Kaehler manifolds
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -484,11 +484,11 @@ Using the normalisation of the 2-points function $\left\langle X^{\mu}( z, \bz )
|
||||
It can be shown that in order to cancel the central charge in bosonic string theory we need to introduce a pair of conformal ghosts $b(z)$ and $c(z)$ with conformal weights $(2, 0)$ and $(-1, 0)$ respectively, together with their anti-holomorphic counterparts $\overline{b}(z)$ and $\overline{c}(z)$.
|
||||
The non vanishing components of their stress-energy tensor can be computed as:\footnotemark{}
|
||||
\footnotetext{%
|
||||
In general ghosts $b( z )$ and $c( z )$ with weight $(\lambda, 0)$ and $(1 - \lambda, 0)$ can be introduced as a standalone \cft \cite{Friedan:1986:ConformalInvarianceSupersymmetry,Polchinski:1998:StringTheorySuperstring} with action
|
||||
In general a system of ghosts $b( z )$ and $c( z )$ with weight $(\lambda, 0)$ and $(1 - \lambda, 0)$ can be introduced as a standalone \cft with action~\cite{Friedan:1986:ConformalInvarianceSupersymmetry,Polchinski:1998:StringTheorySuperstring}
|
||||
\begin{equation*}
|
||||
S = \frac{1}{2 \pi} \iint \dd{z} \dd{\bz} b( z )\, \ipd{\bz} c( z )
|
||||
S = \frac{1}{2 \pi} \iint \dd{z} \dd{\bz} b( z )\, \ipd{\bz} c( z ).
|
||||
\end{equation*}
|
||||
whose equations of motion are $\ipd{\bz} c( z ) = \ipd{\bz} b( z ) = 0$.
|
||||
The equations of motion are $\ipd{\bz} c( z ) = \ipd{\bz} b( z ) = 0$.
|
||||
The \ope is
|
||||
\begin{equation*}
|
||||
b( z )\, c( z ) = \frac{\varepsilon}{z - w} + \order{1},
|
||||
@@ -509,7 +509,8 @@ The non vanishing components of their stress-energy tensor can be computed as:\f
|
||||
T_{\text{ghost}}( z )\, j( w ) = \frac{Q}{( z - w )^3} + \order{(z - w)^{-2}}.
|
||||
\end{equation*}
|
||||
This is the case of the worldsheet fermions in~\eqref{eq:super:action} for which $\lambda = \frac{1}{2}$.
|
||||
For instance the reparametrisation ghosts with $\lambda = 2$ have $Q = -3$.
|
||||
For instance the reparametrisation ghosts with $\lambda = 2$ have $Q = -3$, while the superghosts with $\lambda = \frac{3}{2}$ present $Q = 2$.
|
||||
\label{note:conf:ghosts}
|
||||
}
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
@@ -615,21 +616,21 @@ The action~\eqref{eq:super:action} is also invariant under the \emph{supersymmet
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\sqrt{\frac{2}{\ap}}\,
|
||||
\delta_{\epsilon, \bepsilon}\,
|
||||
\delta_{\epsilon, \bepsilon}
|
||||
X^{\mu}( z, \bz )
|
||||
& =
|
||||
\epsilon( z ) \psi^{\mu}( z ) + \bepsilon( \bz ) \bpsi^{\mu}( \bz ),
|
||||
\epsilon( z )\, \psi^{\mu}( z ) + \bepsilon( \bz )\, \bpsi^{\mu}( \bz ),
|
||||
\\
|
||||
\sqrt{\frac{2}{\ap}} \delta_{\epsilon} \psi^{\mu}( z )
|
||||
& =
|
||||
- \epsilon( z ) \ipd{z} X^{\mu}( z ),
|
||||
- \epsilon( z )\, \ipd{z} X^{\mu}( z ),
|
||||
\\
|
||||
\sqrt{\frac{2}{\ap}} \delta_{\bepsilon} \bpsi^{\mu}( \bz )
|
||||
& =
|
||||
- \bepsilon( \bz ) \ipd{\bz} \bX^{\mu}( \bz )
|
||||
- \bepsilon( \bz )\, \ipd{\bz} \bX^{\mu}( \bz )
|
||||
\end{split}
|
||||
\end{equation}
|
||||
generated by the currents $J( z ) = \epsilon( z ) T_F( z )$ and $\overline{J}( \bz ) = \bepsilon( \bz )\, \bT_F( \bz )$, where $\epsilon( z )$ and $\bepsilon( \bz ) = \left( \epsilon( z ) \right)^*$ are anti-commuting fermions and
|
||||
generated by the currents $J( z ) = \epsilon( z )\, T_F( z )$ and $\overline{J}( \bz ) = \bepsilon( \bz )\, \bT_F( \bz )$, where $\epsilon( z )$ and $\bepsilon( \bz ) = \left( \epsilon( z ) \right)^*$ are anti-commuting fermions and
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
T_F( z )
|
||||
@@ -670,7 +671,7 @@ The central charge is therefore $c = \frac{3}{2} D$ for the \cft defined in~\eqr
|
||||
|
||||
As in the case of the bosonic string, in order to cancel the central charge we introduce the reparametrisation anti-commuting ghosts $b( z )$ and $c( z )$ and their anti-holomorphic components as well as the commuting \emph{superghosts} $\beta( z )$ and $\gamma( z )$ and their anti-holomorphic counterparts.
