Add D-branes at angles and doubling trick
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										176
									
								
								sec/app/isomorphism.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								sec/app/isomorphism.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,176 @@ | ||||
| In this appendix we explain the conventions used for \SU{2} and show the details of the isomorphism between \SO{4} and a class of equivalence of $\SU{2} \times \SU{2}$. | ||||
|  | ||||
|  | ||||
| \subsection{Conventions} | ||||
|  | ||||
| We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that: | ||||
| \begin{equation} | ||||
|   U(\vb{n}) | ||||
|   = | ||||
|   \cos(2 \pi n)\, \1_2 | ||||
|   + | ||||
|   i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n), | ||||
|   \label{eq:su2parametrisation} | ||||
| \end{equation} | ||||
| where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$. | ||||
| We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$. | ||||
| The parametrisation is such that: | ||||
| \begin{eqnarray} | ||||
|   U^*(\vb{n}) | ||||
|   & = & | ||||
|   \sigma^2\, U(\vb{n})\, \sigma^2 | ||||
|   = | ||||
|   U(\widetilde{\vb{n}}), | ||||
|   \\ | ||||
|   U^{\dagger}(\vb{n}) | ||||
|   & = & | ||||
|   U^T(\widetilde{\vb{n}}) | ||||
|   = | ||||
|   U(-\vb{n}), | ||||
|   \\ | ||||
|   -U(\vb{n}) | ||||
|   & = & | ||||
|   U(\widehat{\vb{n}}) | ||||
|   \label{eq:U_props} | ||||
| \end{eqnarray} | ||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \left( -n^1, n^2, -n^3 \right)$ and $\widehat{\vb{n}} = - \left(\frac{1}{2} -n \right)\, \frac{\vb{n}}{n}$. | ||||
|  | ||||
| The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{m})$ has an explicit realisation as: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \cos(2 \pi \norm{\vb{n} \circ \vb{m}}) | ||||
|     & = | ||||
|     \cos(2 \pi n)\, \cos(2 \pi m) | ||||
|     - | ||||
|     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m}, | ||||
|     \\ | ||||
|     \sin(2 \pi \norm{\vb{n} \circ \vb{m}})\, | ||||
|     \frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}} | ||||
|     & = | ||||
|     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m} | ||||
|     + | ||||
|     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}. | ||||
|   \end{split} | ||||
|   \label{eq:product_in_SU2} | ||||
| \end{equation} | ||||
|  | ||||
| \subsection{The Isomorphism} | ||||
|  | ||||
| Let $I = 1,\, 2,\, 3,\, 4$ and define: | ||||
| \begin{equation} | ||||
|   \tau_I = \left( i\, \1_2,\, \vb{\sigma} \right), | ||||
| \end{equation} | ||||
| where $\vb{\sigma} = \left( \sigma^1,\, \sigma^2,\, \sigma^3 \right)$ are the Pauli matrices. | ||||
| It is possible to show that: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \left( \tau_I \right)^{\dagger} | ||||
|     & = | ||||
|     \eta_{IJ}\, {\tau}^I, | ||||
|     \\ | ||||
|     \left( \tau^I \right)^* | ||||
|     & = | ||||
|     -\sigma_2\, \tau_I\, \sigma_2, | ||||
|   \end{split} | ||||
|   \label{eq:tau_props} | ||||
| \end{equation} | ||||
| where $\eta_{IJ} = \mathrm{diag}(-1,1,1,1)$. | ||||
| The following relations are then a natural consequence: | ||||
| \begin{eqnarray} | ||||
