Correction of typos in sez. 2
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -349,16 +349,16 @@ One way to deal with them is to introduce the \emph{doubling trick} by gluing th | ||||
| Let then $\cU_{(t,\, t+1)} = U_{(t+1)}\, U_{(t)}$ and $\tcU_{(t,\, t+1)} = U_{(\bart)}\, U_{(t)}\, U_{(t+1)}\, U_{(\bart)}$. | ||||
| The boundary conditions in terms of the doubling field are: | ||||
| \begin{eqnarray} | ||||
|   \ipd{z} \cX( x_t + e^{2 \pi i}( \eta + i\, 0^+ ) ) | ||||
|   \ipd{z} \cX( x_{(t)} + e^{2 \pi i}( \eta + i\, 0^+ ) ) | ||||
|   & = & | ||||
|   \cU_{(t,\, t+1)} | ||||
|   \ipd{z} \cX( x_t + \eta + i\, 0^+ ), | ||||
|   \cU_{(t,\, t+1)}\, | ||||
|   \ipd{z} \cX( x_{(t)} + \eta + i\, 0^+ ), | ||||
|   \label{eq:top_monodromy} | ||||
|   \\ | ||||
|   \partial \cX( x_t + e^{2 \pi i}( \eta - i\, 0^+ ) ) | ||||
|   \ipd{z} \cX( x_{(t)} + e^{2 \pi i}( \eta - i\, 0^+ ) ) | ||||
|   & = & | ||||
|   \tcU_{(t,\, t+1)} | ||||
|   \ipd{z} \cX( x_t + \eta - i\, 0^+ ), | ||||
|   \tcU_{(t,\, t+1)}\, | ||||
|   \ipd{z} \cX( x_{(t)} + \eta - i\, 0^+ ), | ||||
|   \label{eq:bottom_monodromy} | ||||
| \end{eqnarray} | ||||
| for $0 < \eta < \min\qty( \abs{x_{(t-1)} - x_{(t)}}, \abs{x_{(t)} - x_{(t+1)}} )$ in order to consider only the two adjacent D-branes $D_{(t)}$ and $D_{(t+1)}$. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user