|
||||
These are conformal fields with conformal weights $\left( \frac{3}{2}, 0 \right)$ and $\left( -\frac{1}{2}, 0 \right)$.
|
||||
Their central charge becomes $c_{\text{ghost}} = c_{bc} + c_{\beta\gamma} = -26 + 11 = -15$.
|
||||
Their central charge becomes $c_{\text{ghost}} = c_{bc} + c_{\beta\gamma} = -26 + 11 = -15$ (see \cref{note:conf:ghosts} for the general computation).
|
||||
When considering the full theory $T_{\text{full}} = T + T_{\text{ghost}}$ and $\bT_{\text{full}} = \bT + \bT_{\text{ghost}}$ the central charge vanishes only in 10-dimensional spacetime:
|
||||
\begin{equation}
|
||||
\eval{T_{\text{full}}( z )}_{\order{(z - w)^{-4}}}
|
||||
@@ -686,6 +687,7 @@ When considering the full theory $T_{\text{full}} = T + T_{\text{ghost}}$ and $\
|
||||
\Leftrightarrow
|
||||
\quad
|
||||
D = 10.
|
||||
\label{eq:super:dimensions}
|
||||
\end{equation}
|
||||
|
||||
|
||||
@@ -700,6 +702,109 @@ In this section we briefly review for completeness the necessary tools to be abl
|
||||
These results represent the background knowledge necessary to better understand more complicated scenarios involving strings.
|
||||
As we will never deal directly with $4$-dimensional physics this is not a complete review and we refer to \cite{Anderson:2018:TASILecturesGeometric,Blumenhagen:2007:FourdimensionalStringCompactifications,Blumenhagen:2013:BasicConceptsString,Grana:2005:FluxCompactificationsString,Grana:2017:StringTheoryCompactifications,Krippendorf:2010:CambridgeLecturesSupersymmetry,Uranga:2005:TASILecturesString} for more in-depth explanations.
|
||||
|
||||
In general we consider Minkowski space in $10$ dimensions $\ccM^{1,9}$.
|
||||
To recover $4$-dimensional spacetime we let it be defined as a product
|
||||
\begin{equation}
|
||||
\ccM^{1,9}
|
||||
=
|
||||
\ccM^{1,3} \otimes \ccX_6,
|
||||
\end{equation}
|
||||
where $\ccX_6$ is a generic $6$-dimensional manifold at this stage.
|
||||
This \emph{internal} manifold $\ccX_6$ is however subject to very stringent restrictions due to mathemtical consistency conditions and physical requests.
|
||||
In particular $\ccX_6$ should be a compact manifold to ``hide'' the 6 extra-dimensions computed in~\eqref{eq:super:dimensions}.
|
||||
Moreover the geometry of $\ccM^{1,3}$ should be a maximally symmetric space and there should be a $N = 1$ unbroken supersymmetry in $4$ dimensions.
|
||||
Finally the gauge group of and the spectrum of fermions should be realistic (e.g.\ it should be possible to define chiral fermion states) \cite{Candelas:1985:VacuumConfigurationsSuperstrings}.
|
||||
These manifolds were first conjectured to exist by Eugenio Calabi~\cite{Calabi:1957:KahlerManifoldsVanishing}.
|
||||
Their existence was later proved by Shing-Tung Yau~\cite{Yau:1977:CalabiConjectureNew}.
|
||||
They are defined as complex Ricci-flat Kähler manifolds $M$ of dimensions $2m$ and with holonomy \SU{3} (see for instance \cite{Joyce:2000:CompactManifoldsSpecial,Joyce:2002:LecturesCalabiYauSpecial}).
|
||||
|
||||
|
||||
\subsubsection{Complex and Kähler Manifolds}
|
||||
|
||||
In general an \emph{almost complex structure} $J$ is a tensor such that $\tensor{J}{^a_b}\, \tensor{J}{^b_c} = - \tensor{\delta}{^a_c}$.
