Add new figures in Tikz
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -1020,7 +1020,7 @@ Using the same network we also achieve \SI{97}{\percent} of accuracy in the favo | ||||
|   \centering | ||||
|   \begin{subfigure}[c]{0.475\linewidth} | ||||
|     \centering | ||||
|     \includegraphics[width=\linewidth]{img/fc} | ||||
|     \import{tikz}{fc.pgf} | ||||
|     \caption{Architecture of the network.} | ||||
|     \label{fig:nn:dense} | ||||
|   \end{subfigure} | ||||
| @@ -1099,7 +1099,7 @@ The convolution layers have $180$, $100$, $40$ and $20$ units each. | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \includegraphics[width=0.75\linewidth]{img/ccnn} | ||||
|   \import{tikz}{ccnn.pgf} | ||||
|   \caption{% | ||||
|     Pure convolutional neural network for redicting \hodge{1}{1}. | ||||
|     It is made of $4$ modules composed by convolutional layer, ReLU activation, batch normalisation (in this order), followed by a dropout layer, a flatten layer and the output layer (in this order). | ||||
| @@ -1204,7 +1204,7 @@ The callbacks helped to contain the training time (without optimisation) under 5 | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \includegraphics[width=0.9\linewidth]{img/icnn} | ||||
|   \resizebox{\linewidth}{!}{\import{tikz}{icnn.pgf}} | ||||
|   \caption{% | ||||
|     In each concatenation module (here shown for the ``old'' dataset) we operate with separate convolution operations over rows and columns, then concatenate the results. | ||||
|     The overall architecture is composed of 3 ``inception'' modules made by two separate convolutions, a concatenation layer and a batch normalisation layer (strictly in this order), followed by a dropout layer, a flatten layer and the output layer with ReLU activation (in this order). | ||||
| @@ -1374,7 +1374,7 @@ Another reason is that the different algorithms may perform similarly well in th | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \includegraphics[width=0.65\linewidth]{img/stacking} | ||||
|   \resizebox{0.65\linewidth}{!}{\import{tikz}{stacking.pgf}} | ||||
|   \caption{Stacking ensemble learning with two level learning.} | ||||
|   \label{fig:stack:def} | ||||
| \end{figure} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user