $x_t + \eta \pm i\, 0^+ \mapsto x_t + e^{2 \pi i}( \eta \pm i\, 0^+ )$ does not generate additional contributions in the action. | ||||
|  | ||||
|  | ||||
| \subsubsection{Special Form of Matrices for D-Branes at Angles}  | ||||
| \label{sect:special_SO4} | ||||
|  | ||||
| The $\SU{2}$ matrices involved in this scenario with D-branes intersecting at angles have a particular form. | ||||
| In the left sector (i.e.\ $\SU{2}_L$ matrices) we have: | ||||
| \begin{equation} | ||||
|   \cL_{(t,\, t+1)} | ||||
|   = | ||||
|   U_{L}(\vb{n}_{(t+1)})\, | ||||
|   U_{L}^{\dagger}(\vb{n}_{(t)})\, | ||||
|   = | ||||
|   -\vb{n}_{(t+1)} \cdot \vb{n}_{(t)} | ||||
|   + | ||||
|   i\, (\vb{n}_{(t+1)} \times \vb{n}_{(t)}) \cdot \vb{\sigma} , | ||||
| \end{equation} | ||||
| with $\vb{n}_{(t)}^2 = 1$. | ||||
| This is a consequence of the peculiar properties of the \SO{4} matrices $U_{(t)}$ defined in \eqref{eq:Umatrices}. | ||||
| Hence the corresponding $\SU{2}_L \times \SU{2}_R$ element $(U_{L}(\vb{n}_{(t)}),\, U_{R}(\vb{m}_{(t)}))$ reflects such characteristics. | ||||
| In particular for the left part we have | ||||
| \begin{equation} | ||||
|   U_{L}(\vb{n}_{(t)}) | ||||
|   = | ||||
|   i\, \vb{n}_{(t)} \cdot \vb{\sigma}, | ||||
|   \qquad | ||||
|   \vb{n}_{(t)}^2 = 1, | ||||
|   \label{eq:special_UL_brane_t} | ||||
| \end{equation} | ||||
| since $U_{(t)}^2 = \1_4$ implies that $U_{L}^2 = \pm \1_2$. | ||||
| The right sector clearly follows the same discussion. | ||||
|  | ||||
| In fact \cS in~\eqref{eq:reflection_S} can be represented as $U_{L} = U_{R} = i\, \sigma_1$. | ||||
| Then any matrix $U_{L}(\vb{n}_{(t)})$ is of the form $U_{L}(\vb{n}_{(t)}) = i\, U(\vb{r}_{(t)}) \cdot \sigma_1 \cdot U^\dagger(\vb{r}_{(t)})$, for some $\vb{r}_{(t)}$ as follows from~\eqref{eq:Umatrices}. | ||||
| Such matrix has vanishing trace and squares to $-\1_2$ hence the term  proportional to two-dimensional unit matrix in the expression of the generic $\mathrm{SU}(2)$ element given in \Cref{sec:isomorphism} vanishes. | ||||
| As a consequence $n_{(t)} = \frac{1}{4}$ such that \eqref{eq:special_UL_brane_t} follows. | ||||
|  | ||||
| % vim ft=tex | ||||
|   | ||||
| @@ -55,6 +55,8 @@ | ||||
| \newcommand{\bxi}{\ensuremath{\overline{\xi}}} | ||||
| \newcommand{\bchi}{\ensuremath{\overline{\chi}}} | ||||
| \newcommand{\bz}{\ensuremath{\overline{z}}} | ||||
| \newcommand{\bu}{\ensuremath{\overline{u}}} | ||||
| \newcommand{\bt}{\ensuremath{\overline{t}}} | ||||
| \newcommand{\bw}{\ensuremath{\overline{w}}} | ||||
| \newcommand{\bomega}{\ensuremath{\overline{\omega}}} | ||||
| \newcommand{\bepsilon}{\ensuremath{\overline{\epsilon}}} | ||||
| @@ -111,10 +113,16 @@ | ||||
| \input{sec/part3/introduction.tex} | ||||
|  | ||||
| %---- APPENDIX | ||||
| \cleardoubleplainpage{} | ||||
| \appendix | ||||
| \section{The Isomorphism in Details} | ||||
| \label{sec:isomorphism} | ||||
| \input{sec/app/isomorphism.tex} | ||||
|  | ||||
|  | ||||
| %---- BIBLIOGRAPHY | ||||
| \cleardoubleplainpage{} | ||||
| \small | ||||
| \printbibliography[heading=bibintoc] | ||||
|  | ||||
| \end{document} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user