|
||||
For any vector field $v_p \in \rT_p M$ defined in $p \in M$ we then define $(J v)^a = \tensor{J}{^a_b} v^b$, thus the tangent space $\rT_p M$ has the structure of a \emph{complex vector space}.
|
||||
The tensor $J$ is called \emph{complex structure} if there exist a tensor $N$ such that
|
||||
\begin{equation}
|
||||
\tensor{N}{^a_{bc}} v_p^b w_p^c
|
||||
=
|
||||
\left(
|
||||
[ v_p, w_p ]
|
||||
+
|
||||
J
|
||||
\left( [ J\, v_p, w_p ] + [ v_p, J\, w_p ] \right)
|
||||
-
|
||||
[ J\, v_p, J\, w_p ]
|
||||
\right)^a
|
||||
=
|
||||
0
|
||||
\end{equation}
|
||||
for any $v_p,\, w_p \in \rT_p M$, where $[ \cdot, \cdot ]$ is the Lie braket of vector fields.
|
||||
A manifold $M$ is a \emph{complex} manifold if it is possible to define a complex structure $J$ on it.\footnotemark{}
|
||||
\footnotetext{%
|
||||
Notice that a smooth function $f\colon\, M \to \C$ whose pushforward of $v_p \in \rT_p M$ is $f_{*\, p}\colon\, \rT_p M \to \rT_{f(p)} \C$ is called holomorphic if $(J\, f_{*\, p}( v_p ))^a = i ( f_{*\, p}( v_p ) )^a$ as such expression encodes the Cauchy-Riemann equations.
|
||||
Let in fact $f( x, y ) = f_1( x, y ) + i\, f_2( x, y )$, then the expression implies
|
||||
\begin{equation*}
|
||||
\begin{cases}
|
||||
\ipd{x} f_1( x, y )
|
||||
& =
|
||||
\ipd{y} f_2( x, y )
|
||||
\\
|
||||
\ipd{x} f_2( x, y )
|
||||
& =
|
||||
-\ipd{y} f_1( x, y )
|
||||
\end{cases}
|
||||
\Rightarrow
|
||||
\ipd{x} f( x, y ) = -i \ipd{y} f( x, y )
|
||||
\Rightarrow
|
||||
\ipd{\bz} f( z, \bz ) = 0
|
||||
\Rightarrow
|
||||
f( z, \bz ) = f( z ).
|
||||
\end{equation*}
|
||||
}
|
||||
|
||||
Let then $(M, J, g)$ be a complex manifold with a Riemannian metric $g$.
|
||||
The metric is \emph{Hermitian} if
|
||||
\begin{equation}
|
||||
g( v_p, w_p ) = g( J\, v_p, J\, w_p )
|
||||
\quad
|
||||
\forall v_p,\, w_p \in \rT_p M
|
||||
\quad
|
||||
\Leftrightarrow
|
||||
\quad
|
||||
\tensor{g}{_{ab}}
|
||||
=
|
||||
\tensor{J}{_a^c}\,
|
||||
\tensor{J}{_b^d}\,
|
||||
\tensor{g}{_{cd}}.
|
||||
\end{equation}
|
||||
In this case we can define a $(1, 1)$-form $\omega$ as
|
||||
\begin{equation}
|
||||
\omega( v_p, w_p )
|
||||
=
|
||||
g( J\, v_p, w_p )
|
||||
\quad
|
||||
\forall v_p,\, w_p \in \rT_p M.
|
||||
\quad
|
||||
\Leftrightarrow
|
||||
\quad
|
||||
\tensor{\omega}{_{ab}}
|
||||
=
|
||||
\tensor{J}{_a^c}\,
|
||||
\tensor{g}{_{cb}}.
|
||||
\end{equation}
|
||||
$(M, J, g)$ is a \emph{Kähler} manifold if ~\cite{Joyce:2002:LecturesCalabiYauSpecial}:
|
||||
\begin{equation}
|
||||
\dd{\omega}
|
||||
=
|
||||
\left( \ipd{z} + \ipd{\bz} \right)
|
||||
\omega(z, \bz)
|
||||
=
|
||||
0,
|
||||
\end{equation}
|
||||
or equivalently $\nabla J = 0$ or $\nabla \omega = 0$, where $\nabla$ is the connection of $g$.
|
||||
The covariant conservation of $J$ and $\omega$ implies that the holonomy group must preserve these objects in $\R^{2m}$.
|
||||
Thus we have $\mathrm{Hol}(g) \subseteq \U{m} \subset \mathrm{O}(2m)$.
|
||||
|
||||
|
||||
\subsection{D-branes and Open Strings}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user