|   \tr(\tau_I) | ||||
|   & = & | ||||
|   2\, i\, \delta_{I1}, | ||||
|   \\ | ||||
|   \tr(\tau_I \tau_J) | ||||
|   & = & | ||||
|   2\, \eta_{IJ}, | ||||
|   \\ | ||||
|   \tr(\tau_I \left( \tau_J \right)^{\dagger}) | ||||
|   & = & | ||||
|   2\, \delta_{IJ}. | ||||
| \end{eqnarray} | ||||
|  | ||||
| Now consider a vector in the spinor representation: | ||||
| \begin{equation} | ||||
|   X_{(s)} = X^I\, \tau_I. | ||||
| \end{equation} | ||||
| We can recover the components using the previous properties: | ||||
| \begin{equation} | ||||
|   X^I | ||||
|   = | ||||
|   \frac{1}{2}\, \delta^{IJ}\, | ||||
|   \tr(X_{(s)} \left( \tau_J \right)^{\dagger}) | ||||
|   = | ||||
|   \frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J), | ||||
| \end{equation} | ||||
| where the trace acts on the space of the $\tau$ matrices. | ||||
| If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     X_{(s)}^{\dagger} | ||||
|     & = | ||||
|     X^I\, \eta_{IJ}\, \tau^J | ||||
|     = | ||||
|     \frac{1}{2} \tr(X_{(s)} \tau_I)\, \tau^I, | ||||
|     \\ | ||||
|     X_{(s)}^* | ||||
|     & = | ||||
|     - \sigma_2\, X_{(s)}\, \sigma_2. | ||||
|   \end{split} | ||||
|   \label{eq:X_dagger} | ||||
| \end{equation} | ||||
|  | ||||
| A rotation in spinor representation is defined as: | ||||
| \begin{equation} | ||||
|   X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m}) | ||||
| \end{equation} | ||||
| and it is equivalent to: | ||||
| \begin{equation} | ||||
|   \left( X' \right)^I | ||||
|   = | ||||
|   \tensor{R}{^I_J}\, | ||||
|   X^J | ||||
| \end{equation} | ||||
| through | ||||
| \begin{equation} | ||||
|   R_{IJ} | ||||
|   = | ||||
|   \frac{1}{2} | ||||
|   \tr( | ||||
|     \left( \tau_I \right)^{\dagger}\, | ||||
|     U_{L}(\vb{n})\, | ||||
|     \tau_J\, | ||||
|     U_{R}^{\dagger}(\vb{m}) | ||||
|   ). | ||||
| \end{equation} | ||||
| The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since: | ||||
| \begin{equation} | ||||
|   \tr(X'_{(s)}\, (X')^{\dagger}_{(s)}) | ||||
|   = | ||||
|   \tr(X_{(s)}\, X^{\dagger}_{(s)}) | ||||
|   \qquad | ||||
|   \Rightarrow | ||||
|   \qquad | ||||
|   \finitesum{K}{1}{4} R_{IK} R^*_{JK} = \delta_{I \,J}. | ||||
| \end{equation} | ||||
| From the second equation in \eqref{eq:tau_props} and the first equation in \eqref{eq:U_props} we then get the reality condition on $R$: | ||||
| \begin{equation} | ||||
|   R_{NM} | ||||
|   = | ||||
|   \frac{1}{2}\, \eta_{NI}\, \eta_{MJ}\, | ||||
|   \tr(\tau_I ^{\dagger}\, U_{R}\, \tau_J\, U_{L}^{\dagger}) | ||||
|   = | ||||
|   \frac{1}{2} | ||||
|   \tr(\tau_N\, U_{R}\, \tau_M^\dagger\, U_{L}^{\dagger}) | ||||
|   = | ||||
|   R_{NM}^*. | ||||
| \end{equation} | ||||
| Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$. | ||||
| Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$. | ||||
| Since $\left\lbrace U_{L},\, U_{R} \right\rbrace$ and $\left\lbrace -U_{L},\, -U_{R} \right\rbrace$ generate the same \SO{4} matrix then the correct isomorphism takes the form: | ||||
| \begin{equation} | ||||
|   \SO{4} | ||||
|   \cong | ||||
|   \frac{\SU{2} \times \SU{2}}{\Z_2}. | ||||
| \end{equation} | ||||
|  | ||||
		Reference in New Issue
	
	Block a user